当前位置:育文网>教学文档>教案> 可能性教案

可能性教案

时间:2021-12-31 11:39:27 教案 我要投稿
  • 相关推荐

精选可能性教案9篇

  作为一位不辞辛劳的人民教师,可能需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么大家知道正规的教案是怎么写的吗?以下是小编精心整理的可能性教案9篇,希望对大家有所帮助。

精选可能性教案9篇

可能性教案 篇1

  教学内容:

  人教课标版教材三年级上册第八单元(P110—111)

  教学目标:

  1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大有小的。

  2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。

  3、巩固本单元知识。

  教学过程:

  一、情境引入,回顾再现

  师:同学们,通过前面的学习我们知道有些事情的发生是确定的,有些则是不确定的。哪位同学愿意用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性呢?(指2—3名同学举例,其他同学评判,教师适时点评。)

  师:我们还知道事件发生的可能性有大有小。下面就请同学们猜一下三、一班的张晨同学做哪个游戏的可能性比较大?(大屏幕出示:大课间活动,三、一班的40名同学在操场上做游戏,有30人在丢手绢,6人在跳绳,4人在踢毽子。张晨是三、一班的学生,她做哪个游戏的可能性大?为什么?)

  生1:张晨做丢手绢游戏的可能性大,因为……。

  生2:……

  生3:……

  师:这节课我们就来针对这些内容进行相关练习。(引出并板书课题:可能性的练习。)

  (设计意图:让学生通过对“一定”“可能”“不可能”等现象的描述和事件发生可能性大小的解答,回忆再现新授课中有关的知识和方法。)

  二、分层练习,强化提高

  师:首先,看一看同学们能不能做一名合格的小法官。(出示)

  1、基本练习

  (1)我是小法官。(快速抢答,看谁说的又对又快。)

  ①一周有七天。()

  ②人的一生中一定要吃饭。()

  ③小明长大后一定能当飞行员。()

  ④下周一一定是阴天。()

  (2)从放5个红球和1个绿球的口袋中随意摸出一个球,摸出什么球的可能性更大些?(指生回答,重点说原因。)

  师:刚才同学们的.表现真棒!下面我们来做个游戏好吗?

  2、综合练习

  (1)课本110页第8题。

  师:掷骰子游戏喜欢吗?请同学们拿出写有1—6这几个数字的骰子来,我们一起玩。

  ①让生说一说掷出后可能出现的结果有哪些?

  ②猜测试验后的结果会有什么特点?

  ③实践、记录、统计。(全班一起掷一次,师参与记录各个面出现的次数。)

  ④说说从统计数据中发现了什么?

  ⑤由于实验结果与理论概率存在差异,如果得不到预期结果,可以再让学生多掷次,增加实验总次数,尽量使实验结果接近理论概率。

  (设计意图:让学生亲自动手实践,使学生进一步感受事件发生的等可能性。)

  (2)课本110页第9题。(出示主题图)

  师:过元旦的时候,三一班用抽签的形式来决定每位同学所要表演的节目。其中讲故事5张,唱歌3张,跳舞1张。如果你是其中的一员,你最有可能表演什么节目?

  生:我最有可能表演讲故事。

  师:为什么?

  生:因为讲故事的签比较多。

  师:谁能用“最有可能”和“最不可能”说一说其它两个事件发生的可能性?

  生:我觉得最有可能抽到唱歌,最不可能抽到跳舞。

  (3)课本111页第10题。

  师:我这里有4个盒子,其中一个盒子里放有硬币,猜一猜可能在哪个盒子里?(注意:每个同学只能选择一次,不能重复选。)

  ①生猜。

  ②简单统计猜测情况。

  ③揭示结果。

  ④说一说为什么猜错的比猜对得多。(引导学生发现:硬币只能在4个盒子中的1个,有3个盒子中没有,所以猜错的人数比较多猜错的可能性大。)

  师:同学们真聪明!考虑问题真全面。接下来老师提高一下难度,有没有信心做好?

可能性教案 篇2

  一、谈话导入:

  出示扑克牌与筛子:同学们,你们知道老师要玩什么游戏?想来一起玩一玩吗?我们要玩出数学味来。

  二、开展活动:

  1、活动一、摸牌游戏。

  (1)谈话并猜测:(电脑出示)老师这儿有四种不同花色的扑克牌各2张,混放在一起并叠整齐。如果每次任意摸一张,摸40次。你猜猜,每种花色的牌可能会摸到多少次?(指名猜测)请把你估计的数字写下来。

  (2)会和你猜的情况一样吗?我们只要自己试试就可以知道了。

  (3)师宣布活动规则,多媒体演示示范摸牌一次,说明活动顺序和要求:摸牌——画“正”字——放回——洗牌……,摸牌40次后,在记录表下面的方格图里涂色,用直条表示摸牌结果。

  (4)学生同桌合作,一人摸牌,另一人在书上记录,然后将结果用条形图表示。

  (5)学生汇报摸牌结果。看看和你估计的是否差不多,并在小组内交流活动的发现和体会。(可以让猜得很接近的学生说说为什么要这样猜。)

  (6)全班交流摸牌游戏中的体会。

  (7)谈话:如果再放进4张红桃牌,任意摸40次,结果可能会怎样?先猜一猜,再合作实验。(同桌合作,与刚才分工交换,一人摸牌、另一人记录在书上,并制成条形图)

  (8)全班交流各自的'发现,分析产生不同结果的原因。

  (9)同桌合作活动,任意选择不同张数、不同花色的扑克牌,先估计像刚才一样摸40次,结果可能会怎么样,再实验。并用自己最快的方法记录在自己本子上。

  (10)谈话:如果摸到黑桃牌的可能性最大,你准备怎么样?(指名回答)根据老师的要求选取扑克牌的花色和张数。

  2、活动二:下棋游戏。

  (1)过渡:老师认为自己打牌的水平还可以,可是,有一次和别人下棋,输得很掺,到底是怎么一回事呢?

  (2)电脑边演示边解说:那天,我们是这样下棋的,用一个小正方体,5面涂红色,1面涂黑色。一人黑棋,一人拿红棋,都从“0”开始。谁走棋用抛下正方体的办法确定。两人轮流抛小正方体。不管谁抛的,只要红色朝上,红棋就走一格;黑色朝上,黑棋就走两格。谁先走到最后一格谁为胜。

  (3)你能按着老师这样的玩法,和同桌一起玩玩吗?

  (4)先制作小正方体,剪下教材附页上的棋纸。同桌合作,随意选择颜色开展活动,一局结束后,可交换棋子再下几盘,并在书上记录自己哪种颜色棋胜的盘数。

  (5)小组内交流自己获胜情况,组长统计组内红棋和黑棋获胜的盘数。

  (6)在班内交流游戏结果。各组汇报,教师记录,合计。

  (7)你猜猜那天老师拿得是什么颜色的棋子?(生说)

  师设疑:我想,黑色朝上,可以走两格,所以我选择了黑色。可为什么和我想象得不样呢?(学生讨论并交流)

  (8)如果要使两种颜色的棋获胜的次数差不多,应该怎么改?

  三、拓展思维:

  你能在日常生活中找到利用这种可能性而举行的一些活动吗?

  假如自己是某商场的经理,请你策划一个有诱惑力而又很合理的“摸奖”活动。

  板书设计:

  摸牌和下棋

  顺序:摸牌——画“正”字——放回——洗牌……

  红色:走一格

  黑色:走两格

可能性教案 篇3

  活动一:完成调查表

  活动二:接力长跑

  活动三:有奖游戏

  教学内容:

  教材P93《铺地砖》

  教学目标:

  l.通过活动,使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。

  2、进一步增强估算意识,提高学生运用数学解决生活中问题的能力。

  3.培养学生用数学的`意识和创新精神,并在实践中对学生进行美育渗透,培养学生的审美意识。

  4. 体会数学与生活的联系,感受数学的作用和价值。

  教学重点:

  运用多种知识解决问题。 合理地选择所需的地砖,根据不同要求灵活解决问题。

  教学难点 :

  灵活运用面积计算的知识解决实际问题。

  教学流程与设计

  一、汇报课前调查情况,做好设计准备

  师:要铺地砖,我们必须先选地砖,那选地砖时必须要考虑哪些条件才能选好呢?

  师根据学生的回答,出示各种地板模型及规格。(40×40,50×50)

  二、联系实际,小组讨论计算。

  1、出示卧室地面的平面图,并介绍地面的长和宽,分别是长5米,宽4米。

  2、师指定50×50这种规格,让学生计算需要此种规格的地砖多少块。

  (估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

  三、活动小结,发散联想

  师:通过本节活动课你受到什么启发?在日常生活中(或在布置装饰家居时)还有哪些方面的计算要根据实际情况灵活运用所学知识进行计算?

  板书设计:

  估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

可能性教案 篇4

  教学内容:

  教材P107—109

  教学目标:

  1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  3、 通过实际操作活动,培养学生的动手实践能力。

  3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

  教学重、难点:

  知道事件发生的可能性是有大小的。

  教学过程:

  一、引入

  出示小盒子,展出其中的小球色彩、数量,

  如果请一位同学上来摸一个球, 他 摸到什么颜色的.球的可能性最大

  二、探究新知

  1、教学例5

  (1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。

  记录次数

  黄

  红

  活动汇报、小结

  (2)袋子里的红球多还是黄球多?为什么这样猜?

  小组内说一说

  总数量有10个球,你估计有几个红,几个黄?

  (3)开袋子验证

  让学生初步感受到实验结果与理论概率之间的关系。

  2、练习

  P107“做一做”

  3、小结

  三、巩固练习

  P109 6

  [1]学生说说掷出后可能出现的结果有哪些

  [2]猜测实验后结果会有什么特点

  [3]实践、记录、统计

  [4]说说从统计数据中发现什么?

  [5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。

  P110 7

可能性教案 篇5

  学具准备:

  学生学具:

  1、每组一盒 3红3白(号盒子2红2黄2白,号盒子5白1红,发给左侧两小组)

  2、分好6个小组,按坐的顺序定好1-6号,中间一人组长,培训组长、示范摸球。

  教师学具:

  1、四个硬纸板盒子(其中13号打印,塑封;还有一个用作放球用);三块黑卡纸;4红4黄4绿吸铁石。

  2、教师有3个盒子,一号1白1红1黄(例题演示),二号7白(备10白1红),三号4红3黄(用作猜球练习)。

  3、备红粉笔1支,确认磁性黑板,在黑板上布好点,放好12个吸铁石。

  教学过程:

  一、摸球

  师:同学们一定在想,今天给我们上课的'怎么是杨老师?不过,杨老师上课可不空手,今天,我给大家带来了一盒球礼品,想不想看看?

  生:想(很兴奋)

  师:咱们看看。(满面含笑摸出一个球,高举这是一个),

  生:齐答:黄球

  师:(放进去再摸出一个),里面啊还有(生接:白球),还有(生接:红球)

  师:(欣喜)这红球漂亮吗?(漂亮)想要吗?(想)

  师:这红球可不是心里想要就要得到的,我得把这几种颜色的球放在一个盒子里,让小朋友们去摸,如果你摸到红球,就把它送给你,想不想试试?

  生:(斩钉截铁)想

  师:现在,老师这儿有三个盒子,都装了些什么球呢,瞧(贴,这是1号盒子,这是2号盒子,这是3号盒子)现在,如果你特别想从盒子里摸出一个红球,你会选择到几号盒子里去摸?1号、2号还是3号?

  生1:第3个,生2:第3个,生3:第3个。

  师:想摸3号盒子的举手。哇,你们都想摸第3个盒子?奇怪,为什么你们都选3号?

  生:因为3号盒子全部都是红球。

  师:追问:全部是红球怎么了呢?

  生1继续:随便摸哪个球都是红球。 生2:先摸哪个球都是红球。

  师:都这么想吗?还有补充吗?是呀,盒子里全是红球,任意摸一个,会怎么样啊?(贴一定摸出红球:数学上,我们可以说)

可能性教案 篇6

  学习目标:

  1.使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。

  2.进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性;

  3.培养简单推理的能力,增强学习数学的兴趣。

  教学重点:

  用分数表示可能性的大小,理解分数表示可能性的实际意义。

  教学难点:

  灵活运用可能性的有关知识,解释并设计游戏活动。

  教具准备:

  多媒体课件

  学习方法:

  动手操作、实验法、观察思考

  教学过程:

  一、复习可能性的含义以及可能性的大小

  1.出示下列四个图形:(投影出示)

  2.提出问题:从( )号口袋中摸出的一定是红球;从( )号口袋中摸出的一定是绿球;从( )号口袋中摸出的可能是红球,也有可能是绿球。

  追问:从上面哪两个口袋中摸球的结果是确定的,哪两个口袋中摸球的结果是不确定的?(确定 不确定)

  小结:是呀,生活中有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。

  揭题:今天我们就来一起复习可能性。(板书:可能性)

  3.提出问题:从上面图3或图4的口袋中摸球,从哪个口袋中摸出红球的可能性更大一些呢?

  提问:你能用分数表示从③号和④号口袋中摸到红球的可能性的大小吗?

  从③号口袋中摸到红球的可能性是( ), 从③号口袋中摸到绿球的可能性是( ), 从④号口袋中摸到红球的可能性是( ),从④号口袋中摸到绿球的可能性是( )。

  二、指导练习。

  1.做第1题。(投影出示)

  指出:这里有4张圆盘,任意转动指针,指针停留的区域有以下几种情况,你能将它们连起来吗?

  先让学生各自连一连,再指名说说思考过程。(多媒体演示)

  2.做第2题。(将分别标有数字1、2、3、4、5的5个小球放在一个盒子里。

  (1)任意摸1个球,下面几种情况是“不可能发生”,还是“一定发生”或“可能发生”?

  ①球上的数是奇数; ②球上的.数小于6;

  ③球上的数大于5; ④球上的数不是5;

  先让学生各自判断,再指名说说思考过程。

  (2)任意摸1个球,球上的数是奇数的可能性大,还是偶数的可能性大?

  同桌讨论并说说为什么?

  追问:你能用分数分别表示摸到奇数和偶数的可能性大小吗?

  3.现有标上“1”“2”“3”“4”“5”“6”同样的6张牌。

  (1)任意摸1张,摸出数字“1”的可能性为几分之几?

  (2)任意摸1张,摸出数字为偶数的可能性为几分之几?

  (3)任意摸1张,摸出数字为素数的可能性为几分之几?

  (4)照这样操作下去,如果要使摸出偶数的可能性为7/10,你有办法吗?

  三、材料分析。

  在举行中国象棋决赛前夕,学校公布了参加决赛的两名棋手的有关资料。

  李俊 张宁

  双方交战记录 5胜6负 6胜5负

  在校象棋队练习成绩 15胜3负 11胜5负

  (1)你认为本次象棋决赛中,谁获胜的可能性大些?说说理由。

  (2)如果学校要推荐一名棋手参加区里的比赛,你认为推荐谁比较合适?简要说明理由。

  四、全课小结

  五、课堂作业:设计销售方案。

  超市有多种口味的果冻:有草莓味、柠檬味、苹果味。销售部接到了儿童乐园的一份订单,要求是:要在包装袋中装入若干个草莓、苹果、柠檬三种口味的果冻,要求从包装袋中摸到柠檬口味的果冻的可能性为。

可能性教案 篇7

  【教学目标】

  1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。

  2.了解事件发生的可能性大小是由发生事件的条件来决定的。

  3.会在简单情景下比较事件发生的可能性大小。

  4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。

  【教学重点、难点】

  教学重点:认识事件发生可能性大小的意义。

  教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小

  【教学过程】

  一、 创设情境引入新知

  提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?

  为了解决这个问题,可先让学生分小组进行摸球游戏:

  1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。

  2、做20次这样的活动,将最终结果填在表中。

  3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?

  4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?

  游戏的结论:

  在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。

  一般地,不确定事件发生的可能性是有大小的。

  说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的`颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。

  二、观察思考 理解新知

  请考虑下面问题:

  (1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?

  分析:根据本人的实际棋艺水平来确定,答案不唯一。

  (2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?

  分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。

  (3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?

  分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。

  (4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?

  分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。

  从上可得出以下结论:

  ①事件发生的可能性大小是由发生事件的条件来决定的。

  ②可能性的大小与数量的多少有关。

  数量多(所占的区域面积大)?可能性大

  数量少(所占的区域面积小)? 可能性小

  三、师生互动运用新知

  例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?

  分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。

  完成P76 1,2的做一做

  例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.

  分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:

  (1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;

  (2)将上述结果列表或画树状图;

  (3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;

  (4)比较两个事件发生的条件,判定哪个事件发生的可能性大。

  完成课内练习1,2

  四、梳理知识 形成结构

  通过本节课的学习,谈谈你的收获?

  在交流中,师生可共同梳理知识点:

  (1)事件发生的可能性大小是由发生事件的条件来决定的。

  (2)可能性的大小与数量的多少有关。

  数量多(所占的区域面积大)?可能性大

  数量少(所占的区域面积小)? 可能性小

  五、应用新知 体验成功

  1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?

  答案: 2的倍数可能性哪个大。

  2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?

  答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。

  3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。

  答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。

  4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?

  答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。

  5、如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?

  讲故事 5张

  唱 歌 3张

  跳 舞 1张

  答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。

  6、联欢会上小红可能抽到什么节目?

  抽到什么节目的可能性最大?抽到什么节目的 可能性最小?

  答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。

  7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?

  答案:

  朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。

  一次正面朝上,另一次正朝面下发生的可能性大。

  六、布置作业巩固新知

  作业题:1 — 4必做5、6选做。

可能性教案 篇8

  课前准备

  教师准备 多媒体课件 盒子及不同颜色的小球若干

  学生准备 红色球若干 白色球若干 纸箱一个

  教学过程

  ⊙联系生活,导入新课

  师:同学们,你们抽过奖吗?中奖了吗?前两天我去买东西,遇见超市搞抽奖活动。抽奖规则很简单,就是摸球,摸到绿球有奖,摸到红球就没有奖。商家会怎样放球?为什么?如果你是顾客,你希望商家怎样放球?为什么?

  师:其实,中奖率高低与可能性大小密切相关,今天我们就来复习可能性大小这个问题,学习了今天的内容,你就会找到抽奖时中奖率低的真正原因了。(板书课题:可能性的大小)

  ⊙回顾梳理,整理复习

  1.课件出示情境图,根据教材中的四幅图回答书中问题。

  学生小组讨论并回答问题。

  2.事件发生的不确定性。

  师:在我们的生活中,有很多事情是可能发生的,也有很多事情是一定会发生的,还有很多事情是不可能发生的。同学们能举例说说吗?

  (1)先在小组内说一说,然后全班交流。

  (2)汇报。

  预设

  生1:太阳不可能从西边升起。

  生2:人不可能长翅膀。

  生3:时间不可能倒流。

  生4:妈妈今年可能会带我去外婆家过寒假。

  生5:明天可能会下雨。

  生6:小鸟不可能在水里游。

  ……

  (3)教师小结。

  通过同学们的发言,我们可以知道,在生活中,有的事情是可能发生的`,有的事情是不可能发生的,还有的事情是一定会发生的。我们要学会用“可能”“一定”“不可能”描述事件发生的不确定性。

  (4)请你用“可能”“一定”“不可能”说一说生活中的现象或事物。

  3.事件发生的可能性。

  师:我在盒子里面放了10个红球、8个白球和4个绿球,这些球除颜色不同外,其他都相同。任意摸出一个球,摸出哪种颜色球的可能性最大?摸出哪种颜色球的可能性最小?请同学们根据以前的学习分组讨论。

  (1)学生小组交流讨论,得出结论。

  (2)学生根据讨论结果汇报。

  预设

  生1:摸出红球的可能性最大,因为盒子里红球的数量最多。

  生2:摸出绿球的可能性最小,因为盒子里绿球的数量最少。

  (3)提问:现在老师想让摸出绿球的可能性变大些,摸出红球的可能性变小些,你有哪些办法呢?

可能性教案 篇9

  教学目标:

  1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,体会统计是研究、解决问题的方法之一。

  2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。

  3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

  教学重、难点:

  经历实验的具体过程,从中体验某些事件发生的可能性的大小,体验某些事件发生的可能性是相等的。体会等可能性的特点:单次试验的偶然性和大量实验的必然性。

  教学准备:多媒体课件、摸球统计表、摸球用具

  教学过程:

  一、复习导入

  师:我们在二年级的时候已经学过了一些关于《统计与可能性》的知识,请看(出示既有黄球又有白球的袋子)。

  在这个袋子中任意摸一个球,结果会怎样?(引导用“可能”描述)

  (拿走白球)现在在这个袋子中任意摸一个球,结果会怎样?(引导用“一定”、“不可能”描述)

  今天我们要进一步学习关于《统计与可能性》的知识。

  二、新授探索

  (一)体会数量不同时,可能性的大小

  1、1个白球7个黄球

  师:首先,我们将进行摸球比赛,请看规则(请一名学生读出规则)。

  规则:1、袋子中装有白球和黄球共8个,每人每次从袋中任意摸1个球,摸完后把球放回口袋摇一摇继续摸。2、每人摸2次,摸到白球算男生赢,摸到黄球算女生赢。3、最终如摸到白球的次数大于黄球的'次数,男生获胜;黄球的次数大于白球的次数,女生获胜。

  待会老师要请3名男同学和3名女同学上来摸球比赛,还要请一位记录员上来记录摸球情况。在比赛前,老师有一个问题,如请你做记录员,你用什么方法记录来记录?(打“√”,涂方块,写“正”字)

  今天我们来学习用写“正”字的方法进行统计,正字的一画表示一次,一个正字表示几次?(5次)我们一起来数一数。

  教师板书“正”字,全班一起数。

  请一名记录员。

  请3名男生、3名女生交替排队,进行摸球。(袋中有7个黄球,1个白球)

  情况一:摸的中间有同学提出异议

  摸球中止

  师:我发现有的小朋友有意见,请问你有什么问题吗?(不公平,袋中黄球多)

  展示袋中的球。

  师:果然黄球多,白球少,看来这样的比赛不公平。

  情况二:摸球结束后,学生没有异议

  展示袋中的球

  师:你们有什么想法?(可能袋子里黄球多白球少)

  2、3个白球5个黄球

  看来这样的比赛不公平。我们再来一次比赛,请3个男同学3个女同学,一个记录员。

  学生可能还是会说不公平。

  提问:为什么你认为不公平?

  小结:袋中黄球多,摸到的次数就多;白球少,摸到的次数就少。也就是说数量多,可能性大;数量少,可能性就小。

  (板书:数量多,可能性大;数量少,可能性小)

  (二)体会数量相同时,可能性相等

  1、分组活动

  提问:既然大家觉得比赛不公平,那么规则中哪些地方不合理呢?

  你觉得应该怎样放球?(放4个黄球,4个白球)为什么?

  引出并板书:数量相同,可能性相等。

  师:白球和黄球的数量相等,是不是摸到的次数就一定相同呢?呆会我们来分组实验。