当前位置:育文网>教学文档>教案> 初中数学活动教案

初中数学活动教案

时间:2024-06-04 07:37:10 教案 我要投稿
  • 相关推荐

初中数学活动教案

  作为一位优秀的人民教师,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那要怎么写好教案呢?下面是小编精心整理的初中数学活动教案,希望能够帮助到大家。

初中数学活动教案

初中数学活动教案1

  函数图象的性质

  活动目标:

  1、利用几何画板的形象性,通过量的变化,验证并进一步研究

  函数图象的性质,数学教案-函数学图象的性质。

  2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几何规律。

  3、学会作简单函数的图象,并对图象作初步了解。

  4、通过本节课的教学,把几何画板作为学生认知的工具,从而激发学生学习和探索数学的兴趣。

  活动重点:图形的性质和规律的探索

  活动难点:几何画板的操作(作函数的图象)

  活动设施:微机室(有液晶投影仪和大屏幕或大彩电);软件:windows操作平台、几何画板、office20xx等、教师准备好的五个画板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp 、ymdl1.gsp、ymdl2.gsp。

  活动过程:

  一、展示活动主题和目标:

  二、活动过程:

  操作练习一:

  按下列步骤进行操作,并回答相应的问题。

  1、打开c:sketchhstx1.gsp画板文件;

  2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。

  ①当k>0时,图象经过哪几个象限?

  ②当k<0时,图象经过哪几个象限?

  3、双击显示按钮后,在k>0和k<0两种情况下,拖动点P沿直线移动,观察y随x怎样变化?(或双击动画2按钮,单击鼠标左键动画停止,要继续动画,再双击动画2按钮)

  4、先在坐标系内作出直线(或直接打开文件:c:sketchhstx2.gsp)

  附:作图步骤

  ①点击“文件”菜单中的“新绘图”命令;

  ②用“直尺工具”中的直线工具,在绘图板内画一直线,并用文本工具给直线上的两个空心点加上标签A和B;

  ③用“选择工具”选中直线后,点击“度量”菜单中的“方程”命令,得坐标系和直线的方程;然后,再进行以下操作,并回答问题:

  (1)用鼠标拖动直线进行平移,k和b中哪个变,哪个不变?

  (2)当直线通过原点时,b为多少?此时函数又叫什么函数?

  (3)拖动点A,使直线绕点B旋转,观察直线的倾斜程度与k之间的关系?

  操作练习二:

  1、打开文件:c:sketchhstx3.gsp

  2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关?

  3、上下移动c改变c的大小,看抛物线怎样变化?

  4、分别改变a、b的大小,看抛物线的`对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关?

  5、c保持不变,改变a、b时,抛抛线总是经过哪一点?

  6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系?

  7、双击显示按钮,再双击动画按钮,观察y随x怎样变化?

  8、当a=0时,函数的图象是什么?

  操作练习三:

  打开文件:c:sketchymdl1.gsp

  圆的两弦AB、CD相交于圆内一点P,我们得到 ,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢?

  操作练习四:作函数y=x2-2的图象

  作图步骤:

  1、击“文件”菜单中“新绘图”命令,建立新的绘图板;

  2、点击“图表”菜单中的“建立坐标轴”;

  3、在横坐标轴上任找一点,用“文本工具”,加上标签“C”,选中C点,单击“度量”菜单中的“坐标”命令,得度量值,C:(-2.80,0.00),再用“选择工具”选择它,初中数学教案《数学教案-函数学图象的性质》。(度量值变黑)

  4、点击“度量”菜单中的“计算”命令,出现计算器;

  5、点击“数值”下拉式菜单中的“点C”的“x”值,按“确定”按纽,得Xc=-2.80 再用“选择工具”选择它。(度量值变黑)

  6、点击“度量”菜单中的“计算”命令,出现计算器,再点击“数值”下拉式菜单中的“x[c]”,分别按计算器上的“∧”、“2”、“-”、“2”、 “确定”按纽。得到代数式的值:xc2-2=14.45.

  7、用“选择工具”,分别选中 Xc=-2.80 xc2-2=14.45. (选取第二个对象要按键盘上的“shift”键的同时再选);

  8、点击“图表”菜单中的“绘出(x,y)”,得到点“E”。(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内);

  9、分别选中点E和点C,点击“作图”菜单中的“轨迹”,得二次函数的图象。

初中数学活动教案2

  教学目标

  1、学生掌握方程的定义以及等式与方程的区别;

  2、使学生掌握方程的解的定义,并且能某个值是否为指定方程的解。

  教学重点

  检验方程的解的方法

  教学难点

  区分等式与方程;等式与恒等式;恒等式与方程。

  版面设计

  方程与方程的解

  一、等式与恒等式:

  二、方程与整式方程:

  三、方程的解与方程的根:

  例1: 例2:

  教学设计

  一、复习引入:

  ⑴猜年龄:

  将你的'年龄乘以2再减去5,你的得数是多少?如果是21,我就能猜出 你的年龄是13。

  ⑵找规律:

  如果设小明的年龄为x岁,那么“乘以2再减去5”就是2x-5,所以得到方程(eq uation):2x-5=21

  二、新课传授:

  1.等式与恒等式:

  ① 等式:

  像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,x+3=5等这样用等号“=”来表示相等关系的式子,叫做等式。

  等式左边的式子叫做等式的左边;

  等式右边的式子叫做等式的右边;

  等式的一般形式是:A=B

  ② 恒等式:

  像1+2=3,5.3-(-1.2)=6.5,x+2x =3x,a+b=b+a等这样等号两边的值永远相等的式子叫做恒等式。

  2.方程与整式方程:

  ① 方程:

  这种含有未知数的等式叫做方程。

  ② 整式方程:

  方程的两边都是整式时,称为整式方程。

  【练习】:课后1、2两题( 指定学生口答)

  1. 方程的解与方程的根:

  ① 方程的解:

  能使方程左、右两边的值相等的未知数的值叫做方程的解;

  ② 一元方程:

  只含有一个未知数的方程称为一元方程;

  一元方程的解也叫做方程的根。

  2. 一元一次方程:

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

  例1 检验下列各数是不是方程7x+1=10- 2x的解:

  ⑴x= 1; ⑵x=-2。

  解:⑴将x=1分别代入方 程的左、右两边,得

  左边=7×1+1=8 ,

  右边=10-2×1 =8,

  ∵ 左边=右边,

  ∴x=1是 方程7x+1=10-2x的解。

  ⑵将x=-2分别代入方程的左、右两边,得

  左边=7×(-2)+1=-13,

  右边=10-2×(-2)=14,

  ∵ 左边≠右边,

  ∴x=-2不 是方程7x+1=10-2x的解。

  例2 判断下列方程哪些是一元一次方程:

  ⑴5x+4=11; ⑵ ; ⑶2x-y=1;

  ⑷ ; ⑸ 。

  解:⑴、⑷是一元一次方程,⑵、⑶、⑸不是一元一次方程。

  【练习】课后习题 1、3(口答);2(1、2 )(指定学生板演)。

  三、作业:

  课后习题

  同步练习

初中数学活动教案3

  教学目标

  1、知识与技能:了解命题、公理、定理的含义;理解证明的必要性。

  2、过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。

  3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。

  重点与难点

  1、重点:知道什么是公理,什么是定理。

  2、难点:理解证明的必要性。

  教学过程

  一、复习引入

  教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了。这节课,我们将探究怎样证明一个命题是真命题。

  二、探究新知

  (一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。

  我们已经知道下列命题是真命题:

  一条直线截两条平行直线所得的同位角相等;

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

  全等三角形的对应边、对应角相等。

  在本书中我们将这些真命题均作为公理。

  (二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的。从而说明证明的`重要性。

  1、教师讲解:请大家看下面的例子:

  当n=1时,(n2-5n+5)2=1;

  当n=2时,(n2-5n+5)2=1;

  当n=3时,(n2-5n+5)2=1。

  我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?

  实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25。

  2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2。由此我们猜想:当a>b时,a2>b2。这个命题是真命题吗?

  [答案:不正确,因为3>-5,但32<(-5)2]

  教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质。但由前面两题我们又知道,这些方法得到的结论有时不具有一般性。也就是说,由这些方法得到的命题可能是真命题,也可能是假命题。

  教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理。

  (三)例题与证明

  例如,有了“三角形的内角和等于180”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余。

  教师板书证明过程。

  教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理。

  定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据。

  三、随堂练习

  课本p66练习第1、2题。

  四、课时总结

  1、在长期实践中总结出来为真命题的命题叫做公理。

  2、用逻辑推理的方法证明它们是正确的命题叫做定理。

  五、布置作业。

初中数学活动教案4

  活动目标:

  1、利用几何画板的形象性,通过量的变化,验证并进一步研究

  函数图象的性质。

  2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几

  何规律。

  3、学会作简单函数的图象,并对图象作初步了解。

  4、通过本节课的教学,把几何画板作为学生认知的工具,从而激

  发学生学习和探索数学的兴趣。

  活动重点:图形的性质和规律的探索

  活动难点:几何画板的操作(作函数的图象)

  活动设施:微机室(有液晶投影仪和大屏幕或大彩电);软件:windows操作平台、几何画板、office20xx等、教师准备好的五个画板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp 、ymdl1.gsp、ymdl2.gsp。

  活动过程:

  一、展示活动主题和目标:

  二、活动过程:

  操作练习一:

  按下列步骤进行操作,并回答相应的问题。

  1、打开c:sketchhstx1.gsp画板文件;

  2、拖动点E和点F沿坐标轴运动(或双击按钮动画1),同时观看解析式中的k和b的变化。

  ①当k0时,图象经过哪几个象限?

  ②当k0时,图象经过哪几个象限?

  3、双击显示按钮后,在k0和k0两种情况下,拖动点P沿直线移动,观察y随x怎样变化?(或双击动画2按钮,单击鼠标左键动画停止,要继续动画,再双击动画2按钮)

  4、先在坐标系内作出直线(或直接打开文件:c:sketchhstx2.gsp)

  附:作图步骤

  ①点击文件菜单中的新绘图命令;

  ②用直尺工具中的直线工具,在绘图板内画一直线,并用文本工具给直线上的两个空心点加上标签A和B;

  ③用选择工具选中直线后,点击度量菜单中的方程命令,得坐标系和直线的方程;然后,再进行以下操作,并回答问题:

  (1)用鼠标拖动直线进行平移,k和b中哪个变,哪个不变?

  (2)当直线通过原点时,b为多少?此时函数又叫什么函数?

  (3)拖动点A,使直线绕点B旋转,观察直线的倾斜程度与k之间的关系?

  操作练习二:

  1、打开文件:c:sketchhstx3.gsp

  2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关?

  3、上下移动c改变c的大小,看抛物线怎样变化?

  4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关?

  5、c保持不变,改变a、b时,抛抛线总是经过哪一点?

  6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系?

  7、双击显示按钮,再双击动画按钮,观察y随x怎样变化?

  8、当a=0时,函数的图象是什么?

  操作练习三:

  打开文件:c:sketchymdl1.gsp

  圆的两弦AB、CD相交于圆内一点P,我们得到 ,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢?

  操作练习四:作函数y=x2-2的图象

  作图步骤:

  1、击文件菜单中新绘图命令,建立新的绘图板;

  2、点击图表菜单中的建立坐标轴

  3、在横坐标轴上任找一点,用文本工具,加上标签C,选中C点,单击度量菜单中的坐标命令,得度量值,C:(-2.80,0.00),再用选择工具选择它。(度量值变黑)

  4、点击度量菜单中的计算命令,出现计算器;

  5、点击数值下拉式菜单中的点C的x值,按确定按纽,得Xc=-2.80 再用选择工具选择它。(度量值变黑)

  6、点击度量菜单中的`计算命令,出现计算器,再点击数值下拉式菜单中的x[c],分别按计算器上的、2、-、2、 确定按纽。得到代数式的值:xc2-2=14.45.

  7、用选择工具,分别选中 Xc=-2.80 xc2-2=14.45. (选取第二个对象要按键盘上的shift键的同时再选);

  8、点击图表菜单中的绘出(x,y),得到点E。(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内);

  9、分别选中点E和点C,点击作图菜单中的轨迹,得二次函数的图象。

  操作练习五:

  运用练习四的原理,绘制其它函数的图象(包括学过的和没有学过的),谈谈你对所绘函数图象的认识

初中数学活动教案5

  活动目标:

  1、利用几何画板的形象性,通过量的变化,验证并进一步研究函数图象的性质。

  2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几何规律。

  3、学会作简单函数的图象,并对图象作初步了解。

  4、通过本节课的教学,把几何画板作为学生认知的工具,从而激发学生学习和探索数学的兴趣。

  活动的重点难点及设施

  活动重点:图形的性质和规律的探索

  活动难点:几何画板的操作(作函数的图象)

  活动设施:微机室(有液晶投影仪和大屏幕);

  windows操作平台

  几何画板

  office20xx等

  教师准备好的五个画板文件:

  hstx1。gsp

  hstx2。gsp

  hstx3。gsp

  ymdl1。gsp

  ymdl2。gsp。

  操作一

  按下列步骤进行操作,并回答相应的问题。

  1、单击右上角“请看动画”,再打开d:jhhbhstx1。gsp画板文件;

  2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。

  ①当k>0时,图象经过哪几个象限?

  ②当k<0时,图象经过哪几个象限?

  3、双击显示按钮后,在k>0和k<0两种情况下,拖动点P沿直线移动,观察y随x怎样变化?(或双击动画2按钮,单击鼠标左键动画停止,要继续动画,再双击动画2按钮)

  4、先在坐标系内作出直线(或直接打开文件:c:sketchhstx2。gsp)

  操作二

  1、同操作一,打开d:jhhbhstx2。gsp

  2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关?

  3、上下移动c改变c的大小,看抛物线怎样变化?

  4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关?

  5、c保持不变,改变a、b时,抛抛线总是经过哪一点?

  6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系?

  7、双击显示按钮,再双击动画按钮,观察y随x怎样变化?

  8、当a=0时,函数的图象是什么?

  操作三

  打开文件: d:jhhbymdl1。gsp

  圆的两弦AB、CD相交于圆内一点P,我们得到 ,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢?

  操作四

  作函数y=x2-2的图象

  作图步骤:

  1、击“文件”菜单中“新绘图”命令,建立新的绘图板;

  2、点击“图表”菜单中的“建立坐标轴”;

  3、在横坐标轴上任找一点,用“文本工具”,加上标签“C”,选中C点,单击“度量”菜单中的“坐标”命令,得度量值,C:(-2。80,0。00),再用“选择工具”选择它。(度量值变黑)

  4、点击“度量”菜单中的“计算”命令,出现计算器;

  5、点击“数值”下拉式菜单中的“点C”的“x”值,按“确定”按纽,得Xc=-2。80 再用“选择工具”选择它。(度量值变黑)

  6、点击“度量”菜单中的“计算”命令,出现计算器,再点击“数值”下拉式菜单中的“x[c]”,分别按计算器上的“∧”、“2”、“-”、“2”、 “确定”按纽。得到代数式的值:xc2-2=14。45。

  7、用“选择工具”,分别选中 Xc=-2。80 xc2-2=14。45。 (选取第二个对象要按键盘上的“shift”键的同时再选);

  8、点击“图表”菜单中的“绘出(x,y)”,得到点“E”。(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内);

  9、分别选中点E和点C,点击“作图”菜单中的“轨迹”,得二次函数的图象。

  活动目标:

  1、利用几何画板的形象性,通过量的变化,验证并进一步研究函数图象的性质。

  2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几何规律。

  3、学会作简单函数的图象,并对图象作初步了解。

  4、通过本节课的教学,把几何画板作为学生认知的工具,从而激发学生学习和探索数学的兴趣。

  活动的重点难点及设施

  活动重点:图形的性质和规律的探索

  活动难点:几何画板的操作(作函数的图象)

  活动设施:微机室(有液晶投影仪和大屏幕);

  windows操作平台

  几何画板

  office20xx等

  教师准备好的五个画板文件:

  hstx1。gsp

  hstx2。gsp

  hstx3。gsp

  ymdl1。gsp

  ymdl2。gsp。

  操作一

  按下列步骤进行操作,并回答相应的问题。

  1、单击右上角“请看动画”,再打开d:jhhbhstx1。gsp画板文件;

  2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。

  ①当k>0时,图象经过哪几个象限?

  ②当k<0时,图象经过哪几个象限?

  3、双击显示按钮后,在k>0和k<0两种情况下,拖动点P沿直线移动,观察y随x怎样变化?(或双击动画2按钮,单击鼠标左键动画停止,要继续动画,再双击动画2按钮)

  4、先在坐标系内作出直线(或直接打开文件:c:sketchhstx2。gsp)

  操作二

  1、同操作一,打开d:jhhbhstx2。gsp

  2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关?

  3、上下移动c改变c的大小,看抛物线怎样变化?

  4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的.对称轴与什么有关?与什么无关?

  5、c保持不变,改变a、b时,抛抛线总是经过哪一点?

  6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系?

  7、双击显示按钮,再双击动画按钮,观察y随x怎样变化?

  8、当a=0时,函数的图象是什么?

  操作三

  打开文件: d:jhhbymdl1。gsp

  圆的两弦AB、CD相交于圆内一点P,我们得到 ,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢?

  操作四

  作函数y=x2-2的图象

  作图步骤:

  1、击“文件”菜单中“新绘图”命令,建立新的绘图板;

  2、点击“图表”菜单中的“建立坐标轴”;

  3、在横坐标轴上任找一点,用“文本工具”,加上标签“C”,选中C点,单击“度量”菜单中的“坐标”命令,得度量值,C:(-2。80,0。00),再用“选择工具”选择它。(度量值变黑)

  4、点击“度量”菜单中的“计算”命令,出现计算器;

  5、点击“数值”下拉式菜单中的“点C”的“x”值,按“确定”按纽,得Xc=-2。80 再用“选择工具”选择它。(度量值变黑)

  6、点击“度量”菜单中的“计算”命令,出现计算器,再点击“数值”下拉式菜单中的“x[c]”,分别按计算器上的“∧”、“2”、“-”、“2”、 “确定”按纽。得到代数式的值:xc2-2=14。45。

  7、用“选择工具”,分别选中 Xc=-2。80 xc2-2=14。45。 (选取第二个对象要按键盘上的“shift”键的同时再选);

  8、点击“图表”菜单中的“绘出(x,y)”,得到点“E”。(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内);

  9、分别选中点E和点C,点击“作图”菜单中的“轨迹”,得二次函数的图象。

【初中数学活动教案】相关文章:

数学初中教案11-18

数学活动教案11-07

初中数学教案08-12

初中数学优秀教案09-29

初中数学函数教案02-23

初中数学平行教案12-28

初中数学教案05-28

初中趣味数学教案11-22

【热】初中数学教案03-27

【精】初中数学教案02-24