当前位置:育文网>高中> 高中数学解题技巧

高中数学解题技巧

时间:2024-06-20 06:59:31 高中 我要投稿

高中数学解题技巧

高中数学解题技巧1

  选择题答案是四选一,只有一个正确答案,所以除了按部就班的解题方法外,还需要注意一些解题策略。

高中数学解题技巧

  首先,要认真审题。做题时忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,甚至有时候还选错,结果事倍功半。所以一定要读透题,由题迅速联想到涉及到的概念,公式,定理以及知识点中要注意的问题。发掘题目中的隐含条件,要去伪存真,领会题目的真正含义。

  其次,要注意解题方法。做题时除了按照解答题的思路直接来求以外,还要注意一些特殊的方法,比如说特殊值法,代入法,排除法,验证法,数形结合法等等。

  直接法。有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由概念、公式、定理及性质出发,按照做解答题的方法一步步来求。我们在做解答题时大部分都是采用这种方法。排除法。选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

  验证法。通过对选择支的观察,分析,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。特殊值法。有些选择题用常规方法求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

  数形结合法。也叫图象法。有些选择题用代数方法解计算较繁,但若能根据题意,做出草图,然后根据图形的形状、位置、性质、综合特征等,由图形的直观性得出选择题的答案。选择题的解题方法还有很多,但做题时也不要拘泥于固定思维,有时候一道题可采用多种特殊方法综合运用。还有,在做选择题的过程中,遇到关键性的词语可用笔做个记号,以引起自己的注意,比如说至少,没有一个,至多一个等等。第一遍没做的题也要做个记号,但要注意与其它记号区分开来,这样不容易遗漏。最后,做完题后要仔细检查,有没有遗漏的,有没有涂错的,全面认真的再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。

  影响高中数学成绩的原因及解决方法

  面对众多初中学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了研究、调查表明,造成成绩滑坡的主要原因有以下几个方面.

  1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.没有真正理解所学内容。

  2.学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.

  3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”.

  4.进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.

  高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动.针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策:

  1.加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面.

  制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力.但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志.

  课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上.

  上课是理解和掌握基本知识、基本技能和基本方法的关键环节.“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼.

  及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”.

  独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”.

  解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神,做错的.作业再做一遍.对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.

  系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由“活”到“悟”.

  课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情.

  2.循序渐进,防止急躁

  由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振.针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.

  3.研究学科特点,寻找最佳学习方法

  数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的.

  4.加强辅导,化解分化点

  如前所述高中数学中易分化的地方多,这些地方一般都有方法新、难度大、灵活性强等特点.对易分化的地方教师应当采取多次反复,加强辅导,开辟专题讲座,指导阅读参考书等方法,将出现的错误提出来让学生议一议,充分展示他们的思维过程,通过变式练习,提高他们的鉴赏能力,以达到灵活掌握知识、运用知识的目的。

高中数学解题技巧2

  第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

  第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

  第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。在用定义进行判断时,要注意自变量在定义域区间内的任意性。

  第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的.性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

  第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<>

  第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

  第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

  第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。

高中数学解题技巧3

  高中数学解题小技巧

  1、圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

  2、选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!

  3、三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!

  4、空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!

  5、立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!

  6、选择题中考线面关系的可以先从D项看起前面都是来浪费你时间的

  7、选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案

  8、线性规划题目直接求交点带入比较大小即可

  9、遇到这样的选项A、1/2,B、1,C、3/2,D、5/2这样的话答案一般是D因为B可以看作是2/2前面三个都是出题者凑出来的如果答案在前面3个的话D应该是2(4/2)

  高中数学万能解题技巧

  ①特值检验法、对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

  ②极端性原则、将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

  ③剔除法、利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

  ④数形结合法、由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

  ⑤递推归纳法、通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

  ⑥顺推法、利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

  ⑦逆推验证法(代答案入题干验证法)、将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

  ⑧正难则反法、从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

  ⑨特征分析法、对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

  ⑩估值选择法、有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

  高中数学解题技巧总结

  1、调理大脑思绪,提前进入数学情境

  考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

  2、沉着应战,确保旗开得胜,以利振奋精神

  良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

  3、“内紧外松”,集中注意,消除焦虑怯场

  集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

  4、一“慢”一“快”,相得益彰

  有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

  5、“六先六后”,因人因卷制宜

  在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

  1、先易后难

  。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

  2、先熟后生。

  通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

  3、先同后异。

  先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,

  4、先小后大。

  小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的'心理基础

  5、先点后面。

  近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6、先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

  6、确保运算准确,立足一次成功

  数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

  7、讲求规范书写,力争既对又全

  考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

  8、面对难题,讲究方法,争取得分

  会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

  1、缺步解答。

  对一个疑难问题,确实啃不动时,一个明智的解题方法是、将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

  2、跳步解答。

  解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

  9、以退求进,立足特殊

  发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

  10、应用性问题思路、面—点—线

  解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

  11、执果索因,逆向思考,正难则反

  对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

  12、回避结论的肯定与否定,解决探索性问题

  对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

高中数学解题技巧4

  17题三角函数

  17题考的知识点比较简单,只要在平时多加注意和总结就不成问题,但是重要的公式譬如二倍角公式等一定要熟记,这些是做题的基础;

  18题立体几何

  18题的第一小题通常是证明题,有时利用现成的条件马上就可以证明,但是也不排除需要做辅助线有一点难度的可能,而且形势越来越偏向后一种,所以在平时要多多注意需要做辅助线的证明题,第二小题通常是求线面角和线线角的大小,也有可能是求相关的体积,不过这样也是变相的让你求线面角或线线角的大小,至于求面面角大小,我们老师说不大可能,因为求面面角的难度稍大所需要的时间也会比较多,这样对后面的发挥会有比较大的影响,(虽然高考的目的是选拔人才,但是全省的平均分也不能太低。)

  提醒一点:如果做第二小题时没有很快有思路,那就果断选择向量法,向量法的难点是空间直角坐标系的建立,一定要找到三条相互垂直的线分别作为x轴y轴z轴,相互垂直一定要是能证明出来的,如果单凭感觉建立空间直角坐标系万一错了后面的就完全错了。

  19题导数

  19题的难点是求导,如果你对复杂函数的求导掌握的很熟练,那第一小题就不用担心啦,第二小题会比较有难度,但是基础还是求导,无论有没有思路都要先求导,说不定在求导的过程中就找到思路了;

  20题圆锥曲线

  20题是圆锥曲线,第一小题还是比较基础的但完全正确的前提是要掌握椭圆、双曲线、抛物线的定义,因为很有可能会出现让你判断某某是椭圆、双曲线、还是抛物线的题目。第二小题比较难,但是简单在有一定的套路,(做题做多了就知道的)套路就是1.设立坐标,一般是求什么设什么.2.将坐标带入所在曲线的方程中.3.利用韦达定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的内容尽力转换为与x1、x2、y1、y2相关的式子,在转换的过程中要结合题目的条件.一定要筛选和转换题目中所给出的条件,因为有的方式虽然可以得出结果但是过程很复杂,浪费的'时间会比较多,别忘了后面还有一个大boss呢。

  21题最难

  21题那实在是太难了,至少在我看来,最后一小题几乎是写不出来的,就算完全写出来也需要很长的时间,那我们能做的就是在剩下为数不多的时间内尽力向老师要分数,就是能想到什么就写下来不要打草稿直接写。最后提一下:铃声响起来的那一刻,其实你的分数已经定了,无论考的好还是坏,都是既定的事实了,那就随它去吧,争取明天的英语才是最主要的。

  注意:我有一个很好的做数学错题的方法在这里分享给大家,就是将数学错题分类。怎么分类呢?首先,将主要内容分类,就和课本上一样分类,就像第一章节是关于集合第二章节是关于函数。其次,将该章节学到的内容分类,譬如集合中有并集、交集等就将错题分为关于交集的错题关于并集的错题,如果是都有的话就写到混合的错题中。

  最后,将解并集题目的方法中再进行分类,譬如分为1.利用画数轴方法解.2.利用—方法解......这样到时把所有的解题方法都掌握了,那么数学题还怕什么。依据以上几点,我觉得错题本最好是活页的,这样分类起来会比较方便而且可以随时增减题目虽然方法不是特别好,但是自我感觉还是有很多可取的地方的。无论方法多么完美,只有付出行动才会有进步。

  高中数学大题解题思路高考数学大题结构安排:第三步就是将化简为一个整体的式子(如y=a的形式)根据题目要

  A、三角函数与向量的结合求来解答:

  B、概率论最值(值域):要首先求出的范围,然后求出y的范围

  C、立体几何单调性:首先明确sin函数的单调性,然后将代入sin函数的单调范

  D、圆锥曲线围解出x的范围(这里一定要注意2的正负性)

  E、导数周期性:利用公式求解

  F、数列对称性:要熟练掌握sin、cos、tan函数关于轴对称和点对称的公式。

高中数学解题技巧5

  数学证明题解题的方法

  第一步:结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如20xx年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

  第二步:借助几何意义寻求证明思路。一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如20xx年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如20xx年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。

  高中数学证明题解题方法

  一、合情推理

  1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;

  2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的'推理过程,然后类比推导类比对象的性质。

  二、演绎推理

  演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。

  三、直接证明与间接证明

  直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

  间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。

  四、数学归纳法

  数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

  几何证明解题技巧

  题型:这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)解题思路:

  证线面平行如直线与面有两种方法:一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。

  证面面平行:这类题比较简单,即证明这两个平面的两条相交线对应平行即可。

  证线面垂直如直线与面:这类型的题主要是看有前提没有,即如果直线所在的平面与面在题目中已经告诉我们是垂直关系了,那么我们只需要证明直线垂直于面与面的交线即可;如果题目中没有说直线所在的.平面与面是垂直的关系,那么我们需要证明直线垂直面内的两条相交线即可。

  其实说实话,证明垂直的问题都是很简单的,一般都有什么勾股定理呀,还有更多的是根据一个定理(一条直线垂直于一个面,那么这条直线就垂直这个面的任何一条线)来证明垂直。

  证面面垂直与证面面垂直:这类问题也比较简单,就是需要转化为证线面垂直即可。

  体积和点到面的距离计算:如果是三棱锥的体积要注意等体积法公式的应用,一般情况就是考这个东西,没有什么难度的,关键是高的寻找,一定要注意,只要你找到了高你就胜利了。除了三棱锥以外的其他锥体不要用等体积法了哈,等体积法是三棱锥的专利。二面角的计算:这类型对理科生来说是一个噩梦,其难度有二,第一是首先你要找到二面角在什么地方,另一个难度就是你要知道这个二面角所在直角三角形的边长分别是多少。

  二面角(面与面)的找法主要是遵循以下步骤:首先找到从一个面的顶点A出发引向另一个面的垂线,垂足为B,然后过垂足B向这两个面的交线做垂线,垂足为C,最后将A点与C点连接起来,这样即为二面角(说白了就是应用三垂线定理来找)

  二面角所在直角三角形的边长求法:一般应用勾股定理,相似三角形,等面积法,正余弦定理等。

  这里我着重说一下就是在题目中可能会出现这样的情况,就是两个面的相交处是一个点,这个时候需要我们过这个点补充完整两个面的交线,不知道怎么补交线的跟我说一声。

高中数学解题技巧6

  数形结合

  数形结合的方法,就是将数字与图形二者进行相互变换,不仅可以把问题变得更加简单,而且可以把抽象的问题变得更加具体,这种方法在数学的学习过程中经常用到.通过对二次函数的定义以及性质进行学习,我们了解到它的图像是一个抛物线,并且它的图像还具有非常多的特殊性。

  例如,它具有对称性、单调性等等,我们在对二次函数求解的过程中,可以充分地利用它的图像所具有的这些性质,它不仅可以把复杂的二次函数变得更加的简单,而且可以把二次函数变得更加直观.抛物线具有的对称性是一个非常重要的解题思路.二次函数图像的对称轴一般与y轴平行或者重合;它的另一大特性是连续性,并且与其对应的方程最多只能够有两个实根,因此就会产生一个区间,这可以为我们的解题带来很多方便.在解题的过程中还可以利用二次函数的单调性,这也是经常用到的方法。

  代数推理

  众所周知,二次函数的函数式是y = ax2 + bx + c,观察其函数式非常的简单,而与其对应的抛物线图像却比较容易发生变形,例如,在其中会有一般式、顶点式以及零点式等等,因此,在解决二次函数问题的过程中,其函数式会得到非常广泛的应用。

  在二次函数的函数式y = ax2 + bx + c中,具有三个变量a,b,c,在确定这三个变量时一定要给出三个相互独立的条件,有一些时候将所给出的条件全部应用完成之后还不能够得出三个变量的值,这时我们就要使用逆向思维,看给出的条件中是否含有隐含条件,我们不能够被其中的假象迷惑;我们还应该学会利用二次函数与方程根之间具有的关系,写出它的顶点式,我们可以对二次函数进行假设,对其图像进行描绘;然后使用函数所具有的一些性质对其进行限制,并且在对顶点式进行运用的过程中要非常的灵活.顶点式看着比较复杂,而其中最简单的就是它,在此过程中充分的利用顶点式,最后一定会找到答案。

  二次函数的问题灵活多变,在题目中稍稍改变一下各项的系数(a、b、c),就可能会改变函数的开口方向、对称轴、二次方程的根(x1、x2)的情况;改变一下定义域的`取值,就会影响到二次函数的最值y。这样貌似一样的题目,就变成了一个新题,会产生很多的不同。从这个角度上讲,二次函数的题目是永远做不完的,所以要在做题的过程中不断地强化对于知识点的认识,摸清其内部的思路,学会举一反三,这样才能够提高上课的效率,做学习的主人。学会举一反三同样需要在大量的做题和思考之后,这对于学生的思考能力也有着较高的要求,在具体的学习活动中不断地摸索二次函数的学习规律,才能够加强对于二次函数的认识。

  注重二次函数图像的学习和认识

  对于二次函数的学习,尤其需要注意的一点就是对于图像的认识和使用。首先将二次函数画出来能够较为直观地反映出函数本身的特点,如开口方向、对称抽、与坐标轴的交点情况等。图像的使用对于认识二次函数有较大的帮助作用,尤其是在总结和归纳知识点的过程中,函数图像能够很直观地折射出函数的性质。二次函数的图像实则展现的是一种数学上的美感,完美图形的展示,显示了几何图像本身无与伦比的美。可以说二次函数的图像不仅仅是数学学习和解题的必需,更是认识数学美的途径,它带给学生更多的是数学美的感性认识。

  注重开发式教学,实现学生思维能力的培养提升

  高中数学教学中,函数作为高中数学教学的重要部分,在教学中涉及的范围内容不仅多,并且所占的比例范围也比较大。二次函数作为高中数学函数教学的重要一部分,其在教学中所占的比例内容也相对比较多。因此,进行高中数学二次函数教学所应用的教学思想以及方法也就相对较多,在实际教学中,教师应注意通过二次函数教学思想与教学方法的合理选择应用,以实现在二次函数教学基础上学生数学思维能力的培养提升。

  比如,在教学中可以通过下列题目的引导解答,引导学生对二次函数的内涵与外延进行掌握理解,同时进行二次函数解题方式的总结思考,进而实现数学思维能力的培养提升。已知y=ax2+bx+c,其中a>0,并且方程f(x)-x=0的两个根x1和x2满足0根据上题所给出的已知条件,在进行该题目的计算解答中,不仅需要对题目已知与问题进行很好的理解,以通过二次函数的图象与性质变化特征,进行题目解答,同时在该题目解答中还需要应用到数形结合和分类讨论等解题方法。

  加强高中数学二次函数概念定义的理解认识

  在二次函数教学中,高中数学的二次函数教学是建立在初中阶段函数定义与知识教学的基础之上的,在进行函数知识内容的定义解释中,是通过集合之间的相对应关系实现函数定义解释的,与初中函数定义之间有着一定的区别,这就使学生在学习过程中对函数定义的理解不容易接受和适应。因此,进行高中数学二次函数的教学,首先需要结合初中函数教学的定义内容,对函数教学的知识定义进行全面透彻的理解,以便于学生学习与掌握。

  在高中数学二次函数教学中,首先注意引导学生对初中阶段所学习的二次函数定义和内容进行复习回顾,同时与高中数学中的二次函数定义内容进行对比,以实现进一步理解认识,弄清楚二次函数的定义、对应关系和定义域、值域等相应内容,以便后续教学的开展与实施。比如,在教学“已知f(x)=x2+1,要求f(2),f(a)和f(x+1)”一题中,如果对二次函数概念定义的理解认识比较清晰,就可以看出该问题就是一个简单的二次函数代换问题,通过自变量的代换就能够对所求问题进行解答。需要注意的是,在进行上述问题的解答过程中,还需要引导学生理解认识二次函数的概念定义,像二次函数f(x+1)=x2+2x+2中,就不能够将f(x+1)理解为x=x+1时的函数值,而应理解为自变量x+1的函数值。

  尝试教学法与启发式教学并用,激发学生的概括能力

  高中二次函数有很多规律潜在于函数的学习过程,如果只是通过教师的普通讲解让学生被动接受,学生难以掌握知识,对于特殊解题方法的应用印象不会深刻,对于知识点的记忆程度不会牢固。如果在二次函数教学中采用尝试教学法,让学生先自行解题,发现不足或困难后通过启发式教育,引导学生一步步求解并在这个过程中发现新的规律,通过这种方法记忆将比被动接受更加牢固。

  例如,对于函数零点个数的判断,以y=lnx+2x-6这个函数为例,让学生先自主进行零点个数的判断。大多数学生在解题的时候,求解lnx+2x-6=0这个方程来求方程的零点,然后求解出零点的个数。但是,在解题过程中,几乎所有的学生都不能完成对这一方程的求解。学生发现问题时,教师再适时进行引导式的教育,让学生求解出函数的最值,并作图于二元坐标系中,最后按照函数与横轴交点判断出方程的零点个数。在这种模式下,首先让学生通过自主学习寻找出传统方法中的弊端,然后通过指引式教学,让学生逐步发现求解的特殊方法,最后加深学生的印象,同时也再次利用了数形结合的方法。

  利用信息数据统计,加强针对性训练

  数学学习不是一朝一夕就能提高成绩,而是需要刻苦锻炼。二次函数由于难度大,在高中数学中占据的比重高,更需要强化训练。在数字化的今天,高中数学的训练不能简单进行盲目练习,而是要根据班级的实际情况进行有针对性地训练,来提高学生在二次函数学习中的效果,最终达到各个班级共同进步的目的。

  由于国家对于教育的重视,数字化的设备走进了学校课堂,更新了学校的教学工具。教师在平时的课堂训练及作业测试中,要做好相应记录,将知识有条理地分成若干模块,对各个班级在学习时候的情况进行统计。在二次函数教学中,教师可以根据函数的基本概念、基本初等函数、函数的应用等几个方面进行分类统计,对各个班级在二次函数学习的过程中产生的各方面问题进行记录,并在课程学习的复习前进行相关数据的分析,根据数据制作统计图表等,给各个班级开出一份明确的诊断证明,并根据实际情况为各个班级设计不同的讲义,让学生有针对性地进行强化和纠正,弥补自己的不足,最终让各个班级都能克服弱点,在二次函数的学习中得到共同的进步。

高中数学解题技巧7

  1.解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:

  ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

  ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

  ③两边平方法:适用于两边非负的方程或不等式。

  ④几何意义法:适用于有明显几何意义的情况。

  2.根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

  3. 利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

  4. 解某些复杂的特型方程要用到:换元法。换元法解方程的一般步骤是:

  5. 待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:

  (1)设

  (2)列

  (3)解

  (4)写

  6. 复杂代数等式型条件的使用技巧:

  左边化零,右边变形

  7. 图像的平移规律是研究复杂函数的重要方法。平移规律是:

  8. 讨论函数性质的重要方法是图像法——看图像、得性质。

  9. 化简

  的方法是观察法:

  10. 代数式求值的`方法有:

  (1)直接代入法

  (2)化简代入法

  (3)适当变形法(和积代入法)

  注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

  11. 方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用“分类讨论法”,其原则是:

  ①按照类型求解

  ②根据需要讨论

  ③分类写出结论。

  12. 恒相等成立的有用条件:

  13. 由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

高中数学解题技巧8

  高中数学常考题型答题技巧与方法

  1、解决绝对值问题

  主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

  具体转化方法有:

  ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

  ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

  ③两边平方法:适用于两边非负的方程或不等式。

  ④几何意义法:适用于有明显几何意义的情况。

  2、因式分解

  根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

  提取公因式;选择用公式;十字相乘法;分组分解法;拆项添项法;

  3、配方法。利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

  4、换元法。解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:设元→换元→解元→还元

  5、待定系数法。待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

  6、复杂代数等式。复杂代数等式型条件的使用技巧:左边化零,右边变形。

  ①因式分解型:(-----)(----)=0两种情况为或型

  ②配成平方型:(----)2+(----)2=0两种情况为且型

  7、数学中两个最伟大的解题思路

  (1)求值的思路列欲求值字母的方程或方程组

  (2)求取值范围的思路列欲求范围字母的不等式或不等式组

  8、化简二次根式。基本思路是:把√m化成完全平方式。即:

  9、观察法

  10、代数式求值

  方法有:

  (1)直接代入法

  (2)化简代入法

  (3)适当变形法(和积代入法)

  注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

  11、解含参方程。方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

  (1)按照类型求解

  (2)根据需要讨论

  (3)分类写出结论

  12、恒相等成立的有用条件

  (1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

  (2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

  13、恒不等成立的条件。由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

  14、平移规律。图像的平移规律是研究复杂函数的'重要方法。平移规律是:

  15、图像法。讨论函数性质的重要方法是图像法——看图像、得性质。定义域图像在X轴上对应的部分;值域图像在Y轴上对应的部分;单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。最值图像点处有值,图像最低点处有最小值;奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

  16、函数、方程、不等式间的重要关系

  方程的根

  ▼

  函数图像与x轴交点横坐标

  ▼

  不等式解集端点

  17、一元二次不等式的解法。一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

  二次化为正

  ▼

  判别且求根

  ▼

  画出示意图

  ▼

  解集横轴中

  18、一元二次方程根的讨论。一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

  题意

  ▼

  二次函数图像

  ▼

  不等式组

  不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

  19、基本函数在区间上的值域

  我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

  (1)定义域没有特别限制时---记忆法或结论法;

  (2)定义域有特别限制时---图像截断法,一般思路是:

  画出图像

  ▼

  截出一断

  ▼

  得出结论

  20、最值型应用题的解法

  应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

  设变量

  ▼

  列函数

  ▼

  求最值

  ▼

  写结论

  21、穿线法

  穿线法是解高次不等式和分式不等式的方法。其一般思路是:

  首项化正

  ▼

  求根标根

  ▼

  右上起穿

  ▼

  奇穿偶回

  注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

  高考数学五大解题思路总结

  高考数学解题思想一:函数与方程思想

  函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。

  高考数学解题思想二:数形结合思想

  中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

  高考数学解题思想三:特殊与一般的思想

  用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

  高考数学解题思想四:极限思想解题步骤

  极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

  高考数学解题思想五:分类讨论思想

  我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。

  高中数学的解题的方法

  1、首先是精选题目,做到少而精。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  2、其次是分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

  3、最后,题目总结。解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

  ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

  ④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

高中数学解题技巧9

  (1)充分利用几何图形

  解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。

  (2)充分利用韦达定理及“设而不求”的策略

  我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

  (3)充分利用曲线系方程

  利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。

  (4)充分利用椭圆的参数方程

  椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。

  (5)线段长的几种简便计算方法

  ①充分利用现成结果,减少运算过程。

  ②结合图形的'特殊位置关系,减少运算

  在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

  ③利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。

高中数学解题技巧10

  高一数学解题思路

  高考数学解题思想一:函数与方程思想

  函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。

  高考数学解题思想二:数形结合思想

  中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

  高考数学解题思想三:特殊与一般的思想

  用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

  高考数学解题思想四:极限思想解题步骤

  极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

  高考数学解题思想五:分类讨论思想

  我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。

  高中数学的计算题的解题技巧

  先易后难

  就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

  先熟后生

  高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

  先同后异

  先做高考数学同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考数学计算题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,

  高考数学解题过程要规范

  高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

  解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。

  高考数学考试答题技巧及方法

  根据平时的数学考试所用时间规律,考前浏览整张卷子,合理分配数学考试题目的答题时间,对于考试时间自己有一个合理的安排,会使考生们在答题时更有信心,根据考试剩余时间和自己的答题状况有计划的进行答题。有技巧的答题,不要盲目答题而忽略考试时间,导致没有足够的时间检查错误。

  在高考数学答题时,大家按照数学试卷中题目的顺序开始答题,因为在出卷子时,老师们一般都是按照知识的难易顺序安排的考题,由易到难,缓解同学们考试的`压力,使同学们渐渐的进入考试状态。但是当遇到某道题一点思路都没有或者完全不会的题时,大家暂时跳过这一题,不要浪费过多的时间,先答后面有把握拿到分的数学题,更后剩余的时间攻克数学难题,因为高考数学考试时间有限,合理规划时间的方法在高考中很实用。

  高考数学答题时对于题目的时间利用方面,大家不要因小失大,在能保证拿得到的分数的同时,应该去争取更多的分。但是不能为了解决一道数学选择题而白白浪费10分钟的答题时间。跟据高考数学题目的分值分配答题时间,分值大的题目就应该占用更多的分值。

  最后,在整张高考数学卷子发下来的时候,一定要听从监考老师的安排,检查卷子的完整性,不要节省一两分钟的时间,如果有什么问题及时和老师反映,因为在高考数学考试时,思维的完整性和连贯性很重要,如果中途发现出现了问题,既影响时间又会打断答题的连贯思路,白白浪费时间,高考是一场严肃的考试,所以考试要掌握一些高考应试技巧及方法。

高中数学解题技巧11

  高中数学的计算题的解题技巧

  先易后难

  就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

  先熟后生

  高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

  先同后异

  先做高考数学同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考数学计算题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,

  高考数学解题过程要规范

  高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

  解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。

  高中数学的选择题的做题方法

  代入法

  高考数学的选择题中大部分是数值类型的,为了节省时间,可以逆向去推算,把答案去带入到题中去,逐一验证总会找到答案的,这就是代入法,是快速且有效的一种高考数学选择题解题技巧。应用代入法的前提是正常解题时间比代入法时间长。

  数形结合

  高考数学题最常用的就是数形结合法,由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来,也是数学选择题最直观的解题技巧之一。

  估值选择

  有些高考数学选择题,由于题目条件限制,没有直接的条件进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法,这种方法的优点就是快。

  蒙

  对于自己实在不会的高考数学选择题,最常用的一招就是蒙了,但是蒙也是有技巧的,在蒙的时候如果是数值类型的,大多数要选择“0”或者“1”,或者选择数值最小的,这是高考数学选择题比较常见的答案,选择蒙是为了更好的节约时间用在下面的题目里面。

  检验法

  对于具有一般性的数学选择题问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

  高考数学考试答题技巧及方法

  根据平时的数学考试所用时间规律,考前浏览整张卷子,合理分配数学考试题目的答题时间,对于考试时间自己有一个合理的安排,会使考生们在答题时更有信心,根据考试剩余时间和自己的答题状况有计划的进行答题。有技巧的答题,不要盲目答题而忽略考试时间,导致没有足够的时间检查错误。

  在高考数学答题时,大家按照数学试卷中题目的顺序开始答题,因为在出卷子时,老师们一般都是按照知识的难易顺序安排的考题,由易到难,缓解同学们考试的压力,使同学们渐渐的进入考试状态。但是当遇到某道题一点思路都没有或者完全不会的题时,大家暂时跳过这一题,不要浪费过多的时间,先答后面有把握拿到分的数学题,更后剩余的时间攻克数学难题,因为高考数学考试时间有限,合理规划时间的方法在高考中很实用。

  高考数学答题时对于题目的时间利用方面,大家不要因小失大,在能保证拿得到的分数的同时,应该去争取更多的分。但是不能为了解决一道数学选择题而白白浪费10分钟的答题时间。跟据高考数学题目的分值分配答题时间,分值大的题目就应该占用更多的分值。

  最后,在整张高考数学卷子发下来的时候,一定要听从监考老师的安排,检查卷子的完整性,不要节省一两分钟的时间,如果有什么问题及时和老师反映,因为在高考数学考试时,思维的完整性和连贯性很重要,如果中途发现出现了问题,既影响时间又会打断答题的连贯思路,白白浪费时间,高考是一场严肃的考试,所以考试要掌握一些高考应试技巧及方法。

  高考数学的7大学习方法

  提高高中数学学习成绩的关键:

  初中学生学数学,靠的是一个字:练!高中学生学数学,靠的也是一个字:悟!

  1.先看笔记后做作业

  有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

  因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

  2.做题之后加强反思

  学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。

  要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日久天长,构建起一个内容与方法的.科学的网络系统。俗话说:“有钱难买回头看”。做完作业,回头细看,价值极大。这个回头看,是学习过程中很重要的一个环节。

  要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。有了以上五个回头看,学生的解题能力才能与日俱增。投入的时间虽少,效果却很大。可称为事半功倍。

  3.主动复习和总结

  进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。

  怎样做章节总结呢?

  ①要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能由博反约,把厚书读成薄书。积累起自己的独特的,也就是最适合自己进行复习的材料。

  ②把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。要把对技能的要求,列进这两部分中的一部分,不要遗漏。

  ③在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。要做到三会两用。即:会文字表述,会图象符号表述,会推导证明。同时能从正反两方面对其进行应用。

  ④把重要的,典型的各种问题进行编队。要尽量地把他们分类,找出它们之间的位置关系,总结出问题间的来龙去脉。就象我们欣赏一场团体操表演,我们不能只盯住一个人看,看他从哪跑到哪,都做了些什么动作。我们一定要居高临下地看,看全场的结构和变化。不然的话,陷入题海,徒劳无益。这一点,是提高高中数学水平的关键所在。

  ⑤总结那些尚未归类的问题,作为备注进行补充说明。

  ⑥找一份适当的测验试卷,一定要计时测验。然后再对照答案,查漏补缺。

  现在高中生的你们,无疑是要面对高考的,能否能在多变的情况下脱颖而出,就看你现在是什么样的态度来面对了,所以,高一高二的学弟学妹们,努力学习才是关键。

  4.重视改错,错不重犯

  一定要重视改错工作,做到错不再犯。初中数学教学采取的方法是,把各种可能的错误,都告诉学生注意,只要有一人出过错,就要提出来,让全体同学引为借鉴。这叫“一人有病,全体吃药。”

  高中数学课没有那么多时间,除了少数几种典型错,其它错误,不能一一顾及。只能“谁有病,谁吃药”。如果学生“有病”,而自己却又忘记吃药,那么没人会一再地提醒他应该注意些什么。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患,一处“地雷”,迟早要惹祸。

  有的学生认为,自己考试成绩上不去,是因为自己做题太粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。

  5.积累资料随时整理

  要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。

  6.精挑慎选课外读物

  初中学生学数学,如果不注意看课外读物,一般地说,不会有什么影响。高中则大不相同。高中数学考的是学生解决新题的能力。

  作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。

  当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。

  7.配合老师主动学习

  高一新生的学习主动性太差是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。

  高中则不然,作业虽多,但是只知做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明。因此,高中新生必须提高自己学习的主动性。准备向将来的大学生的学习方法过渡。

高中数学解题技巧12

  一、熟悉化策略

  所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

  一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

  二、简单化策略

  所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

  简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

  因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

  解题中,实施简单化策略的途径是多方面的,常用的有:寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

  三、直观化策略:

  所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

  四、特殊化策略

  所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的`某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

  五、一般化策略

  所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

高中数学解题技巧13

  高考数学解析几何解题路径

  我们先来分析一下解析几何高考的命题趋势:

  (1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。

  (2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:

  ①求曲线方程(类型确定、类型未定);

  ②直线与圆锥曲线的交点问题(含切线问题);

  ③与曲线有关的最(极)值问题;

  ④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);

  ⑤探求曲线方程中几何量及参数间的数量特征;

  (3)能力立意,渗透数学思想:如20xx年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。

  (4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。

  在近年高考中,对直线与圆内容的考查主要分两部分:

  (1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:

  ①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;

  ②对称问题(包括关于点对称,关于直线对称)要熟记解法;

  ③与圆的位置有关的问题,其常规方法是研究圆心到直线的距离.

  以及其他“标准件”类型的基础题。

  (2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。

  预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。

  相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:

  (1)考查圆锥曲线的概念与性质;

  (2)求曲线方程和求轨迹;

  (3)关于直线与圆及圆锥曲线的位置关系的问题.

  选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为难题,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.

  请同学们注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的.辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。

  高二数学必修3知识点整理:几何概型

  几何概型

  【考点分析】

  在段考中,多以选择题和填空题的形式考查几何概型的计算公式等知识点,也会以解答题的形式考查。在高考中有时会以选择题和填空题的形式考查几何概型的计算公式,有时也不考,一般属于中档题。

  【知识点误区】

  求几何概型时,注意首先寻找到一些重要的临界位置,再解答。一般与线性规划知识有联系。

  【同步练习题】

  1.已知函数f(x)=log2x,若在[1,8]上任取一个实数x0,则不等式1≤f(x0)≤2成立的概率是.

  解析:区间[1,8]的长度为7,满足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,对应区间[2,4]长度为2,由几何概型公式可得使不等式1≤f(x0)≤2成立的概率是27.

  点评:本题考查了几何概型问题,其与线段上的区间长度及函数被不等式的解法问题相交汇,使此类问题具有一定的灵活性,关键是明确集合测度,本题利用区间长度的比求几何概型的概率.

  2.在区间[-3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是.

  解析:由已知区间[-3,5]长度为8,使函数f(x)=x2+2ax+4无零点即判别式Δ=4a2-16<0,解得-2点评:本题属于几何概型,只要求出区间长度以及满足条件的区间长度,由几何概型公式解答.

  高三数学立体几何知识点复习

  学好立几并不难,空间想象是关键。点线面体是一家,共筑立几百花园。

  点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。

  空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。

  判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。

  要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。

  已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。

  判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。

  两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。

  面面垂直成直角,线面垂直记心间。

  一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。

  空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。

  引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。

  知识创新无止境,学问思辨勇攀登。

  多面体和旋转体,上述内容的延续。扮演载体新角色,位置关系全在里。

  算面积来求体积,基本公式是依据。规则形体用公式,非规形体靠化归。

  展开分割好办法,化难为易新天地。

高中数学解题技巧14

  1高中数学解题技巧归纳与总结

  ①背例题:首先背例题的主要原因就是能够在考场上遗忘了一些重要公式的时候,可以用题来套公式,这样可以更好的帮助你理解试题,更好的解决试题中遇到的问题。

  ②课前预习:很多人可能觉着课前预习对于巧妙解题并没有什么影响,实则不然,课前预习主要是让你了解课内出现的一些知识,自然就会有更多的方法来解答自己不会的题目啦。

  ③背基础:基础知识永远是解题过程中遇到的最多的,所以背诵基础知识能够帮助你更好的理解试题。

  ④综合理解逐一突破:简单来讲就是由简到难,很多试题都是用简单的公式来变换,这也要求学生们能够举一反三,这样才能更好的'解决问题。

  2高中数学解题技巧主要有以下几种方法

  1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

  2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

  3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。

高中数学解题技巧15

  高中数学选择题解题技巧

  首先,要认真审题。做题时忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,甚至有时候还选错,结果事倍功半。所以一定要读透题,由题迅速联想到涉及到的概念,公式,定理以及知识点中要注意的问题。发掘题目中的隐含条件,要去伪存真,领会题目的真正含义。

  其次,要注意解题方法。做题时除了按照解答题的思路直接来求以外,还要注意一些特殊的方法,比如说特殊值法,代入法,排除法,验证法,数形结合法等等。

  直接法。有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由概念、公式、定理及性质出发,按照做解答题的方法一步步来求。我们在做解答题时大部分都是采用这种方法。排除法。选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

  验证法。通过对选择支的观察,分析,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。特殊值法。有些选择题用常规方法求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

  数形结合法。也叫图象法。有些选择题用代数方法解计算较繁,但若能根据题意,做出草图,然后根据图形的形状、位置、性质、综合特征等,由图形的直观性得出选择题的答案。选择题的解题方法还有很多,但做题时也不要拘泥于固定思维,有时候一道题可采用多种特殊方法综合运用。还有,在做选择题的过程中,遇到关键性的词语可用笔做个记号,以引起自己的注意,比如说至少,没有一个,至多一个等等。第一遍没做的题也要做个记号,但要注意与其它记号区分开来,这样不容易遗漏。最后,做完题后要仔细检查,有没有遗漏的,有没有涂错的,全面认真的再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。

  高中数学快速解题万能法

  1、熟悉基本的解题步骤和解题方法

  解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的'解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。

  2、审题要认真仔细

  对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的'过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

  有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

  3、创立学科功能的方法

  如公理化方法、模型化方法、结构化方法,以及集合论方法、极限方法、坐标方法、向量方法等。在具体的解题中,具有统帅全局的作用。

  4、一般思维规律的方法

  如观察、试验、比较、分类、猜想、类比、联想、归纳、演绎、分析、综合等。在具体的解题中,有通性通法、适应面广的特征,常用于思路的发现与探求。

  5、论证演算的方法

  这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、换元法、降次法、待定系数法、反证法、同一法、数学归纳法(即递推法)、坐标法、三角法、数形结合法、构造法、配方法等等;第二层次是适应面较窄的求解技巧,如因式分解法以及因式分解里的“裂项法”、函数作图的“描点法”、以及三角函数作图的“五点法”、几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等。

  6、“慢”一“快”,相得益彰

  有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

  7、提高解选择题的速度、填空题的准确

  数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

  高中数学考场答题原则

  (1)先易后难一般来说,选择题的最后一题,填空题的最后一题,解答题的后两题是难题.当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定.一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答.

  (2)小题有法选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确.切记不要“小题大做”.另外,答完选择题后即可填涂答题卡,切记最后不要留空,实在不会的,要采用猜测、凭第一感觉(四个选项中正确答案的数目不会相差很大,选项C出现的机率较大,难题的答案常放在A、B两个选项中)等方法选定答案.

  (3)规范答题

  (4)最大得分

  (5)答题顺序

  (6)放弃原则

【高中数学解题技巧】相关文章:

高中数学二次函数解题技巧09-10

高中数学考试题型解题技巧方法10-25

议论文阅读解题技巧03-05

初中动点问题解题技巧01-18

高中语文阅读理解解题技巧02-20

高中英语考试解题技巧09-23

高中英语改错解题技巧及公式03-19

高中数学优秀教案01-12

高中数学《向量》说课稿01-06

高中数学经典说课稿优秀11-20