当前位置:育文网>教学文档>教案> 《面积计算》教案

《面积计算》教案

时间:2024-06-14 18:24:38 教案 我要投稿

《面积计算》教案

  作为一名老师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么你有了解过教案吗?以下是小编为大家整理的《面积计算》教案,仅供参考,大家一起来看看吧。

《面积计算》教案

《面积计算》教案1

  目标

  ①使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法。

  ②在引导学生理解和推导长方体表面积计算方法的过程中,培养学生的抽象概括能力、推理能力和思维的灵活性,同时发展他们的空间观念。

  教学及训练

  教学重点:

  表面积的意义。

  教学难点

  长方体表面积的计算方法。

  仪器

  教具

  教师准备:长方体和正方体表面积展开的教具、投影仪。

  学生准备:长方体和正方体纸盒各一个。

  教学内容和过程

  教学札记

  一、创设情境

  1、说出长方形面积的计算公式。

  2、看图回答。

  (1)指出这个长方体的长、宽、高各是多少?

  (2)哪些面的面积相等?

  (3)填空:

  上、下两个面的长是宽是。

  这个长方体左、右两个面的长是宽是。

  前、后两个面的长是宽是。

  3、想一想。长方体和正方体都有几个面?

  4.老师现在做了一个“长5㎝,宽4㎝,高3㎝”的长方体架,要在它的六个面上贴上薄塑料片,你说应该准备多少平方厘米的塑料片呢?

  二、实践探索

  1.个别学习--表面积的概念

  (1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、“左”、“右”、“前”、“后”标在6个面上。

  (2)沿着长方体和正方体的棱剪开并展平。

  (3)你知道长方体或者正方体6个面的总面积叫做它的什么吗?

  学生试着说一说。

  2.小组合作学习--计算塑料片的面积

  (1)想:这个问题,实际上就是要我们求什么?

  使学生明确:就是计算这个长方体的表面积。

  (2)学生分组研究计算的方法。

  (3)找几名代表说一说所在小组的意见。

  解法(一):(是分别算出上、下,前、后,左、右面的.面积之和,然后算总和。)

  5×4×2+5×3×2+3×4×2

  =40+30+24

  =94(平方厘米)

  解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2)

  (5×4+5×3+3×4)×2

  =47×2

  =94(平方厘米)

  (4)比较上面两种解法有什么不同?它们之间有什么联系?

  三、巩固练习

  做第9页的“练一练”,学生独立列式算出后集体订正。

  四、课堂小结

  你发现长方体表面积的计算方法了吗?

  结论:

  =长×宽×2+长×高×2+宽×高×2

  长方体的表面积

  =(长×宽+长×高+宽×高)×2

  五、课堂练习

  做练习二的第1、2题,学生口答,学生讲评。

  七、课后实践

  做练习二的第3、4题在作业本上。

  长方体的表面积

  =长×宽×2+长×高×2+宽×高×2

  长方体

  的表面积

  =(长×宽+长×高+宽×高)×2

《面积计算》教案2

  教学背景:

  组合图形面积的计算是平面图形知识在小学阶段的综合应用。计算一个组合图形的面积,有时可以有多种方法,为了提高学生的解题能力,除了让学生加强练习以外,还应教绐他们一定的解题技巧。经过多年的教学实践,我收集和整理了一些关于组合图形面积的计算方法和技巧。如割补法、平移法、等分法、等积变形法、翻折法、旋转法、重叠法等等。我们要根据图形的特征、已知条件,以及整体与部分的关系,选择最佳解法。

  本节微课主要学习割补法、等积变形、旋转法等三种方法。

  教学目标 :

  1、 知道求组合图形的.面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

  2、 注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。

  教学方法:

  讲解法、演示法

  教学过程:

  一 、割补法

  这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。

  Ppt演示变化过程,并出示解题过程。

  二、等积变形法。

  这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。

  Ppt演示变化过程,并出示解题过程。

  三、旋转法。

  这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。

  Ppt演示变化过程,并出示解题过程。

  四、小结方法

  求组合图形面积可按以下步骤进行

  1、弄清组合图形所求的是哪些部分的面积。

  2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。

《面积计算》教案3

  教学内容:教材p12~14。

  教学目标

  1、使学生通过实际操作和讨论思考,探索并掌握平行四边形面积公式,并能应用公式正确地计算平行四边形的面积。

  2、使学生经历观察、操作、测量、填表、讨论、分析、归纳等活动过程,体会“等积变形”思考方法,培养学生的空间观念,使学生初步知道转化的在研究平行四边形面积时的运用。

  教学重点:理解并掌握平行四边形的面积公式

  教学难点:理解平行四边形面积公式的推导过程

  教学用具:教学光盘、剪下教科书第127页上的平行四边形、表格、长方形框架

  教学过程

  一、复习导入

  1、说出学过的平面图形:出示长方形、正方形、平行四边形、梯形、圆等。

  2、在这些图形中,哪些图形的面积你会求?怎么求?

  二、探究新知

  1、教学例1:

  (1)出示例1中的第1组图下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后交流。对学生的交流作适当点评,使学生明白两种不同的比价方法都是可以的:数方格比较大小或把左边图形转化后与右边图形进行比较。

  2)出示例1中的第2组图你还能用刚才的方法比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)

  (3)揭示课题:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。今天我们就运用这种方法来研究“平行四边形面积的计算”。(板书课题)

  2、教学例2:

  (1)出示一个平行四边形你能想办法把这个平行四边形转化成学过的`图形吗?

  (2)学生操作,教师巡视指导。

  (3)学生交流操作情况

  第一种:

  ①沿着平行四边形的高剪下左边的直角三角形。

  ②把这个三角形向右平移。

  ③到斜边重合。

  第二种:

  ①沿着平行四边形的任意一条高将其剪为两个梯形。

  ②把左侧的梯形向右平移。

  ③道斜边重合。

  (4)课件进行演示并小结。沿着平行四边形的一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。说说你们为什么要沿着高剪?学生讨论并汇报想法,小结:沿着高剪,能使拼成的图形出现直角,从而符合长方形的特征,能拼出长方形。

  3、教学例3:

  (1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小会不会改变呢?与原来的平行四边形之间有什么联系呢?

  (2)学生操作:请大家拿出从教科书第127页上剪好的任选一个平行四边形,先把它转化成长方形,再求出面积并填写下表。

  转化成的长方形

  平行四边形

  长(cm)

  宽(cm)

  面积(cm)

  底(cm)

  高(cm)

  面积(cm)

  (3)小组讨论:

  ①转化后长方形的面积与原平行四边形面积相等吗?

  ②长方形的长和宽与平行四边形的底和高有什么关系?

  ③根据长方形面积计算公式,怎样求平行四边形的面积?

  (4)反馈、交流、抽象出面积公式根据学生总结

  形成下面的板书:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  (5)用字母表示面公式

  如果用s表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你那能用字母写出平行四边形的面积公式吗?学生回答,并板书:s = a h(板书)

  三、巩固练习

  1、指导完成试一试要求平行四边形的面积,必须知道什么条件?你能独立计算吗?学生独立完成,完成后说说是怎样列式解答的。

  2、指导完成练一练:让学生说说底和高分别是多少?计算时应用什么公式?

  3、练习二第1题独立完成练习。说说自己的方法。集体评讲,说说怎样画,形状不一样,但面积一定相等?

  4、练习二第2题指出每个平行四边形对应的底和高,再各自测量计算。

  5、练习二第5题拿出长方形框架。操作时,一个长方形不动,另一个长方形拉成平行四边形。

  (1)周长相等吗?面积呢?为什么?(2)连续拉动长方形,面积的变化有什么特点?

  四、作业

  练习二第3、第4题。

  五、总结:(1分)通过今天的学习你有了哪些收获?

  板书设计:平行四边形面积的计算

  长方形的面积=长×宽

  平行四边形的面积=底×高

《面积计算》教案4

  教学目的

  1、使学生理解和掌握正方形的面积计算公式,能够正确地计算正方形的面积。

  2、通过对正方形面积公式的推导,培养学生迁移、类推的能力。

  教学重点

  理解和掌握正方形面积计算公式的推导和应用。

  教学难点

  帮助学生根据操作理解正方形面积计算公式的推导。

  教具准备

  边长20厘米的正方形手帕,面积是1平方米的硬纸,多媒体课件。

  教学过程

  一、利用迁移,探究知识

  先测量,再计算下列图形的面积。

  (1)(2)(3)(4)

  学生做完后进行交流。

  教师根据具体情况进行引导、点拨。

  如果有的学生选了(2)、(3),教师借此机会教学正方形的面积计算。首先学生说明自己的算法,再让学生讲明这样做的'道理。教师引导:用课件演示长方形的长变短与宽相等时就变成了正方形,所以,正方形的面积和长方形的面积计算方法相同。也可以这样想,正方形是特殊的长方形,所以,其计算方法是相同的。

  如果学生没有选(2)、(3),教师直接引入:图(2)、(3)正方形的面积是怎样计算呢?让学生独立思考,然后说明想法,教师再引导。

  练习:课本第125页第7题。2厘米9分米

  (计算正方形的面积)2厘米9分米

  2、学生讨论正方形的面积与它的什么有关系?(正方形的面积=边长×边长)教师板书公式,并说明这就是我们这节课学习的内容。(板书课题)

  3、学生把课本例题填完整。

  二、动手操作,深化认识

  1、动手测量正方形手帕的边长再计算它的面积。(遇到有小数的情况,计算结果可以用整分米来表示。)

  2、学生思考:在生活中什么地方还用到正方形的面积计算?

  三、应用知识,解决问题

  1、练习二十八的第8题。学生独立思考后,提问:“要配上一块与桌面同样大的玻璃是什么意思?”(要配的玻璃面积与桌面的面积一样大,也是边长8分米。)

  2、练习二十八的第6题。口算在课本上,订正时说一说13×14、84÷4、

  630÷30是怎样口算的。

  3、练习二十八的第9题。让学生拿一个边长10厘米的正方形纸板,实际做一做。

  4、练习二十八的第10题。学生先独立做,然后说明为什么这样列式。

  5、练习二十八的第11题。学生先独立完成。

  板书设计:

  正方形面积的计算

  正方形的面积=边长×边长

  5分米

《面积计算》教案5

  重点难点

  1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

  2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  教学重点:理解并掌握三角形面积的计算公式

  教学难点:理解三角形面积公式的推导过程

  教学准备(含资料辑录或图表绘制)

  三角形面积的计算

  已学过的图形新图形

  因为平行四边形的面积=底×高

  所以三角形的面积=底×高÷2

  二、新授

  复习平行四边形面积公式的推导过程

  仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?先自己想,随后在小组中交流。

  为什么可以用“平行四边形的面积÷2”求出每个涂色的三角形的面积?三角形与平行四边形究竟有怎样的关系?三角形的面积有应当如何计算?今天继续运用“转化”的方法来研究三角形面积的计算。(板书课题:三角形面积的`计算)

  (1)出示例5:

  用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)

  (2)你认为拼成一个平行四边形所需要的两个三角形有什么特点?

  要使学生明确:用两个完全一样的三角形可以拼成一个平行四边形。

  (3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。

  如何计算一个三角形的面积?从表中可以看出三角形与拼成的平行四边形还有怎样的关系?

  得出以下结论:

  这两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。

  这个平行四边形的底等于三角形的底这个平行四边形的高等于三角形的高

  因为每个三角形的面积等于拼成的平行四边形面积的一半,所以三角形的面积=底×高÷2

  (4)字母表示三角形面积公式:S=ah

  学生讨论后汇报(平行四边形的面积÷2)

  三、练习

  四、延伸

  五、总结

  六、课堂作业

  1、完成试一试:

  2、完成练一练:

  (1)先让学生回忆拼得过程,再回答。

  (2)要让学生说清是如何想的。

  3、完成练习三第1-3题:

  介绍第16页“你知道吗”

  通过今天的学习有哪些收获?

《面积计算》教案6

  教学内容:

  人教版三年级下册第五单元《长方形、正方形面积的计算》。

  教材分析:

  本课是在学生知道了面积的含义,初步认识面积单位和学会用面积单位直接度量面积的基础上进行教学的,这部分内容主要是引导学生探索长方形和正方形的面积计算公式,并初步练习运用公式进行面积计算。

  有些学生可能在课前已经知道了“长方形的面积等于长乘宽”,但可能在理解“为什么长乘宽就是长方形的面积”的问题上遇到困难。在这堂课中主要通过学生的动手操作解决“为什么长乘宽就是长方形的面积”的问题,引导学生理解长方形面积的计算方法,并通过长方形面积计算方法迁移得到正方形面积的计算方法,为以后学习其他平面图形的面积计算奠定良好的基础。

  教学目标:

  1、理解掌握长方形和正方形面积的计算方法,能运用公式正确地计算长方形和正方形的面积,解决相关的实际问题。

  2、经历探索长方形面积计算方法的过程,并总结出长方形和正方形面积计算公式。

  3、在学习活动中培养学生的探索精神和合作意识,发展学生的观察能力、操作能力、空间想象能力,在解决问题过程中,体会数学的价值。

  重点难点:

  长方形、正方形面积计算公式的推导过程。

  教学设想:

  围绕“长方形面积公式”这个重点问题,我力图把教学的着力点放在公式是怎样推导出来的。

  在操作交流之后,让学生对面积与长宽进行观察、比较、思考,组织学生围绕长方形面积和长宽之间有什么关系进行讨论,归纳分析问题,从而引导概括推导出长方形的面积计算公式。

  根据迁移规律,充分利用长方形面积计算公式和正方形是特殊的长方形,正方形的面积计算方法也就迎刃而解,顺理成章地得出正方形面积公式。这样使学生了解了一般与特殊的关系,又形象地沟通了正、长方形之间的联系。

  本节课练习题的设计,力求紧扣重点,层次清楚,并体现面向全体学生,因材施教的要求。长方形、正方形面积公式得出后,安排一组专项练习题,旨在及时巩固所学会公式,获取足够的反馈信息,以便教师及时调理教学节奏。综合练习题,有一定的.灵活性,旨在强化应用两个面积计算公式,形成计算技能。最后提高练习是为学有余力的学生设计的,意在因材施教,发展智能。

  教学过程:

  一、复习旧知,导入新课

  1、请学生说说常用的面积单位有哪些。

  2、出示一个边长是1分米的正方形,请学生说出它的面积是多少。

  设计意图:通过对前面知识的复习,唤起学生对铺小正方形这种测量方法的回忆,为下面的探索活动做好准备。同时,学生也感受到密铺这种方法的局限性,产生探究计算方法的渴求。

  二、探究长方形面积计算方法

  (一)活动一:测量大纸板的面积。

  1、估计大纸板的面积。

  2、请学生用摆1平方分米正方形的方法测量大纸板的面积。

  3、活动,汇报测量方法和结果。

  (1)密铺的方法。

  (2)间隔摆的方法。

  (3)展示沿着长摆一行,沿着宽摆一列的方法。

  点拨:用乘法计算,一共有多少个正方形,面积就是多少平方分米。

  4、通过刚才的学习,你发现小正方形的个数怎样求呢?

  5、请学生想一想,如果要测量操场、游泳池的面积,用这样的方法测量好吗?为什么?

  揭题:这样会非常麻烦而且有时无法操作,所以我们就要学习一种更简便的计算面积的方法(板书课题)

  设计意图:在这一环节中,为学生提供的1平方分米正方形是不够铺满纸板的,这就迫使学生采用只摆一行、一列,然后用乘法计算出总面积。明确表示面积单位的小正方形每行个数、行数与长方形面积的关系,为下面推导长方形面积公式做好充分准备。

  (二)活动二:用1平方分米的正方形拼摆长方形

  1、课件出示活动要求:任意取1平方分米的小正方形,在桌面上任摆长方形,并在小组中记录数据。

  2、小组合作探究,学生汇报

  追问:大家发现了什么?发现所摆成的长方形长、宽与面积有什么关系呢?

  3、总结公式:长方形面积=长X宽

  设计意图:这一活动引导学生感受到我们可以通过求表示面积单位的小正方形的方法来计算长方形的面积,并明确通过每行能摆几个小正方形、摆了几行,这个长方形的长宽便是多少。

  (三)活动三:估计长方形面积

  1、请学生估计手中长方形面积。

  2、测量长方形长9厘米,宽6厘米。请学生说说面积是多少。

  追问:看到长9厘米能想到什么?看到宽6厘米想到什么?

  引导想象每行摆9个,摆6行。(课件演示)

  设计意图:通过想象,发展学生的二维空间观念,也再次得出了用每行个数乘行数得到表示面积单位的小正方形个数,继而计算出长方形面积的方法,并深化理解小正方形每行个数、行数与长、宽的关系。

  三、巩固长方形面积计算,引出正方形面积公式

  1、出示两个长方形,已知长7cm、宽4cm和长为8cm、宽为5cm计算它的面积。

  2、出示边长为5cm的正方形,请学生计算面积。

  引导:其实它是一个什么图形呢?(正方形,正方形是特殊的长方形,它的长和宽相等,都叫做边长)

  指名回答正方形的面积计算公式。

  根据回答板书:正方形的面积=边长×边长。

  设计意图:正方形是特殊的长方形,通过练习引导学生总结出正方形面积公式。正方形面积公式可以由长方形面积公式推导而出,学生比较容易理解掌握,所以不占用更多的教学时间。

  四、夯实基础,巩固提高。

  1、课件出示:运动会的宣传板长2米,宽8分米,求面积。

  学生独立计算后全班交流。

  点拨:通过这道题,你有什么要提醒大家的?(审题时要看清单位,在计算前要将单位先统一)

  设计意图:这道看似简单的题目却由于单位的不同会有部分学生出错,通过对错例的辨析,引导学生关注单位、培养认真仔细的学习态度。

  2、课件出示:正方形宣传板四周彩带长28分米,求面积。

  学生独立计算后全班交流。

  3.设计宣传板,有一块面积为36平方分米的宣传板,它的长和宽可能是多少呢?

  设计意图:通过与生活紧密联系的三道题的计算,夯实对于公式的应用并切实感受到数学知识来源于生活、应用于生活,体会数学的价值。

  五、生活中长方形正方形面积的应用。

  生活中有很多地方都能用到长方形、正方形面积,比如求体育场地面积、给长方形桌子选配桌布,压路机压过的路面面积也可以用今天学过的知识来解决。

《面积计算》教案7

  一、创设情境,呈现真实

  师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)

  师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)

  生活动后汇报如下:

  长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米

  (1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米

  (2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米

  二、否定错误猜想

  1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

  你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

  生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

  师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

  生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?

  2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?

  生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

  师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)

  生:(兴奋地)高!

  师:现在,你觉得平行四边形的面积与它的什么有关?

  生:我觉得平行四边形的面积与它的高有很大的关系。

  3、师:用什么办法可以比较它们的面积大小呢?

  生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

  师:变成长方形后,面积大小变了没有?

  生:没有

  师:那么要计算平行四边形的面积,应该怎么办?

  生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

  生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的'。

  师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

  三、归纳计算方法

  师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

  根据学生反馈情况进行课件演示,出现几种拼法(略)

  师:这几种剪拼方法有什么相同之处?

  生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

  生:在剪拼过程中,图形的形状变了,面积不变。

  师:为什么平行四边形的面积可以用“底乘高”来计算?

  生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

  师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

  生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

  师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。

  四、反思探究过程

  师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

《面积计算》教案8

  教学目标

  1.通过比较,学生正确理解面积和周长的意义,能运用概念正确地计算面积和周长.

  2.提高学生综合、概括的能力.

  3.培养学生良好的学习习惯.

  教学重点

  区别面积和周长的意义、计量单位和计算方法.

  教学难点

  正确地进行长方形、正方形周长和面积的计算.

  教学过程

  一、复习准备.

  师:我们已学习过了长方形、正方形的周长和面积的计算,下面我们一起来复习一下.

  1.怎样计算长方形、正方形的周长?

  长方形的周长=(长+宽)×2

  正方形的周长=边长×4

  2.怎样计算长方形、正方形的面积?

  长方形的.面积=长×宽

  正方形的面积=边长×边长

  那么,周长和面积有什么不同吗?今天我们一起来探讨这个问题.(板书课题:面积和周长的比较)

  二、学习新课.

  出示图形,这是一个长方形,长4厘米,宽3厘米.请同学提出问题,可以求什么?(周长、面积各是多少?)

  师:请同学在自己作业本上,分别求出这个长方形的周长和面积.(订正时,老师板书)

  通过计算你能发现周长与面积有什么不同吗?请根据下面几个问题进行思考.

  投影出示思考题:

  1.周长和面积各指的是什么?

  2.周长和面积的计算方法各是什么?

  3.周长和面积各用什么计量单位?

  在个人思考的基础上,再进行小组讨论.

  集体讨论归纳:

  1.长方形周长是指长方形四条边的长度和,而它的面积是指四条边围成的面的大小.

  2.长方形的周长=(长+宽)×2

  长方形的面积=长×宽

  3.求周长计算出的结果要用长度单位,求面积计算出的结果要用面积单位.

  师:同学们讲得很好,那么我们能不能简单地概括出面积和周长究竟有哪几点不同呢?

  (在老师的引导下,共同归纳、概括)板书:

  面积和周长的区别:

  1.概念不同;

  2.计算方法不同;

  3.计量单位不同.

  师:现在老师有一个问题,要向同学们请教,愿意帮忙吗?

  如果计算正方形的周长和面积,是不是也存在这3点不同呢?(正方形的周长和面积也具备这3点不同)

  师:老师还有一个问题,假如一个正方形它的边长是4,会求它的周长和面积吗?

  (学生叙述列式过程,老师写在黑板上)

  师:这两个算式都是“4×4”,这不是完全相同吗?你们怎么能说它们不同呢?

  (讨论一下,然后再回答)

  待学生充分发表意见后,老师再归纳.

  师:周长的4×4是4个边长,式子中的第一个4是4厘米.面积的4×4是4个4平方厘米,所以两个算式虽然都是4×4,但表示的意义不同,说明面积和周长是两个不同的概念,因此做题时要特别注意区分,要认真审题.

  三、巩固反馈

  1.请你用手指出桌面的周长,摸一摸桌面的面积.

  2.出示正方形手帕,请同学指出它的周长和面积.

  3.计算下面每个图形的周长和面积.

  投影出示:

  4.选择正确答案的字母填在( )里.

  (1)一个正方形花坛,边长20米.如果在花坛的四周围上栏杆,栏杆长多少?( )

  (2)一个正方形花坛,边长20米.如果李欣每天早晨围着花坛跑5圈,他每天早晨要跑多少米?( )

  (3)一个正方形花坛,边长20米.如果在这个花坛里种草坪,这个草坪的面积是多少?( )

  A.20×20=400(米) B. 20×4=80(米)

  C.20×20=400(平方米) D.20×4×5=400(米)

  师生共同总结:通过这节课的学习,我们认识到面积和周长有三点不同:1.概念不同;2.计算方法不同;3.计量单位不同。

《面积计算》教案9

  教学内容:教材第5-6页例2、例3和“练一练”,练习一第4-8题。

  教学要求:

  1、使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力,让学生认识取近似值的进一法。

  2、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  教具学具准备:

  教师准备一个圆柱模型;学生准备一个圆柱体。

  教学过程:

  一、复习铺垫

  1、复习圆柱的特征。

  2、计算下面圆柱的侧面积(口头列式)

  (1)底面周长4.2厘米,高2厘米。

  (2)底面直径3厘米,高4厘米。

  (3)底面半径1厘米,高3.5厘米。

  3、提问:圆柱的一个底面面积怎样计算?

  4、引入新课。

  我们已经会计算圆柱的侧面积,那么怎样计算圆柱的.表面积呢?这节课就学习圆柱的表面积计算。

  二、教学新课

  1、认识表面积计算方法。

  (1)请同学们拿出圆柱来看一看,想一想,圆柱的表面包括哪几个部分,然后告诉大家。

  (2)教师演示。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。

  (3)得出公式。

  请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?

  2、教学例2

  出示例2,学生读题。

  提问:这道题分哪几步来算?你们会做吗?

  指名一人板演,其余学生做在练习本上。

  3、组织练习。

  做“练一练”第1题。

  4、教学例3

  出示例3,学生读题。

  提问:这道题实际是什么?这里求表面积与例2有什么不同,为什么?

  指名一人板演,其余学生做在练习本上。

  强调:不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。

  5、组织练习。

  (1)下面的数用进一法保留整数,各是多少?(口答)

  162.3 29.4 3.8 42.6

  (2)做“练一练”第2题。

  让学生做在练习本上。

  指名口答羊两步各求什么,为什么只加一个底面积。

  三、课堂小结

  这节课学习了什么内容?你学到了些什么?

  四、布置作业

  课堂作业:练习一第5-7题

  家庭作业:练习一第4、8题。

《面积计算》教案10

  教学内容:九义教材数学第九册第70~72页,练习十七第1~3题。

  素质教育目标:

  (一)知识教学点

  1.使学生理解并掌握平行四边形面积的计算公式。

  2.能正确地计算平行四边形的面积。

  (二)能力训练点

  1.通过操作,进一步发展学生思维能力。

  2.培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。

  (三)德育渗透点

  引导学生运用转化的思想探索规律。

  教学重点:理解并掌握平行四边形面积的计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程。

  教具学具准备:

  1.活动长方形支架。

  2.平行四边形演示课件。

  3.每个学生准备一张画上高的平行四边形纸板和剪刀。

  教学步骤

  一、铺垫孕伏1.出示活动长方形支架。提问:这是什么形体?怎样计算长方形的面积?板书:长方形的面积=长×宽

  2.把活动长方形支架对角一拉,使它变成平行四边形。提问:现在还是长方形吗?什么叫平行四边形?你能指出它的底和高吗?

  二、探究新知

  1.导入:我们学过长方形面积的计算。平行四边形的面积该怎样计算呢?这节课我们就来共同研究“平行四边形面积的计算”。板书课题。

  2.用数方格的方法计算平行四边形的面积。

  (1)打开书71页齐读第二段。

  (2)指名到实物投影仪上数。我先数......,它是......平方厘米;再数......,它是......平方厘米;两部分合起来是......平方厘米。

  (3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。

  (4)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?

  引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  (5)从前面的研究我们知道,平行四边形的面积也可以用数方格的`方法求出来。但数起来很麻烦,且不精确。特别是较大的平行四边形,如花园那么大就不好数了。我们能不能也像计算长方形的面积那样,找出平行四边形面积的计算方法呢?

  3、通过操作,将平行四边形转化成长方形。

  (1)、提问。能不能用剪拼的办法将同学们手中的平行四边形转化成长方形呢?试试看。(每个只准剪一次。)

  (2)、提问。通过剪拼你发现了什么规律?任何一个平行四边形都可以转化成一个长方形。(只有沿平行四边形的高剪下。)在转化的过程中,怎样按一定的规律来做呢?(老师演示)

  A.先沿着平行四边形的高剪下左边的直角三角形。

  B.左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  C.移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边向右慢慢移动,到两个斜边重合为止。

  D、同学们像老师刚才演示那样,平移一次。(老师巡视指导)

  E、投影再显示平移过程,加深认识。

  4、归纳整理

  (1)、投影显示两个图形,比较。你发现了什么?请填71页书空。

  (2)、平行四边形转化成长方形后,面积有没有变化?长方形的面积和原来的平行四边形的面积怎么样?(板书)

  (3)、这个长方形的长与平行四边形的底怎么样?

  (4)、这个长方形的宽与平行四边形的高怎么样?

  (5)、这个长方形的面积怎么求?那么平行四边形的面积呢?(因为......所以......板书)

  (6)、请学生口述推导过程。同时投影演示。

  5教学字母公式

  (1)、介绍字母的意义及读法。(板书S=a×h)

  (2)、说明在含有字母的式子里,字母和字母中间的乘号可以记作“˙”,也可以省略不写。(板书s=a?h或s=ah)

  (3)、提问:计算平行四边形的面积,需要知道那些条件?

  6、应用公式计算

  (1)投影显示72页例题

  A、读题,理解题意。

  B、学生试做,提示得数保留整数。

  C、订正。老师出示正确答案。提问:此题根据什么这样列式?

  (2)、完成72页“做一做”第1、2题。

  A、抽两个同学在投影片上做,其余的在作业本上做。B、订正时提问:计算时注意那些问题?老师出示正确答案。

  三、巩固发展

  1、填空(出示投影)平行四边形面积计算公式的推导。任意一个平行四边形都可以转化成一个(),它的面积与原平行四边形的面积()。这个长方形的长与原平行四边形的()相等。这个长方形的()与原平行四边形的()相等。因为长方形的面积等于(),所以平行四边形的面积等于()。

  2、比较。73页第6题(出示投影)强调等底等高的平行四边形面积相等。

  3、判断。我们开始演示的活动长方形支架的面积和由它变成的平行四边形的面积相等吗?为什么?

  四、全课总结。

  这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积是怎样推导出来的?

  五、布置作业

  练习十七第2、3题。

  六、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=a×h

  S=a·h或S=ah

  点评:该课整个过程从动手操作→观察思考→归纳慨括,遵循了概念教学的原则和学生的认识规律。通过操作演示再现已有的表象,又借助已有的知识经验,通过观察、分析、比较、推理、概括出平行四边形的面积公式,教师适当点拨,使学生的思维始终处于积极状态,成为学习的主人。

《面积计算》教案11

  教学内容:人教版第十册第66-66页的内容,完成练习十六的第1-3题。

  教学目标:

  1、使学生能运用树方格、割补等方法探索平行四边形面积的计算公式,初步感受转化的思想。

  2、让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  3、培养学生观察、分析、概括、推理能力,发展学生的空间观念。

  4、培养学生的合作意识和探索创新精神。

  教学重点:学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  教学难点:探索、推导平行四边形面积的计算公式。

  教具、学具准备:

  教具:有关平行四边形面积计算的多媒体及课件、视频展示台。

  学具:每组准备2-3个纸剪的平行四边形和一个近似的平行四边形。

  教学过程:

  一、复习引入。

  1、课件出示长方形。提问:指出它各部分的名称,会求它的面积吗?只要量出它的什么的尺寸就能计算?

  2、演示:把长方形拉成平行四边形。提问:这又是什么图形?它有什么特征?会求它的面积吗?

  二、探索新知。

  1、用数方格的方法计算平行四边形的面积。

  同桌合作,讨论完成再汇报。

  出示思考题:

  (1)长方形的长是多少?宽是多少?面积是多少?

  (2)平行四边形的`面积是多少?

  (3)比较图中平行四边形的底和长方形的长,发现了什么?

  (4)比较图中平行四边形的高和长方形的宽,发现了什么?

  过渡:不数方格,能不能计算平行四边形的面积呢?我们来做个实验。

  2、探索平行四边形面积的计算公式。

  (1)小组动手操作,将平行四边形转化成长方形。小组合作时,教师巡视,参与指导。

  (2)把有代表性的几组作品贴在黑板上。

  思考:不论沿平行四边形的哪条高剪开,拼成的平行四边形与长方形都有关系?

  学生回答,教师板书:

  长方形的面积 = 长 × 宽

  平行四边形的面积= 底 × 高

  3、用字母表示平行四边形面积的计算公式。

  (1)学生看书交流。

  (2)教师板书:S=a×h

  =a·h

  =ah

  3、要求平行四边形的面积,知道它的什么条件就可以了?

  4、运用公式计算平行四边形的面积。

  (1)出示例1

  读题后让学生想:根据什么列式?对得数有什么要求?学生独立完成。

  (3)完成第66页的"做一做"。

  三、巩固练习。

  1、练习十六第1题。

  2、练习十六第3题。

  四、全课总结。

  1、这节课我们研究了一个什么问题?

  2、怎样求平行四边形的面积?这个面积公式是怎样推导出来的?

  3、小组评价。

  五、作业。

  练习十六第2、5题。

《面积计算》教案12

  一、教学目标:

  1、运用“转化”的方法引导学生学习推导梯形面积的计算公式。

  2、通过动手操作培养学生的动手实践能力,激发学习兴趣,培养合作意识。

  二、教学重点:

  引导学生运用“转化”的方法推导梯形面积的计算公式。

  三、教学难点:

  1、运用“转化”的方法推导梯形面积的计算公式。

  2、对公式中梯形面积=(上底+下底)×高÷2中“÷2”的理解。

  四、 教具:

  课件、两个完全一样的普通梯形、两组两个完全一样的直角梯形、普通梯形一个。

  五、学具:

  每小组都有两个完全一样的梯形、一个普通梯形和剪刀。

  六、教学过程:

  (一)复习:

  1、复习已学的图形面积计算公式:

  师述:“同学们你们都学过哪些图形的面积,是怎样计算的?”

  根据学生的回答依次板书:长方形面积=长×宽

  正方形面积=边长×边长

  平行四边形面积=底×高

  三角形面积=底×高÷2

  2、复习平行四边形、三角形面积计算公式的推导步骤:

  师述“想一想你们是分几步把平行四边形、三角形面积的计算公式推导出来的?”

  根据学生回答依次板书: 步骤:1、转化

  2、找关系

  3、推导公式

  4、所用方法

  (二)新授:

  1、用生活中的实际问题引出本节课的教学内容:

  (1)师边出示图边叙述:“我们学校打算在操场南侧建一块绿地,算一算 这块绿地需要铺草坪多少平方米?解决这个问题的关键是什么?”

  生答:“求梯形的面积”。 出示课题:梯形的面积

  (2)引出转化法

  师边叙述边板书:“梯形的面积对于我们来说是新知识,我们要把梯形转化成我们学过的长方形、正方形、平行四边形、三角形(板书:转 化),利用旧知识解决新问题,推导出梯形面积的计算公式。(板书:计算公式的推导)”

  板书为: 梯形面积计算公式的推导

  转化

  (3)布置动手操作要求:

  师述:“以组为单位按步骤利用学具一起想办法推导出梯形面积计算公式,要求合理的分工、合作,操作学具要麻利。”

  2、学生分组动手操作推导出梯形面积的计算公式

  (教师行间巡视和学生一起探究,对学生在探究过程中出现的问题进行指导)

  可能遇到的问题:找关系

  割补法中:为什么“平行四边形的高=梯形的高÷2”学生理解起来可能出现困难。

  3、各小组汇报探究成果,师给予适当补充。

  (1)将两个完全一样的'普通梯形转化为平行四边形

  1、转化:

  梯形平行四边形

  2、找关系:

  平行四边形面积=2个梯形面积

  底=上底+下底

  高=高

  3、推导公式:

  平行四边形面积 = 底 ×高

  ‖ ‖ ‖

  2个梯形面积 = (上底+下底)× 高

  梯形面积 = (上底+下底)× 高 ÷ 2

  4、方法:

  拼摆法

  师问:“其他同学哪儿不懂?”

  师问:“为什么要除以 2?”

  (2)将两个直角梯形转化为长方形

  1、转化:

  梯形长方形

  2、找关系:

  长方形面积=2个梯形面积

  长=上底+下底

  宽=高

  3、推导公式:

  长方形面积 = 长 × 宽

  ‖ ‖ ‖

  2个梯形面积 = (上底+下底)× 高

  梯形面积 = (上底+下底)× 高 ÷ 2

  4、 方法:

  拼摆法

  (3)将两个直角梯形转化为正方形

  1、转化:

  梯形正方形

  2、找关系:

  正方形面积=2个梯形面积

  边长=上底+下底

  边长=高

  3、推导公式:

  正方形面积 = 边 长× 边长

  ‖ ‖‖

  2个梯形面积 = (上底+下底)× 高

  梯形面积 = (上底+下底)× 高 ÷ 2

  4、 方法:

  拼摆法

  (4)将普通梯形转化为三角形

  (沿一腰中点和左上角顶点之间的连线剪开,将梯形分成一个四边形和一个三角形,以一腰中点为轴顺时针转动小三角形,最后转化为三角形。)

  1、转化:

  梯形三角形

  2、找关系:

  三角形面积=梯形面积

  底=上底+下底

  高=高

  3、推导公式:

  三角形面积 =底× 高÷ 2

  ‖ ‖‖‖

  梯形面积 = (上底+下底)×高 ÷ 2

  4、 方法:

  旋转法

  师问:“其他同学哪儿不懂?”

  师问:“为什么要除以 2?”

  (5)将普通梯形转化为平行四边形

  (沿高的中点做上底的平行线,沿平行线剪开,将两部分图形转化为平行四边形)

  1、转化:

  梯形平行四边形

  2、找关系:

  平行四边形面积=梯形面积

  底=上底+下底

  高=高 ÷ 2

  3、推导公式:

  平行四边形面积 =底 ×高

  ‖ ‖ ‖

  梯形面积 = (上底+下底)×(高 ÷ 2)

  梯形面积 = (上底+下底)× 高 ÷ 2

  4、方法:

  割补法

  师问:“其他同学哪儿不懂?”

  师问:“(高 ÷ 2)高 ÷ 2,为什么可以去括号? ”

  师问:“为什么要除以 2?”

  4、小结公式及字母表示

  (1)师述:“同学们你们真了不起你们合作想办法自己推导出了梯形面积的计算公式,一起告诉老师梯形面积的计算公式是?”

  生边说师边板书:梯形面积 = (上底+下底)× 高 ÷ 2

  (2)介绍字母表示形式

  师述:“如果面积用字母S表示,a表示上底,b表示下底,h表示高,那么梯形面积的计算公式可以写成?”

  生边回答师边板书:↓↓ ↓ ↓

  S =( a + b )× h ÷ 2

  板书为:梯形面积 = (上底+下底)× 高 ÷ 2

  ↓ ↓ ↓↓

  S =( a + b ) × h ÷ 2

  (三)、练习

  1、反馈练习

  师述:“算一算 这块绿地需要铺草坪多少平方米?要求梯形面积得知道什么?”

  生答:“上底、下底、高分别是多少?”

  给出:下底=50米上底=34米 高=10米

  学生计算

  2、巩固练习

  计算下列图形的面积

  80分米

  30分米

  15厘米 25厘米

  40分米

  14厘米

  (四)总结:

  师述:“通过这节课的学习你有哪些收获?还有什么不懂的问题?”

  生应回答到的知识点:1、梯形面积计算公式及字母表示形式

  2、推导图形面积计算公式的基本思路及方法步骤

  师总结:“同学们你们在今后的学习和生活中还会遇到很多的问题、困难,你们要善于用转化的思想利用旧知识解决新问题、新困难。当遇到不会、不懂的地方还要学会和同学、朋友一起合作解决。”

  (五)作业

  (六)板书设计:

  梯形面积计算公式的推导

  转化

  长方形面积=长×宽 梯形面积 =(上底+下底)×高÷2 步骤:

  正方形面积=边长×边长↓ ↓ ↓ ↓ 1、转化

  平行四边形面积=底×高S =( a + b )×h÷22、找关系

  三角形面积=底×高÷23、推导公式

  4、所用方法

《面积计算》教案13

  教学难点:

  综合应用。

  学情分析

  重点提高学生实际的解题能力。

  学习目标

  进一步理解和掌握圆的周长和面积的计算方法,能熟练地计算圆的周长和面积。

  导学策略

  导练法、迁移法、例证法

  教学准备

  投影仪、自制投影片、小黑板

  教师活动

  学生活动

  一.引入

  1.问:这个单元我们一起学习了哪些知识?师生一起归纳、整理本单元所学内容。

  2.揭示课题。

  二.展开

  1.求圆面积的练习

  先小黑板出示P20练习1--2再指名板演,然后让板演者说说计算过程。最后再次复习圆面积在各种条件下的.计算公式:S=πr2=π()2=π()2

  2.综合应用。

  投影出示P20练习3--4先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程,最后,教师讲解。

  三.总结

  四.作业

  回答问题

  巩固练习

  教学反思

  在这些题中,第5题是最难的,学生理解上比较难,我想如果题目在从1时走到2时加上时针两个字学生理解起来就更容易了。

《面积计算》教案14

  教学内容:

  平行四边形面积计算的练习(第74~75页练习十七第4~9题。)

  教学目的:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  教学重点:

  运用所学知识解答有关平行四边形面积的应用题。

  教学准备:

  实物投影仪等。

  教学过程:

  一、基本练习

  1.口算。

  4.9÷0.75.4+2.64×0.250.87-0.49

  530+2703.5×0.2542-986÷12

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  ⑴底12米,高7米;

  ⑵高13分米,第6分米;

  ⑶底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  ⑴生独立列式解答,集体订正。

  ⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:250×780÷10000=1.95公顷,再求共收小麦多少千克:7000×1.95=13650千克

  ⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?

  与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

  ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习:下土重量各平行四边形的`面积相等吗?为什么?每个平行四边形的面积是多少?

  1.6厘米

  2.5厘米

  ⑴你能找出图中的两个平行四边形吗?

  ⑵他们的面积相等吗?为什么?

  ⑶生计算每个平行四边形的面积。

  ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.已知一个平行四边形的面积是28平方米和底是7米,求高。

  分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习(略)

  练习课

  练习内容:

《面积计算》教案15

  活动目标

  1、使学生初步学会应用梯形面积公式求堆放时横截面呈近似梯形的物体的数量,并能解决生活中一些类似的实际问题。

  2、使学生在经历感知、分析、归纳和应用的过程中培养思维能力,体验数学的应用价值,增强数学应用意识。

  3、使学生感悟数学文化的广袤与久远,形成积极的数学情感。

  活动过程

  一、故事引入,激发兴趣

  讲述:德国有位世界知名的数学家,名叫高斯(1777~1855)。他从小就很聪明,上学后不久,有一次老师布置了一道数学题:把从1到100的自然数加起来,和是多少?当别的同学都在埋头苦算的时候,小高斯却早就得到了答案,得数是5050,这使得老师非常吃惊。你想知道高斯是用什么方法很快算出得数的吗?上完今天的数学活动课,你就会知道答案了。(板书课题:数学活动课)

  [意图:课始,教师采用讲述数学家故事的方式引入,能有效吸引学生的注意力,激发学生以积极的心理态势投入到活动中来。]

  二、直观演示,探究方法

  1.基本练习。

  图形

  底

  高

  面积

  平行四边形

  6米

  4米

  梯形

  上底8厘米

  10厘米

  下底12厘米

  提问:计算多边形的面积时要注意些什么?梯形的面积怎样计算?[板书:梯形的面积=(上底+下底)×高÷2]

  [意图:基本题的练习,旨在唤起学生认知结构中多边形面积计算的知识储备,为后续活动的展开打好基础。]

  2.探究方法。

  出示右图:

  提问:这是一位工人师傅砌的墙,它的形状近似于什么图形?(梯形)砖块的排列有什么规律?(下一层总比上一层多1块砖)

  提问:你能算出这儿一共有多少块砖吗?

  指名板演:3+4+5+6+7+8=33(块)。交流时,让学生说一说是怎样想的。

  出示和上图完全一样的图片,并将两个图拼成一个近似的平行四边形(图略)。

  提问:把这两面完全相同的墙拼起来,近似于什么图形?现在每层都有几块砖?有几层?现在看来,求原先的一面墙共有多少块砖,还可以怎样列式?

  指名板演:(3+8)×6÷2=33(块)。

  提问:“3”“8”“6”分别指这面墙的什么?为什么还要除以2呢?

  再问:你发现最上层的块数、最下层的块数和层数之间有什么关系?[根据学生回答板书:(砖的块数最上层块数+最下层块数)×层数÷2]

  提问:由此你想到了什么?(这个公式和梯形面积计算公式很相似)

  比较:刚才我们用两种方法求出了这面墙一共有多少块砖,还根据第二种方法得出了一个公式,请同学们比较一下,这两种方法中,哪一种方法更简便些?

  小结:通过刚才的学习,我们发现用梯形的面积计算公式作为模型,可以求出堆放物体的横截面看起来是梯形,且每相邻两层之间的差都相等的物体的数量。像这样的应用在生活中还有很多。

  [意图:通过直观演示与分析交流,引导学生感知方法的来龙去脉,较好地完成关于计算方法的认知建构。]

  三、走向生活,解决问题

  1、小明参观钢铁厂时,看到许多钢管堆成横截面近似梯形的形状(图略)。最上层有9根,最下层有16根,有8层。这堆钢管一共有多少根?

  让学生数一数每层的.根数,确定每相邻两层根数的差都是1,再让学生独立完成。

  学生完成后,提问:你是怎样求一共有多少根钢管的?有把每一层的根数相加的吗?

  2、一堆圆木,堆成横截面是近似梯形,最上层有9根,最下层有17根,而且每层总比上一层多一根,这堆圆木共多少根?

  学生读题后提问:堆放的层数不知道,应该怎样求呢?

  3、体育馆南一区最前排有8个座位,最后排有16个座位,后一排总比前一排多1个座位。体育馆南一区共有座位多少个?

  学生独立完成后,组织反馈。

  [意图:练习设计的目的在于让学生及时巩固所学方法,同时从中体验到数学知识在生活中的广泛应用。]

  四、拓展延伸,介绍历史

  出示下面两道算式:

  1+2+3+4+5+6+7+8+9

  12+13+14+15+16+17+18+19

  提问:你能快速地求出这些数的和吗?还需要一个一个地加吗?

  学生计算后,集体交流方法与答案。

  提问:你现在知道高斯为什么算得那么快了吗?

  谈话:数学真奇妙,想不到梯形的面积计算公式竟然可以算出一列数的和,这是偶然的巧合还是数学内在的本质联系呢?学生回答后,教师以算式二为例讲解缘由。(过程略)

  讲述:其实,像这样的算式,数学家们把它叫做等差数列求和。什么是等差数列呢?也就是一列数中后一个数与前一个数的差总是相等的。我们再来看一些这方面的资料。

  出示介绍古埃及、古巴比伦以及古代中国有关等差数列研究成果的短片。(内容略)

  学生阅读材料后,教师提问:阅读了这段材料后,你有什么感受?

  [意图:等差数列求和及其历史的引入,能丰富学生的认识视域,拓展学生的精神世界,使数学所具有的文化特性浸润于学生心间。]

  五、活动总结(略)

【《面积计算》教案】相关文章:

面积计算教案07-28

【精】面积计算教案07-31

长方形面积的计算教学教案08-26

《梯形面积计算》说课稿11-10

梯形面积的计算说课稿06-26

长方形面积的计算教案(15篇)09-13

长方形面积的计算教案8篇04-03

精选长方形面积的计算教案4篇10-24

【实用】长方形面积的计算教案3篇04-20