因式分解教案7篇
作为一位不辞辛劳的人民教师,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。教案应该怎么写才好呢?以下是小编收集整理的因式分解教案7篇,欢迎大家分享。
因式分解教案 篇1
教学设计思想:
本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的'因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
教学目标
知识与技能:
会用平方差公式对多项式进行因式分解;
会用完全平方公式对多项式进行因式分解;
能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;
提高全面地观察问题、分析问题和逆向思维的能力。
过程与方法:
经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。
情感态度价值观:
通过学习进一步理解数学知识间有着密切的联系。
教学重点和难点
重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式
关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。
因式分解教案 篇2
课型 复习课 教法 讲练结合
教学目标(知识、能力、教育)
1.了解分解因式的意义,会用提公因式法、 平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).
2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力
教学重点 掌握用提取公因式法、公式法分解因式
教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。
教学媒体 学案
教学过程
一:【 课前预习】
(一):【知识梳理】
1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.
2.分解困式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
⑵运用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步骤:
(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解.
(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:
提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等
(二):【课前练习】
1.下列各组多项式中没有公因式的是( )
A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3
C.mxmy与 nynx D.aba c与 abbc
2. 下列各题中,分解因式错误的是( )
3. 列多项式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三题用了 公式
二:【经典考题剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为1
③注意 ,
④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
2. 分解因式:(1) ;(2) ;(3)
分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。
3. 计算:(1)
(2)
分析:(1)此题先分解因式后约分,则余下首尾两数。
(2)分解后,便有规可循,再求1到20xx的.和。
4. 分解因式:(1) ;(2)
分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,
5. (1)在实数范围内分解因式: ;
(2)已知 、 、 是△ABC的三边,且满足 ,
求证:△ABC为等边三角形。
分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 ,
从已知给出的等式结构看出,应构造出三个完全平方式 ,
即可得证,将原式两边同乘以2即可。略证:
即△ABC为等边三角形。
三:【课后训练】
1. 若 是一个完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多项式 因式分解的结果是( )
A. B. C. D.
3. 如果二次三项式 可分解为 ,则 的 值为( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 计算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 满足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 观察下列等式:
想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。
10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程:
解:由 得:
①
②
即 ③
△ABC为Rt△。 ④
试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。
四:【课后小结】
布置作业 地纲
因式分解教案 篇3
教学目标:
1、进一步巩固因式分解的概念;
2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
教学重点:灵活运用因式分解解决问题
教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3
教学过程:
一、创设情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
(7)、2πR+2πr=2π(R+r)因式分解
2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。
分解因式要注意以下几点:
(1)。分解的对象必须是多项式。
(2)。分解的结果一定是几个整式的乘积的形式。
(3)。要分解到不能分解为止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、强化训练
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的.几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
试一试把下列各式因式分解:
(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例题讲解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知识应用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除?
五、拓展应用
1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。
五、课堂小结
今天你对因式分解又有哪些新的认识?
因式分解教案 篇4
教学目标
1.知识与技能
了解因式分解的意义,以及它与整式乘法的关系.
2.过程与方法
经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.
3.情感、态度与价值观
在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.
重、难点与关键
1.重点:了解因式分解的意义,感受其作用.
2.难点:整式乘法与因式分解之间的关系.
3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.
教学方法
采用“激趣导学”的教学方法.
教学过程
一、创设情境,激趣导入
【问题牵引】
请同学们探究下面的2个问题:
问题1:720能被哪些数整除?谈谈你的想法.
问题2:当a=102,b=98时,求a2-b2的值.
二、丰富联想,展示思维
探索:你会做下面的填空吗?
1.ma+mb+mc=( )( );
2.x2-4=( )( );
3.x2-2xy+y2=( )2.
【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.
三、小组活动,共同探究
【问题牵引】
(1)下列各式从左到右的变形是否为因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括号里,填上适当的项,使等式成立.
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、随堂练习,巩固深化
课本练习.
【探研时空】计算:993-99能被100整除吗?
五、课堂总结,发展潜能
由学生自己进行小结,教师提出如下纲目:
1.什么叫因式分解?
2.因式分解与整式运算有何区别?
六、布置作业,专题突破
选用补充作业.
板书设计
15.4.1 因式分解
1、因式分解 例:
练习:
15.4.2 提公因式法
教学目标
1.知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式.
2.过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.
3.情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.
重、难点与关键
1.重点:掌握用提公因式法把多项式分解因式.
2.难点:正确地确定多项式的最大公因式.
3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
教学方法
采用“启发式”教学方法.
教学过程
一、回顾交流,导入新知
【复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
问题:
1.多项式mn+mb中各项含有相同因式吗?
2.多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由.
【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.
二、小组合作,探究方法
【教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
三、范例学习,应用所学
【例1】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)23a2(y-x)+4b2(y-x)2]
=-(y-x)2 [3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)23a2(x-y)-4b2(x-y)2
=(x-y)2 [3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.
【教师活动】引导学生观察并分析怎样计算更为简便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的.应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本P167练习第1、2、3题.
【探研时空】
利用提公因式法计算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、课堂总结,发展潜能
1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.
2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.
六、布置作业,专题突破
课本P170习题15.4第1、4(1)、6题.
板书设计
15.4.2 提公因式法
1、提公因式法 例:
练习:
15.4.3 公式法(一)
教学目标
1.知识与技能
会应用平方差公式进行因式分解,发展学生推理能力.
2.过程与方法
经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.
3.情感、态度与价值观
培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.
重、难点与关键
1.重点:利用平方差公式分解因式.
2.难点:领会因式分解的解题步骤和分解因式的彻底性.
3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
教学方法
采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.
教学过程
一、观察探讨,体验新知
【问题牵引】
请同学们计算下列各式.
(1)(a+5)(a-5); (2)(4m+3n)(4m-3n).
【学生活动】动笔计算出上面的两道题,并踊跃上台板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.
1.分解因式:a2-25; 2.分解因式16m2-9n.
【学生活动】从逆向思维入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).
二、范例学习,应用所学
【例1】把下列各式分解因式:(投影显示或板书)
(1)x2-9y2; (2)16x4-y4;
(3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.
【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.
【学生活动】分四人小组,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
三、随堂练习,巩固深化
课本P168练习第1、2题.
【探研时空】
1.求证:当n是正整数时,n3-n的值一定是6的倍数.
2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.
四、课堂总结,发展潜能
运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
五、布置作业,专题突破
课本P171习题15.4第2、4(2)、11题.
板书设计
15.4.3 公式法(一)
1、平方差公式: 例:
a2-b2=(a+b)(a-b) 练习:
15.4.3 公式法(二)
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;
(3) x2-0.01y2.
因式分解教案 篇5
第6.4因式分解的简单应用
背景材料:
因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。
教材分析:
本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的经验。
教学目标:
1、在整除的情况下,会应用因式分解,进行多项式相除。
2、会应用因式分解解简单的一元二次方程。
3、体验数学问题中的矛盾转化思想。
4、培养观察和动手能力,自主探索与合作交流能力。
教学重点:
学会应用因式分解进行多项式除法和解简单一元二次方程。
教学难点:
应用因式分解解简单的一元二次方程。
设计理念:
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的'数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
教学过程:
一、创设情境,复习提问
1、将正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]
教师订正
提出问题:怎样计算(2 a2b-8a2b)÷(4a-b)
二、导入新课,探索新知
(先让学生思考上面所提出的问题,教师从旁启发)
师:如果出现竖式计算,教师可以给予肯定;可能出现(2 a2b-8a2b)÷(4a-b)= ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2 a2b-8a2b=2 ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(让学生自己比较哪种方法好)
利用上面的数学解题思路,同学们尝试计算
(4x2-9)÷(3-2x)
学生总结解题步骤:1、因式分解;2、约去公因式)
(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合, [运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]
练习计算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作学习
1、以四人为一组讨论下列问题
若A?B=0,下面两个结论对吗?
(1)A和B同时都为零,即A=0且B=0
(2)A和B至少有一个为零即A=0或B=0
[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]
2、你能用上面的结论解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解为x=-3/2或x=3/2
解:x(2x+1)=0
则x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]
3、练习,解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小结
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
设计理念:
根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
因式分解教案 篇6
教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的`,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)
因式分解教案 篇7
教学目标:
1、进一步巩固因式分解的概念; 2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解 4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
教学重点:灵活运用因式分解解决问题
教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3
教学过程:
一、创设情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法
(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解
(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解
(7).2πR+2πr=2π(R+r) 因式分解
2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程.
分解因式要注意以下几点: (1).分解的对象必须是多项式.
(2).分解的结果一定是几个整式的乘积的形式. (3).要分解到不能分解为止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的.概念;公因式的求法
公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2
4、强化训练
试一试把下列各式因式分解:
(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)
三、例题讲解
例1、分解因式
(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)
(3) (4)y2+y+例2、分解因式
1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=
4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3
三、知识应用
1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除吗?还能被哪些整数整除?
四、拓展应用
1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
五、课堂小结:今天你对因式分解又有哪些新的认识?
【因式分解教案】相关文章:
因式分解教案04-02
因式分解复习教案09-06
精选因式分解教案3篇02-07
因式分解教案15篇04-26
精选因式分解教案四篇03-03
因式分解教案五篇01-23
因式分解教案四篇01-20
精选因式分解教案4篇02-06
【精选】因式分解教案三篇02-17
因式分解教案三篇02-04