(集合)高中数学知识点总结15篇
总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,不妨让我们认真地完成总结吧。我们该怎么去写总结呢?以下是小编整理的高中数学知识点总结,欢迎阅读与收藏。
高中数学知识点总结1
1.概率与统计:包括概率、统计、概率的意义、一维和二维正态分布、样本和抽样分布、参数估计、假设检验、方差分析、回归分析等。
2.微积分:包括极限、导数、微分、不定积分、定积分、常微分方程、偏微分方程、差分方程等。
3.线性代数:包括矩阵、向量、线性方程组、矩阵的相似对角化、二次型、线性空间、线性变换、矩阵的行列式、矩阵的逆矩阵、矩阵的秩、向量组的相关性、向量组的极大线性无关组等。
4.概率论与数理统计:包括随机事件与概率、概率的基本性质与运算法则、古典概型、条件概率、独立性、随机变量与分布函数、正态分布、二维随机变量与分布函数、条件概率与相互独立性、期望、方差、协方差与相关系数、矩、中心极限定理等。
5.平面几何:包括点和距离、平行和垂直、三角形、四边形、圆和扇形、平面图形和空间图形等。
6.平面解析几何:包括点与线的坐标、直线的方程与性质、圆的标准方程与性质、椭圆的标准方程与性质、双曲线的标准方程与性质、抛物线的标准方程与性质、参数方程与极坐标方程等。
7.集合与函数:包括集合与集合运算、函数与映射、函数图像与性质、指数与指数幂、对数与对数运算、函数图像变换等。
8.三角函数:包括三角函数的概念与图像、同角三角函数基本关系式、正弦函数和余弦函数的图像与性质、正切函数的图像与性质、两角和与差的正弦、余弦和正切函数、二倍角公式等。
9.数列:包括数列的概念与表示、等差数列与等比数列的概念与性质、数列的'通项公式与通项公式求法、数列的求和公式、数列的极限等。
10.立体几何:包括多面体和旋转体的体积和表面积、平面基本性质、直线和平面、平面和平面、直线、平面之间的位置关系、平行和垂直的判定和性质、以及角度和平面角、距离等。
以上是高中数学知识点总结,具体的学习方法和应对考试技巧需要根据个人情况来制定。
高中数学知识点总结2
1.利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.
2.利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.
3.反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的"x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.
4.进行集合的'交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
5.在应用条件时,易A忽略是空集的情况
6.你会用补集的思想解决有关问题吗?
7.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
8.你知道“否命题”与“命题的否定形式”的区别。
9.求解与函数有关的问题易忽略定义域优先的原则。
10.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
11.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
12.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
13.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
14. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
15.求函数的值域必须先求函数的定义域。
16.如何应用函数的单调性与奇偶性解题?
①比较函数值的大小;
②解抽象函数不等式;
③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
17.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
18.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
19.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
20.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的"x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.
高中数学知识点总结3
一、函数对称性:
1.2.3.4.5.6.7.8.
f(a+x)=f(a-x)==>f(x)关于x=a对称
f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称
f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称
例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)]
∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.
例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b]
∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.
二、函数的周期性
令a,b均不为零,若:
1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|
2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|
3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|
4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|
5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|
这里只对第2~5点进行解析。
第2点解析:
令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba
第3点解析:同理,f(x+a)=-f(x+2a)……
①f(x)=-f(x+a)……
②∴由①和②解得f(x)=f(x+2a)∴函数最小正周期T=|2a|
第4点解析:
f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)
又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)
∴函数最小正周期T=|2a|
第5点解析:
∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1
∴1f(x)=2/[f(x)+1]移项得f(x)=12/[f(x+a)+1]
那么f(x-a)=12/[f(x)+1],等式右边通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,
由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)
∴函数最小正周期T=|4a|
扩展阅读:函数对称性、周期性和奇偶性的规律总结
函数对称性、周期性和奇偶性规律总结
(一)同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)
1、奇偶性:
(1)奇函数关于(0,0)对称,奇函数有关系式f(x)f(x)0
(2)偶函数关于y(即x=0)轴对称,偶函数有关系式f(x)f(x)
2、奇偶性的.拓展:同一函数的对称性
(1)函数的轴对称:
函数yf(x)关于xa对称f(ax)f(ax)
f(ax)f(ax)也可以写成f(x)f(2ax)或f(x)f(2ax)
若写成:f(ax)f(bx),则函数yf(x)关于直线x称
(ax)(bx)ab对22证明:设点(x1,y1)在yf(x)上,通过f(x)f(2ax)可知,y1f(x1)f(2ax1),
即点(2ax1,y1)也在yf(x)上,而点(x1,y1)与点(2ax1,y1)关于x=a对称。得证。
说明:关于xa对称要求横坐标之和为2a,纵坐标相等。
∵(ax1,y1)与(ax1,y1)关于xa对称,∴函数yf(x)关于xa对称
f(ax)f(ax)
∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称
f(x)f(2ax)
∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称
f(x)f(2ax)
(2)函数的点对称:
函数yf(x)关于点(a,b)对称f(ax)f(ax)2b
上述关系也可以写成f(2ax)f(x)2b或f(2ax)f(x)2b
若写成:f(ax)f(bx)c,函数yf(x)关于点(abc,)对称2证明:设点(x1,y1)在yf(x)上,即y1f(x1),通过f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以点(2ax1,2by1)也在yf(x)上,而点(2ax1,2by1)与(x1,y1)关于(a,b)对称。得证。
说明:关于点(a,b)对称要求横坐标之和为2a,纵坐标之和为2b,如(ax)与(ax)之和为2a。
(3)函数yf(x)关于点yb对称:假设函数关于yb对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于yb对称。但在曲线c(x,y)=0,则有可能会出现关于yb对称,比如圆c(x,y)x2y240它会关于y=0对称。
(4)复合函数的奇偶性的性质定理:
性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。
性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x+a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。
性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。
总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程
总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。
总结:x的系数同为为1,具有周期性。
(二)两个函数的图象对称性
1、yf(x)与yf(x)关于X轴对称。
证明:设yf(x)上任一点为(x1,y1)则y1f(x1),所以yf(x)经过点(x1,y1)
∵(x1,y1)与(x1,y1)关于X轴对称,∴y1f(x1)与yf(x)关于X轴对称.注:换种说法:yf(x)与yg(x)f(x)若满足f(x)g(x),即它们关于y0对称。
高中数学知识点总结4
第一讲相似三角形的判定及有关性质1.平行线等分线段定理
平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。
2.平分线分线段成比例定理
平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.相似三角形的判定及性质
相似三角形的判定:
定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似系数)。
由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似。
预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。
判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。简述为:两角对应相等,两三角形相似。
判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。
判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。
引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;
(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。
定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和直角边对应成比例,那么这两个直角三角形相似。相似三角形的性质:
(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;
(3)相似三角形面积的比等于相似比的平方。
相似三角形外接圆的直径比、周长比等于相似比,外接圆的'面积比等于相似比的平方。
4.直角三角形的射影定理
射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。
第二讲直线与圆的位置关系1.圆周定理
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。圆心角定理:圆心角的度数等于它所对弧的度数。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等。推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
2.圆内接四边形的性质与判定定理
定理1:圆的内接四边形的对角互补。
定理2:圆内接四边形的外角等于它的内角的对角。
圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。
3.圆的切线的性质及判定定理
切线的性质定理:圆的切线垂直于经过切点的半径。推论1:经过圆心且垂直于切线的直线必经过切点。推论2:经过切点且垂直于切线的直线必经过圆心。
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
4.弦切角的性质
弦切角定理:弦切角等于它所夹的弧所对的圆周角。
5.与圆有关的比例线段
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
6.垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
7.三角形的五心
(1)内心:三条角平分线的交点,也是三角形内切圆的圆心。性质:到三边距离相等。(2)外心:三条中垂线的交点,也是三角形外接圆的圆心。性质:到三个顶点距离相等。(3)重心:三条中线的交点。性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。
(4)垂心:三条高所在直线的交点。
(5)旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点。性质:到三边的
距离相等
第三讲圆锥曲线性质的探究1.平面与圆柱面的截线:
当平面与圆柱的两底面平行时,截面是个圆;当平面与圆柱的两底面不平行时,截面是个椭
圆;定理1:圆柱形物体的斜截口是椭圆。
定理2:在空间中,取直线l为轴,直线l’与l相交于O点,夹角为α,l’围绕l旋转得
到以O为顶点,l’为母线的圆锥面,任取平面π,若它与轴l的夹角为β(当π与l平行时,记β=0),则截面不过顶点时:
(1)β>α,平面π与圆锥的交线为椭圆;(2)β=α,平面π与圆锥的交线为抛物线;(3)
β<α,平面π与圆锥的交线为双曲线;截面过顶点时:(1)截面和圆锥面只相交于顶点,交线为一个点。
(2)截面和圆锥面相交于两条母线,交线为两条相交曲线。(3)截面和圆锥面相切,交线为两
高中数学知识点总结5
(一)导数第一定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义
(二)导数第二定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义
(三)导函数与导数
如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的`函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。
(四)单调性及其应用
1.利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2.用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间
学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。
高中数学知识点总结6
高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学**两本书。
必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2
选修1--1:重点:高考占30分
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)
理科:选修2—1、2—2、2—3
选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)
选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分 (一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
推理证明
一般高考大题分布
1、17题:三角函数
2、18、19、20 三题:立体几何 、概率 、数列
3、21、22 题:函数、圆锥曲线
成绩不理想一般是以下几种情况:
做题不细心,(会做,做不对)
基础知识没有掌握
解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)
心理素质不好
总之学**数学一定要掌握科学的学**方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳总结
高一年级
必修一
第一章 集合与函数概念
第二章 基本初等函数(Ⅰ)
第三章 函数的应用
必修二
第一章 空间几何体
第二章 点、直线、平面之间的位置关系
第三章 直线与方程
必修三
第一章 算法初步
第二章 统计
第三章 概率
必修四
第一章 三角函数
第二章 平面向量
第三章 三角恒等变换
(二)教学要求
在教学中,由于集合、函数等内容比较抽象,三角函数在高考中占据重要地位,平面向量又是高考中数学必考内容,教师在备课组协作的基础上应注意对各章知识的重难点的讲解和释疑,减轻学生自学的压力,增强学生学好数学的信心。
首先,在高中数学中,集合的初步知识以及与其它内容的密切联系。它们是学**、掌握和使用数学语言的基础,是高中数学学**的出发点。在教学中,应注重引导学生更好的理解数学中出现的集合语言,使学生更好的使用集合语言表述数学问题,并且可以使学生运用集合的观点,研究、处理数学问题。因此集合的基本概念、函数等有关内容是教师重点讲解的内容。
其次,函数作为中学数学中最重要的基本概念之一,教师应注意运用有关的概念和函数的性质,培养学生的思维能力;通过指数与对数,指数函数与对数函数之间的内在联系,对学生进行辩证唯物主义观点的教育;通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生的实践能力和创新意识。
第三,通过对三角函数的学**,学生将进一步了解符号与变元、集合与对应、数形结合等基本的数学思想在研究三角函数时所起的重要作用,在式子与图形的变化中,教师应引导学生通过分析、探索、划归、类比、平行移动、伸长和缩短等常用的基本方法的学**,使学生在学**数学和应用数学方面达到一个新的层次。
第四,学**平面向量,不但应注意平面向量基本知识的讲解,更要充分挖掘平面向量的工具作用,提高学生应用数学知识解决实际问题的能力和实际操作的能力,使学生学会提出问题,明确研究方向,使学生学会交流,体验数学活动的过程,培养创新精神和应用能力。
第五、在学**空间几何体、点、直线、平面之间的位置关系时,重点要帮助学生逐步形成空间想象能力,严格遵循从整体到局部,从具体到抽象的原则,逐步掌握解决空间几何体的相关问题。
第六、要在平面解析几何初步教学中,帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
第七、在学**算法初步、统计等内容的时候,要注意顺序渐进,不可追求一步到位,特别要注意其思想的重要性。
高二年级
必修五
第一章 解三角形
第二章 数列
第三章 不等式
选修1-1
第一章 常用逻辑用语
第二章 圆锥曲线与方程
第三章 导数及其应用
选修1-2
第一章 统计案例
第二章 推理与证明
第三章 数系的扩充与复数的引入
第四章 框图
选修2-1
第一章 常用逻辑用语
第二章 圆锥曲线与方程
第三章 空间向量与立体几何
选修2-2
第一章 导数及其应用
第二章 推理与证明
第三章 数系的扩充与复数的引入
选修2-3
第一章 计数原理
第二章 随机变量及其分布
第三章 统计案例
(二)教学要求
高二上
必修5
学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的`二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。
选修1—1(文科)
在本模块中,学生将在义务教育阶段的基础上,学**常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。
在必修课程学**平面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。
在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率的过程,刻画现实问题,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。
选修2-1(理科)
在本模块中,学生将学**常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。
在本模块中,学生将在义务教育阶段的基础上,学**常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流。
在必修阶段学**平面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。
在本模块中,学生将在学**平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力。
高中数学知识点总结7
简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为___;在整个抽样过程中各个个体被抽到的'概率为____。
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等。
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础。
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法。
(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率。
高中数学知识点总结8
函数的表示方法
1.函数的三种表示方法列表法图象法解析法
2.分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:
①分段函数是一个函数,不要误认为是几个函数。
②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
求定义域的几种情况
①若f(x)是整式,则函数的'定义域是实数集R;
②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;
③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;
④若f(x)是对数函数,真数应大于零。
⑤因为零的零次幂没有意义,所以底数和指数不能同时为零。
⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;
⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题
高中数学知识点总结9
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决平行与垂直的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2. 判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:两平行平面没有公共点。
(2)由定义推得:两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为性质定理,但在解题过程中均可直接作为性质定理引用。
数学必修单元知识点
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高中数学知识点梳理
函数与导数
第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。
第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。
对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。
第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。
在用定义进行判断时,要注意自变量在定义域区间内的任意性。
第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同特征而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的'不变性质,这往往是问题的突破口。
抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。
第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)0。那么函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0。这个c也可以是方程f(c)=0的根,称之为函数的零点定理,分为变号零点和不变号零点,而对于不变号零点,函数的零点定理是无能为力的,在解决函数的零点时,考生需格外注意这类问题。
第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。
因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。
第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。
解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。
高中数学知识点总结10
简单随机抽样
(1)总体和样本
①在统计学中 , 把研究对象的全体叫做总体。②把每个研究对象叫做个体。③把总体中个体的总数叫做总体容量。④为了研究总体 的有关性质,一般从总体中随机抽取一部分: x1,x2 , …,xx 研究,我们称它为样本。其中个体的个数称为样本容量。
(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随
机地抽取调查单位。特点是:每个样本单位被抽中的`可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:
①抽签法;②随机数表法;③计算机模拟法;③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:
①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查
(5)随机数表法
高中数学知识点总结11
4.1.1圆的标准方程
1、圆的标准方程:(xa)2(yb)2r2
圆心为A(a,b),半径为r的圆的方程
2、点M(x0,y0)与圆(xa)(1)(x0(3)(x02(yb)2r2的关系的判断方法:
a)2(y0b)2>r2,点在圆外(2)(x0a)2(y0b)2=r2,点在圆上a)2(y0b)2归海木心QQ:634102564
(4)当l|r1r2|时,圆C1与圆C2内切;(5)当l|r1r2|时,圆C1与圆C2内含;
4.2.3直线与圆的方程的应用
1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.
RM4.3.1空间直角坐标系
1、点M对应着唯一确定的有序实数组(x,y,z),x、上的.坐标
2、有序实数组(x,y,z),对应着空间直角坐标系中的一点
y、z分别是P、Q、R在x、y、z轴
xOPQM"y3、空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M(x,y,z),x叫做点M的横坐标,坐标。y叫做点M的纵坐标,z叫做点M的竖
z4.3.2空间两点间的距离公式1、空间中任意一点P1(x1,y1,z1)到点P2(x2,y2,z2)之间的距离公式P1P2P1P2(x1x2)(y1y2)(z1z2)222N1xOM1MM2HN2yN
高中数学知识点总结12
一、集合、简易逻辑
1、集合;
2、子集;
3、补集;
4、交集;
5、并集;
6、逻辑连结词;
7、四种命题;
8、充要条件。
二、函数
1、映射;
2、函数;
3、函数的单调性;
4、反函数;
5、互为反函数的函数图象间的关系;
6、指数概念的扩充;
7、有理指数幂的运算;
8、指数函数;
9、对数;
10、对数的运算性质;
11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)
1、数列;
2、等差数列及其通项公式;
3、等差数列前n项和公式;
4、等比数列及其通顶公式;
5、等比数列前n项和公式。
四、三角函数
1、角的概念的推广;
2、弧度制;
3、任意角的三角函数;
4、单位圆中的三角函数线;
5、同角三角函数的基本关系式;
6、正弦、余弦的诱导公式;
7、两角和与差的正弦、余弦、正切;
8、二倍角的正弦、余弦、正切;
9、正弦函数、余弦函数的图象和性质;
10、周期函数;
11、函数的奇偶性;
12、函数的图象;
13、正切函数的图象和性质;
14、已知三角函数值求角;
15、正弦定理;
16、余弦定理;
17、斜三角形解法举例。
五、平面向量
1、向量;
2、向量的加法与减法;
3、实数与向量的积;
4、平面向量的坐标表示;
5、线段的定比分点;
6、平面向量的数量积;
7、平面两点间的距离;
8、平移。
六、不等式
1、不等式;
2、不等式的'基本性质;
3、不等式的证明;
4、不等式的解法;
5、含绝对值的不等式。
七、直线和圆的方程
1、直线的倾斜角和斜率;
2、直线方程的点斜式和两点式;
3、直线方程的一般式;
4、两条直线平行与垂直的条件;
5、两条直线的交角;
6、点到直线的距离;
7、用二元一次不等式表示平面区域;
8、简单线性规划问题;
9、曲线与方程的概念;
10、由已知条件列出曲线方程;
11、圆的标准方程和一般方程;
12、圆的参数方程。
八、圆锥曲线
1、椭圆及其标准方程;
2、椭圆的简单几何性质;
3、椭圆的参数方程;
4、双曲线及其标准方程;
5、双曲线的简单几何性质;
6、抛物线及其标准方程;
7、抛物线的简单几何性质。
九、直线、平面、简单何体
1、平面及基本性质;
2、平面图形直观图的画法;
3、平面直线;
4、直线和平面平行的判定与性质;
5、直线和平面垂直的判定与性质;
6、三垂线定理及其逆定理;
7、两个平面的位置关系;
8、空间向量及其加法、减法与数乘;
9、空间向量的坐标表示;
10、空间向量的数量积;
11、直线的方向向量;
12、异面直线所成的角;
13、异面直线的公垂线;
14、异面直线的距离;
15、直线和平面垂直的性质;
16、平面的法向量;
17、点到平面的距离;
18、直线和平面所成的角;
19、向量在平面内的射影;
20、平面与平面平行的性质;
21、平行平面间的距离;
22、二面角及其平面角;
23、两个平面垂直的判定和性质;
24、多面体;
25、棱柱;
26、棱锥;
27、正多面体;
28、球。
十、排列、组合、二项式定理
1、分类计数原理与分步计数原理;
2、排列;
3、排列数公式;
4、组合;
5、组合数公式;
6、组合数的两个性质;
7、二项式定理;
8、二项展开式的性质。
十一、概率
1、随机事件的概率;
2、等可能事件的概率;
3、互斥事件有一个发生的概率;
4、相互独立事件同时发生的概率;
5、独立重复试验。
必修一函数重点知识整理
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(—x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的.周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈D(D为f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符号由口诀“同正异负”记忆;
(4)a log a N= N(a>0,a≠1,N>0);
8、判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13、恒成立问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解。
拓展阅读:高中数学复习方法
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
高中数学知识点总结13
导数的应用
1.用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2.生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益问题
3)面积、体积最(大)问题
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
3.分层抽样是把异质性较强的'总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
函数的奇偶性
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:
注意如下结论的运用:
(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;
(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函数的复合函数的奇偶性通常是偶函数;
(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。
3、有关奇偶性的几个性质及结论
(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.
(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.
(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.
(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.
(6)奇偶性的推广
函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数.
二项式定理
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
高中数学知识点总结14
空间两条直线只有三种位置关系:平行、相交、异面
按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法
若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:
a、直线与平面垂直时,所成的`角为直角,
b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
直线和平面垂直
直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点
直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
高中数学知识点总结15
1、算法的概念:
①由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。
②算法的五个重要特征:
ⅰ有穷性:一个算法必须保证执行有限步后结束;
ⅱ确切性:算法的每一步必须有确切的定义;
ⅲ可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;
ⅳ输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。
ⅴ输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。
2、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法
(1)程序框图的基本符号:
(2)画流程图的基本规则:
①使用标准的框图符号
②从上倒下、从左到右
③开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点
④判断可以是两分支结构,也可以是多分支结构
⑤语言简练
⑥循环框可以被替代
3、三种基本的逻辑结构:顺序结构、条件结构和循环结构
(1)顺序结构:
顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
(2)条件结构:分支结构的一般形式
两种结构的共性:
①一个入口,一个出口。特别注意:一个判断框可以有两个出口,但一个条件分支结构只有一个出口。
②结构中每个部分都有可能被执行,即对每一个框都有从入口进、出口出的路径。
以上两点是用来检查流程图是否合理的基本方法(当然,学习循环结构后,循环结构也有此特点)
(3)循环结构的一般形式:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构又称重复结构,循环结构可细分为两类:
①如左下图所示,它的功能是当给定的条件成立时,执行A框,框执行完毕后,再判断条件是否成立,如果仍然成立,再执行A框,如此反复执行框,直到某一次条件不成立为止,此时不再执行A框,从b离开循环结构。
②如右上图所示,它的功能是先执行,然后判断给定的条件是否成立,如果仍然不成立,则继续执行A框,直到某一次给定的条件成立为止,此时不再执行A框,从b点离开循环结构。
高中数学算法初步知识点:算法的基本语句
(1)赋值语句:在表述一个算法时,经常要引入变量,并赋给该变量一个值,用来表明赋给某一个变量的一个具体的确定值的语句叫做赋值语句。
赋值语句的一般格式:变量名表达式
①=的意义和作用:赋值语句中的=号,称作赋值号。
②赋值语句的作用:先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的'值等于表达式的值。
③关于赋值语句,需要注意几点:
ⅰ赋值号左边只能是变量名,而不是表达式。例如3。6=X,5=y;都是错误的
ⅱ赋值号左右不能对换:赋值语句是将赋值号右边的表达式赋值给赋值号左边的变量,例如:Y=X,表示用X的值替代变量Y原先的取值,不能改写成X=Y,因为后者表示用Y的值替代变量X的值。
ⅲ不能利用赋值语句进行代数式(或符号)的演算:在赋值语句中的赋值符号右边的表达式中的每一个变量都必须事先赋值给确定的值,不能用赋值语句进行如化简、因式分解等演算,在一个赋值语句中只能给一个变量赋值,不能出现两个或多个=。
ⅳ赋值号和数学中的等号的意义不同:赋值号左边的变量如果原来没有值,则在执行赋值语句后,获得一个值。例如X=5;Y=1等;如果原来已经有值,则执行该语句后,以赋值号右边表达式的值代替该变量的原值,即将原值冲掉。例如:N=N+1在数学中是不成立的,但在赋值语句中,意思是将N的原值加1再赋给N,即N的值增加1。
计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,就执行语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句。其对应的程序框图为:(如下图)
条件语句的作用:在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去。需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理。
(3)循环结构:
算法中的循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(for型)两种语句结构。即WHILE语句和UNTIL语句。
①WHILE语句的一般格式是:
其中循环体是由计算机反复执行的一组语句构成的。WHLIE后面的条件是用于控制计算机执行循环体或跳出循环体的。
当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与END之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到END语句后,接着执行END之后的语句。其对应的程序结构框图为:(如下图)
其对应的程序结构框图为:(如上图)
从for型循环结构分析,计算机执行该语句时,先把初始值赋给循环变量,记下终值和步长,并比较初值和中止,如果初值超过终值,就执行end以后的语句,否则执行for语句下面的语句,执行到end语句时,计算机让循环变量增加一个步长值,然后用增值后的循环变量值与终值比较,如果超过终值,就执行for语句以后的语句。是先执行循环体后进行条件判断的循环语句。
高中数学算法初步知识点:复习点睛
1、什么是算法:一般地,算法是指在解决问题时按照某种机械程序步骤一定可以得到结果的处理过程。这种程序必须是确定的、有效的、有限的。要了解算法的基本思想、基本结构、程序框图、基本语句、算法案例等。
2、四种基本的程序框:
4、基本算法语句:赋值语句、条件语句、循环语句;
5、解决分段函数的求值等问题,一般可采用条件结构来设计算法;
6、对于有规律的计算问题,一般可采用循环结构设计算法;
7、在WHILE语句中,是当条件满足时执行循环体,而在for语句中,是当条件不满足时执行循环体
【高中数学知识点总结】相关文章:
高中数学统计知识点总结10-21
高中数学知识点的总结03-07
高中数学导数知识点总结04-10
高中数学复数知识点总结05-10
高中数学知识点总结05-15
高中数学求切线知识点总结10-27
高中数学重点知识点总结11-18
高中数学必修2知识点总结11-22
高中数学知识点总结20篇07-25
高中数学知识点总结(15篇)11-14