五年级数学教案《长方体和正方体的体积计算》
作为一名教职工,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么问题来了,教案应该怎么写?下面是小编为大家收集的五年级数学教案《长方体和正方体的体积计算》,欢迎阅读与收藏。
五年级数学教案《长方体和正方体的体积计算》1
教学目标:
1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。
2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。
3、运用体积计算公式解决一些简单的实际问题。
4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。
教学准备:
教具准备:
教学课件、一个长方体拼制模型(长4厘米、宽3厘米、高2厘米)。
学具准备:
每组24个边长1立方厘米的小木块。
教学过程:
一、复习引入
1、我们已学习了体积和体积单位,谁能说说1立方厘米是怎么规定的?
课件出示1立方厘米的正方体组成的长方体,分别让学生说说它们的体积是多少。
2、出示
3厘米
2厘米
4厘米
(1)、学生想办法求它的体积。
预设:学生可能会直接猜测出一个数量,也可能会说出切割成1cm3体积单位再数一数的方法。也有可能学生直接说出量出长宽高然后相乘。学生出现第二种情况,教师可以呈现切好的图形,让大家数出小正方体的个数,并说出数的方法。学生如果出现第三种情况,教师可以追问:“这样求究竟对不对,我们一起来研究一下。”
(2)、下面就让我们运用1立方厘米的体积单位来研究长方体、正方体的体积计算方法。(出示课题)
二、长方体体积计算公式推导与理解
(1)、探究长方体的体积
1、布置活动任务。
教师出示24个1立方厘米的体积单位。
师:我们每个组都准备24个1立方厘米的小正方体木块,请你任意摆放成一个长4厘米、宽3厘米、高2厘米的长方体。
小组活动,活动的要求是;
①看一看可以摆出的长方体有几层?每层几行?一行多少个?
②说一说,怎样计算长方体所含有的小木块数?
③把小组内摆长方体的相关数据填入表内。
每行个数行数层数1立方厘米正方体的数量长方体的`体积
2、学生活动。
3、反馈方法,依次呈现表格。
师:同学们摆好了吗?说说你是怎么摆的?
预设:学生会根据摆的图形把层数、每层行数、每行个数、小木块的数量、长方体的体积说出来,这时教师要引导学生说出数小木块的方法。
师:老师也搭了一个,这个长方体的体积是多少呢?怎么想的?
课件出示:长4厘米、宽3厘米、高2厘米长方体
思考:进一步清晰数方块的方法。
教师将学生汇报的各种摆法的数据逐一填入表中。
师:是的,正像刚才同学们说的一样,只要把每行摆的块数乘摆的行数,就是每一层摆的块数,再乘层数,就是小木块的总块数,有几块,体积就是几立方厘米。
4、数方块求体积。
课件出示:
数一数,下列长方体的体积是多少?
5、归纳体积计算方法。
师:观察一下,刚才这些摆成的长方体所含有的小木块的数量与长、宽、高究竟有怎样的关系呢?
思考:通过探讨,让学生发现,其实每行摆的块数相当于长方体的长,摆的行数相当于长方体的宽,叠的层数相当于长方体的高,所以长方体的体积就是长×宽×高。
师小结:(点击课件出示下列图示)每行个数就是长方体的长,排的行数就是长方体的宽,叠的层数就是长方体的高。所以,长方体的体积就是长×宽×高。
6、得出长方体、正方体体积字母公式。
师:通过刚才的讨论,我们发现,长方体的体积=长×宽×高。如果一个长方体的长、宽、高分别是a、b、h,那么它的体积是多少呢?(根据回答板书)
师:是的,如果用字母v表示体积,那么v=abh就是求长方体体积的字母公式。
(2)、利用知识迁移探究正方体的体积。
师:那么正方体的体积又是怎样计算的呢?
思考:引导学生说出,正方体其实是特殊的长方体,只不过长、宽、高都相等,长方体的体积=长×宽×高,所以正方体的体积计算方法是棱长×棱长×棱长。
师:(边板书边说):如果用字母v表示正方体的体积,用a表示它的棱长,那么正方体的体积公式是怎样的呢?
师根据学生回答出示:V= a·a·a
师:a·a·a也可以写做a3,V= a3读作“a的立方”,表示3个a相乘。
(3)、沟通长方体、正方体的体积公式
1、利用公式计算体积。
计算下面图形的的体积。
课件出示长方体立体图(长8cm,宽3cm,高4cm)
正方体图(棱长5dm)
2、沟通长方体、正方体体积公式:体积=底面积×高。
师:我们已经会用公式求长方体、正方体的体积,如果告诉你长方体、正方体的底面积和高,你能计算它们的体积吗?
出示长方体立体图(在图中标注:底面积为15平方厘米,高4厘米)
思考:让学生感到用已经掌握用公式计算体积时,直接出示已知底面积
和高求长方体的体积。通过设置悬念,尝试解决、交流讨论,沟通长、正方体两者的公式。
师:同学们听明白了吗?其实,长方体的体积等于底面积×高(课件出示公式)
师:如果这是一个正方体呢?
课件出示正方体图(在图中标注:底面积为16平方厘米,高4厘米)
师:大家一定明白了长方体、正方体的体积有一个共同的计算方法就是体积=底面积×高。如果用s表示底面积,h表示高,字母公式就是v=sh。
出示:体积=底面积×高
V= s h
三、巩固练习
1、基本练习
(1)一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘米。 ( )
(2)一个正方体的棱长是2分米,它的体积是多少立方分米?
列式为23=2×3=6(立方分米) ( )
(3)棱长6厘米的正方体,表面积和体积一样大。 ( )
2、实际应用
师:(出示课件)想给一块体积为20xx立方厘米的长方体水晶装饰品,配一个包装盒,图中的包装盒能装吗?为什么?
思考:通过讨论,让学生感悟到,实际生活中的长方体,不是直接标注体积,而是标注“长×宽×高”,其实是有意义的。
四、回顾小结
师:回顾一下,今天的学习大家有什么收获?
五年级数学教案《长方体和正方体的体积计算》2
一、创设情境
填空:
1、叫做物体的体积。
2、常用的体积单位有:
3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习--长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第17页的第(1)题摆好。
观察结果:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
含体积单位数:
体积:
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的体积=长×宽×高。
用字母表示:V=a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习--正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:V=a3
说明:a×a×a可以写成a3,读作:a的.立方。
应用:出示例2,让学生独立做后订正。
三、巩固练习
1.做第19页的“练一练”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第19页的“练一练”的第2题。
3、做练习三的第4、6题。
四、课堂小结
五、课后实践
做练习三的第5、7题。
长方体和正方体的体积计算
长方体的体积=长×宽×高。
用字母表示:V=a×b×h=abh
正方体的体积=棱长×棱长×棱长
用字母表示为:V=a3
a×a×a可以写成a3,读作:a的立方
【五年级数学教案《长方体和正方体的体积计算》】相关文章:
《长方体和正方体体积》数学教案06-15
长方体和正方体的体积计算五年级数学教案04-04
长方体和正方体的体积教案02-27
《长方体和正方体的体积》教案08-26
《长方体和正方体体积》说课稿07-13
《长方体和正方体的体积》教学反思03-11
《长方体和正方体的体积》说课稿范文05-26
长方体和正方体的体积教案范文08-26
长方体和正方体体积的教学反思02-07