当前位置:育文网>教学文档>教案> 五年级数学上教案

五年级数学上教案

时间:2024-01-07 09:49:56 教案 我要投稿
  • 相关推荐

人教版五年级数学上教案

  作为一位杰出的老师,有必要进行细致的教案准备工作,教案是备课向课堂教学转化的关节点。怎样写教案才更能起到其作用呢?下面是小编整理的人教版五年级数学上教案,仅供参考,大家一起来看看吧。

人教版五年级数学上教案

  人教版五年级数学上教案 篇1

  课题

  积的近似数

  教学内容:

  人教版教材P10页例6及P13页练习二第1、2、3题

  教学目标:

  知识与技能:

  理解积的近似值,掌握求小数乘法的积的近似值的方法。

  过程与方法:

  经历求小数乘法的积的近似值的过程,体验迁移学习的方法。

  情感态度与价值观:

  在学习活动中,激发学生的学习兴趣,体验知识源于实际生活的思想

  教学重点:

  用“四舍五入”法取积是小数的近似值的一般方法。

  教学难点

  根据题目要求与实际需要取积的近似值。

  教法与学法:

  教法:创设情境,质疑引导

  学法:小组合作,运用旧知迁移

  教学准备:

  口算卡

  教学过程:

  一、复习引入

  (1)口算。

  1.2×0.3=0.7×0.5=0.21×0.8=1-0.82=1.3+0.74=

  (2)用“四舍五入”法求出每个小数的近似数。(多媒体出示)

  保留整数

  保留一位小数

  保留两位小数

  1.436

  0.835

  6.574

  1.994

  思考并回答:(根据学生的回答填空)

  怎样用“四舍五入”法将这些小数保留整数、一位小数或两位小数,取它们的近似值?

  小结:求小数的近似数,可以用“四舍五入”法。即要看精确数位的下一位是几,如果是4或比4小,就把尾数舍去,如果是5或比5大,就把尾数舍去,然后在精确的数位上加上1。

  (3)揭题谈话:在实际应用中,小数乘法得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

  二.探究新知

  (1)创设情境。

  教师:同学们,你们知道什么动物和嗅觉最灵敏吗?(学生回答:狗)所以人们常用狗来帮助侦探、看家。

  教师出示教材第10页的例6的主题图。

  教师:这幅图画上,你看到了什么?学生描述图画上的内容。

  教师:是啊!你看狗是多么勇敢的动物,它敢把持刀的坏人抓住,我们也要有这种敢于与坏人作斗争的精神。它是怎么发现坏人的呢?

  (2)教师投影出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍。狗约有多少亿个嗅觉细胞?(得数保留一位小数)

  学生读题,理解题意。

  ①怎样计算狗约有多少亿个嗅觉细胞呢?(提示:实际是要求0.049的45倍是多少)

  学生思考后,在练习本上独立列式解答,教师指名学生板演。

  0.049×45

  0 . 0 4 9

  × 4 5

  2 4 5

  1 9 6

  2. 2 0 5

  ②学生思考:保留一位小数应该怎么做?

  组织学生在小组中讨论,说一说取积的近似值的方法,然后指名汇报。

  学生汇报时可能会说出:要保留一位小数,看百分位上是几,如果满5就舍去后向前一位进1,如果比5小,就直接舍去,2.205的百分位是0,比5小,所以舍去后面的0和5,保留一拉小数,约等于2.2.

  ③教师根据学生的汇报,完成板书答题。

  0.049×45≈2.2(亿个)

  (4)拓展:

  教师:如果题目要求保留两位小数,怎样取它的近似值?

  学生在小组中议一议,相互说说保留两位小数取近似值的方法:看千分位上是几,千分位上是5,所以舍去后要向前一位进1,结果是2.21。

  三、巩固应用

  (1)教材第10页“做一做”及P13页练习二第1题

  学生独立练习后,在小组中相互交流。教师点名学生演板,集体更正。

  (2)教师出示:如果两个因数的积保留两位小数的'近似值是3.58,准确的值可能是下面哪个数?

  3.059 3.578 3.574 3.583 3.585

  学生独立思考后,在小组中讨论,使学生明确:准确值可能在3.575到3.584之间。

  四、全课小结:

  通过这节课的学习,你学到了什么?

  五、作业:P13页练习二第2、3题

  六、板书设计:

  积的近似数

  例6 0.049×45≈2.2(亿个)

  0. 0 4 9

  × 4 5

  2 4 5

  1 9 6

  2.2 0 5

  0<5,舍去0和5,保留一位小数

  答:狗约有2.2亿个嗅觉细胞。

  七、教学反思:

  本节的教学内容是把小数乘法的计算和求小数的近似数的知识结合在一起。在教学时,主要采用的是引导学生复习旧知识,然后将两个原来没有联系的知识通过例6中的具体问题加以结合,在教学中提出这样的问题:你能用我们学过的知识自己试着解决吗?学生基本上都是利用以前的知识来解决。在此基础上组织学生交流怎样求积的近似值。在学生们交流的基础上引导他们总结出具体的步骤和方法。通过一系列练习,巩固所学的知识,增强学生的熟练度。

  人教版五年级数学上教案 篇2

  教学目标:

  1.结合具体活动情境,经历测量石块体积的实验过程,探索不规则物体体积的测量方法。

  2.在实践与探究过程中,尝试用多种方法解决实际问题。

  教学重难点:

  探索不规则物体体积的方法,尝试用多种方法解决实际问题。

  教学活动:

  一、创设情况,引入新知

  1.出示石块

  问:如何测量石块的体积?什么是石块的体积?

  极书课题。

  2.以小组为单位,先讨论、制定测量方案。

  问:能直接用公式吗?不能怎么办?

  3.小组派代表介绍测量方案。

  学生观察石块

  想一想,如何测量石块的体积。

  学生分组讨论,制定测量方案

  学生的测量方案可能有:

  方案一:取一个正方体容器,里面放一定的水,量出水面的高度后把石块沉入水中,再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的水的体积,也就是石块的体积了,也可以分别计算放入石块前的水的体积与放入石块后的总体积之差。

  方案二:是将石块放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出溢出的水的体积,就是石块的体积。

  方案三:可以用细沙代替水,方法类似于方法一、方法二。

  设计意图:创设情景,激发学生学习新知的兴趣。引导学生小组合作,制定测量方案。

  引导学生探索与体会测量不规则物体的体积的方法。

  二、进行实验

  让学生按各自小组制定的方案小组合作进行测算。

  小组代表领取所需测量工具,学生小组合作动手测量,并且列式计算

  设计意图:通过实验,使学生明白把不规则的石块体积转化成了测量计算水的.体积的方法不只一种。

  三、试一试

  1.在一个正方体容器里,测量一个苹果的体积。

  2.测量一粒黄豆的体积。

  学生小组合作进行测算

  3.小结。

  师:通过实验,这节课你有什么收获?

  请几名学生说说自己的收获

  设计意图:让学生再一次运用在操索活动中得到的测量方法去测量其它不规则物体的体积。

  四、数学万花筒

  课件出示阿基米德的洗浴故事

  学生听老师讲述阿基米德的洗浴故事

  人教版五年级数学上教案 篇3

  教学目标:

  1. 知识目标:在长方体、正方体的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。

  2. 能力目标:经历探究测量不规则物体体积方法的过程,体验“等积变形”的转化过程。获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作精神和问题解决能力。

  3. 情感目标:感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。

  教学过程:

  一、复习导入

  1、复习长(正)方体的体积,体积和容积单位的换算。

  2、听故事,曹冲称象(大象的质量转换为石块的质量)阿基米德的故事(皇冠的体积转换成水的体积)。故事对于我们的这节课学习是不是会有所帮助,有所启发呢?

  3、观察(石块土豆)的形状,与长方体或正方体比较引出不规则物体(并板书)。

  故事中的皇冠也是不规则物体吗?

  石块和土豆再比较,哪个物体更不规则,指出今天我们就来测量石块的体积。(板书)

  二、实验操作,测量石块体积。

  1. 拿出桌子下面的测量工具,根据给出的测量工具,各小组想好测量方案,该做哪些工作(分工)。分工协作:

  方案一 ,取水,测量底面的长和宽,以及水面的高度,放入石块后再测量水面到达的高度,用底面积乘高度的差就是石块的体积。(注意点:水的量应适中,不要太少也不能太多,刚好能让石块浸没而升高的水又不至于溢出就可以了。)

  方案二,取水,在空器中倒满水,然后把石块慢慢放入水中,再将溢出的水倒进量杯中量出水的体积

  2. 小组汇报各自做法,老师边听学生汇报边板书。(适量的水:升高部分水的体积相当于石块的体积)(加满的水:溢出的水的体积相当于石块的体积。)

  真不错,大家测出了石块的体积,请把水倒回水桶,下面小组交换一下测量工具,重新测量石块的体积,来验证一下测量的结果是否大致相同。

  3. 除了上面的两种方案,还有其他的测量方案吗?说说看, 我们班是不是会出现曹冲第二呢?

  预设一:小物体---直接有量杯测出体积。

  预设二:把石块先放入容器,往容器里加入水,直到水高过石块,测量水的高度,把石块捞出,再次测量水的高度,把容器的底面积乘两次的高度差就是石块的体积。

  预设三:当装的.水过高时,我们可以把升高的这部分水的体积加水溢出的水的体积也能求出石块的体积。

  预设四:有称重的办法求石块的体积,把我们量出的石块称一称,看重多少,再根据这对数据求出任意大小石块的体积。

  预设五:用橡皮泥代替水做也可,把石块放入长方体空器,往容器内塞入橡皮泥,直到塞满为止,取出石块,再塞入橡皮泥(压平,测量橡皮泥的高度,把底面积乘容器高度与橡皮泥高度差就是石块的体积。……

  三、巩固提高

  今天大家的表现真不错,有些方案老师也没能想到。学有所用,学以致用,我们来看看小黑板的题目怎么做。

  1. 一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面升高了0.2分米,这个土豆的体积是多少?(生独立完成。)

  2. 测量一颗跳珠的体积。

  数25粒跳珠,放入一个盛有一定量水的量杯中,根据水面升高的情况测量出水的体积,再算出一颗跳珠的体积。(学生实验并计算出体积)

  四、总结提高

  通过今天的学习,你有什么收获?(我学会了求石块的体积,我学会了怎样求不规则物体的体积,我学会了把一个物体转换成另一个物体来解决问题的方法。)

  人教版五年级数学上教案 篇4

  教学目标

  1、掌握整除、约数、倍数的概念.

  2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

  教学重点

  1、建立整除、约数、倍数的概念.

  2、理解约数、倍数相互依存的关系.

  3、应用概念正确作出判断.

  教学难点

  理解约数、倍数相互依存的关系.

  教学步骤

  一、铺垫孕伏(课件演示:数的整除下载)

  1、口算

  6÷515÷323÷7

  1.2÷0.324÷231÷3

  2、观察算式和结果并将算式分类.

  除尽

  除不尽

  6÷5=1.215÷3=15

  1.2÷0.3=424÷2=12

  23÷7=3......2

  31÷3=10......1

  3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

  4、寻找具有整除关系的算式.

  板书:15÷3=515能被3整除

  5、分类除尽

  除不尽

  不能整除

  整除

  6÷5=1.2

  1.2÷0.3=4

  15÷3=15

  24÷2=12

  23÷7=3......2

  31÷3=10......1

  二、探究新知

  (一)进一步理解”整除“的意义.

  1、整除所需的条件.

  (1)分析:24能被2整除,15能被3整除;

  23不能被7整除,31不能被3整除;(商有余数)

  6不能被5整除;(商是小数)

  1.2不能被0.3整除;(被除数和除数都是小数)

  (2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

  a、被除数和除数(0除外)都是整数;

  b、商是整数;

  c、商后没有余数.

  板书:整数整数整数(没有余数)

  15÷3=5

  2、用字母表示相除的两个数,理解整除的意义.

  (1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

  (板书:a÷b)

  学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

  (板书:a能被b整除)

  (2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

  学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

  3、反馈练习.

  (1)下面的数,哪一组的第一个数能被第二个数整除?

  29和336和121.2和0.4

  (2)判断下面的说法是否正确,并说明理由.

  a.36能被12整除.()

  b.19能被3整除.()

  c.3.2能被0.4整除.()

  d.0能被5整除.()

  e.29能整除29.()

  4、”整除“与”除尽“的联系和区别.

  讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

  (举例说明)

  (二)约数、倍数的意义

  1、类推约数、倍数的意义.

  (1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

  (2)学生口述:

  24能被2整除,我们就说,24是2的倍数,2是24的约数.

  10能被5整除,我们就说,10是5的倍数,5是10的约数.

  a能被b整除,我们就说a是b的倍数,b是a的约数.

  (3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

  (4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

  2、进一步理解约数、倍数的意义.

  (1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

  (2)约数和倍数相互依存的关系.

  学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

  (3)反馈练习:

  A、下面各组数中,有约数和倍数关系的有哪些?

  16和2140和20xx和15

  33和64和2472和8

  B、判断下面说法是否正确.

  a、8是2的倍数,2是8的约数.()

  b、6是倍数,3是约数.()

  c、30是5的倍数.()

  d、4是历的约数.()

  e、5是约数.()

  3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

  4、教学例2:12的.约数有哪几个?

  (1)引导学生合作学习,讨论分析.

  (2)汇报、板书:

  12的约数有:1、2、3、4、6、12

  (3)练习:15的约数有哪几个?

  (4)学生明确:

  一个数的约数是有限的其中最小的约数是1,的约数是它本身.

  5、教学例3:2的倍数有哪些?

  (1)引导学生合作学习,讨论、分析.

  (2)汇报、板书:

  2的倍数有:2、4、6、8、10......

  (3)练习:2的倍数有哪些?

  (4)学生明确:

  一个数的倍数的个数是无限的,其中最小的倍数是它本身.

  三、全课小结

  这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

  (板书课题:约数和倍数的意义)

  四、随堂练习

  1、下面的说法对吗?说出理由.

  (1)因为36÷9=4,所以36是倍数,9是约数.

  (2)57是3的倍数.

  (3)1是1、2、3、4、5,...的约数.

  2、下面的数,哪些是60的约数,哪些是6的倍数?

  3412162460

  教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

  3、下面的说法对吗?为什么?

  (1)1.8能被0.2除尽.()1.8能被0.2整除.()

  1.8是0.2的倍数.()1.8是0.2的9倍.()

  (2)若a÷b=10,那么:

  a一定是b的倍数.()a能被b整除.()

  b可能是a的约数.()a能被b除尽.()

  五、布置作业

  1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

  101336

  2、在下面的圈里填上适当的数.

  六、板书设计

  约数和倍数的意义

  探究活动

  人教版五年级数学上教案 篇5

  教学内容:

  书第50——51页,体积单位的换算,想一想、试一试第1、2题,练一练第1、2、3、4题。

  教学目标:

  1.知识与技能:通过探究、推导,使学生知道:1立方米=1000立方分米,1立方分米=1000立方厘米,1升=1000毫升。

  2.过程与方法:能够正确进行单位间的换算。

  3.情感、态度价值观:培养学生良好的思维习惯和与人合作的能力。

  教学重点:

  知道常用体积单位之间的进率并能正确运用。

  教学难点:

  体积单位与长度单位、面积单位的联系与区别。

  教学准备:

  棱长为1分米的正方体盒子和棱长为1厘米的小正方体若干个。

  教学过程:

  一、复习旧知

  1.填空:30厘米=( )分米 5米=( )厘米

  2平方米=( )平方分米 45平方厘米=( )平方分米

  师:常用的长度单位之间的进率是多少?

  常用的长度单位之间的进率是多少?

  2.计算:

  (1)一个长方体盒子,长5分米,宽4分米,高3分米,它的体积是多少?

  (2)一个长方体水池,它的底面积是30平方米,高是2米,它的体积是多少?

  二、探究新知

  1.质疑:猜测一下体积单位之间的进率可能是多少?

  可以用什么方法验证你的猜想?

  2.师:我们是怎样推导出常用的面积单位之间的进率的?

  3.探索立方分米和立方厘米之间的.进率

  (1)说一说:你准备怎样利用学具来操作。

  (2)四人小组活动。

  (3)抽生完整表述操作过程:1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。

  (4)师:如果用分米作单位,大正方体的体积是多少?

  如果改用厘米作单位呢?

  (5)师:由此你能得出什么结论?

  据学生回答板书:1分米3=1000厘米3

  师:1立方分米等于多少升?1立方厘米等于多少毫升?

  你还能想到什么?

  据学生回答板书:1升=1000毫升

  4.探索立方米和立方分米之间的进率

  (1)师:关于立方米和立方分米之间的进率,你有什么想法?

  (2)四人小组交流。

  (3)抽生汇报,师注重引导学生表述准确、完整:体积为1米3的正方体,它的棱长为1米;也可看成是棱长为10分米的正方体,它的体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000dm3。

  三、新课小结

  通过今天的学习,你有什么收获?

  作业设计:

  1.书试一试第1题,独立完成。

  2.书试一试第2题,独立完成,引导学生比较。

  3.书练一练第1题,独立完成,集体订正。

  4.书练一练第2题

  通过计算第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。

  5.书练一练第3题

  先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米),也可以换算成120立方分米。

  6.书练一练第3题

  先让学生独立计算,再说说是怎么想的,实际上就是求1.5米高的水的体积。50×20×1.5=1500(立方米)

  板书设计:

  体积单位的换算

  30厘米=( )分米 5米=( )厘米

  2平方米=( )平方分米 45平方厘米=( )平方分米

  1分米3=1000厘米3 1米3=1000 分米3

  1升=1000毫升 1m3=1000 dm3