相交线教案
作为一无名无私奉献的教育工作者,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么问题来了,教案应该怎么写?以下是小编为大家整理的相交线教案,欢迎大家分享。
相交线教案1
知识目标:
1.了解两条直线互相垂直的概念;
2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线,
数学教案-相交线。
能力目标
培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。
德育目标
培养学生辩证唯物主义思想及不断发现,探索新知识的精神。
情感目标
通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。
重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线
教具:多媒体、投影仪、自制的可旋转的两根木条等
[学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要求和各种教学原则,以及本节的教材内容与学生的实际确定的。]
互究策略:(教学流程)
一、背景
1.[生活背景]旗杆与旗台边缘线的垂直关系;红十字会标志;
2.[知识背景]两条直线相交,产生两对对顶角,且对顶角相等。
二、师生互究
1.创设问题情境
师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?[教师用多媒体或投影仪展示]
[学生众说纷纭,教师应给予充分的肯定]
师:图甲是两条直线相交的`一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……
师:让我们共同探索图甲这种特殊情况。
[借助于教具,模型,实物,图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认识方式]
2.回顾再现:对顶角相等
两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC
1. 提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。
[教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。]
师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2)[同时演示教具] 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?
生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)[这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。]
3. 提升:[教师引导学生归纳]两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。
师:ⅰ)如图(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O,“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。
ⅱ)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°
[实现数学的三大语言:文字语言,符号语言,几何语言之间的切换,并板书以突出其重要性]
4.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;生:……
[希望实现将数学知识在实际生活中的运用,并为后继数学知识增加感性认知]
师:请同学们用三角尺或量角器:
ⅰ)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?
ⅱ)设这一点在直线AB上,重作上述过程。
[学生分组或独立探索,教师巡视指导]
[教师引导学生归纳结论]:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
[通过学生动手操作画图,教师在巡视中及时指出、纠正学生发生的错误,训练学生以严谨的科学态度研究问题、解决问题。
师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义
[学生讨论交流,教师巡视] 师:[引导归纳]
a)、靠已知直线——找待过定点——画已知直线的垂线(一靠、二过、三垂直)。
b)、有一条并且只有一条没有第二条。
师:请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。
[探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生动手操作能力的培养,同时也培养了学生的合作意识和竞争意识,使学生更深入理解垂直、垂线的概念。]
5.学生探索:[学生分小组测量,讨论,归纳]如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?[抽小组代表发言]
6.教师:[总结归纳]只有线段AB最短,且当AB与DC垂直时,才最短。
[教师引导学生得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,]
提高为:线段AB的长度就是点A到直线DC的距离。
思考:点A到直线DC的距离与点A到点C的距离有什么区别?
点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。
[从生活实际,从学生感兴趣,熟悉的问题引导学生发现垂线的第二个性质,提高学生学数学的兴趣,并适当体现学数学——用数学——发现数学的思想。]
三、较量应用:[使学生在相互竞争中,实践应用本节课的知识,分享获取成功的喜悦,并促进学生积极向上的心理品质]
⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。
⑵、教材P170 做一做⑶、体育课上怎样测量跳远成绩。
[学以致用,学生做个小小设计师,兴趣盎然,把这节课引入高潮。]
四、分享:
a) 两条直线互相垂直的概念;
b) 如何过已知直线上或已知直线外的一点作唯一的垂线。
五、探索:① P174 1 、 2
③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。
相交线教案2
一、教学目标
1、经历观察、推理、交流等过程,进一步发展空间观念和推理能力;
2、了解邻补角和对顶角的概念,掌握邻补角、对顶角的性质;
3、培养学生解决实际问题的能力。
二、教学重点与难点
重点:对顶角相等的探索过程。
难点:学生推理能力和表达能力的培养。
三、教学准备
学生:三角尺、量角器。
教师:多媒体课件、剪刀。
四、教学设计(教学过程)
1、情景引入(多媒体投影汕头大桥的图片)
同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案,这些都给我们以相交线、平行线的形象。两条直线相交能形成哪些角?这些角又有什么特征?这就是我们今天这堂课要研究的内容:5.1.1相交线(板书)。
设计意图说明:通过学生熟悉的事物,直观形象地给出了生活中的平行线和相交线,激发了学生的学习兴趣。
2、探究新知
(1)教师动手操作:用剪刀剪开布片。在这个过程中握紧把手时,随着把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。如果把剪刀的构造看成两条相交的直线,这就关系到两条相交直线所成的角的问题。
(2)取两根木条a、b,将它们钉在一起,并把它们想像成两条直线,就得到一个相交线模型。如图1所示。在七年级上册中我们已经知道∠1与∠2的和等于180°,所以∠1与∠2互补,再仔细观察,这时的∠1与∠2有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角不仅互补,而且互为邻补角。
设计意图说明:用现实生活中的例子引出两条直线相交所成的角的问题,自然而贴切。
这样安排既可以复习七年级上册中互补的知识,又为学习本堂课的新知识做了铺垫。
3、谈论交流
(1)让学生讨论教科书中第4页的“讨论”。讨论时所给的表格可以逐步呈现,先结合两条直线相交的图形,找出其中所成的角,寻找各对角的位置关系。
(2)讨论不同的角的位置关系,得出对顶角的定义,并提醒学生注意:①是两条直线相交而得;②有一个公共顶点;③没有公共边,三个条件缺一不可。
(3)对顶角的大小有什么关系?讨论后得出对顶角的性质:对顶角相等。
设计意图说明:
教师放手让学生通过讨论解决问题,培养了学生的动手能力,提高了合作意识。
教师要鼓励学生运用自己的语言有条理的表达自己的观点,并说明理由。
“对顶角相等”这句话,学生很好理解,只是不知怎么阐述理由,教师可引导学生用“同角的补角相等”得出对顶角的性质。
4、初步应用
(1)教科书第5页的例题。
(2)练习(补充)
①下列说法正确的是()
A、有公共顶点的两个角是对顶角
B、相等的两角是对顶角
C、有公共顶点并且相等的.角是对顶角
D、两条直线相交成的四个角中,有公共顶点且没有公共边的两个角是对顶角
②已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3=?
③如图2:直线a、b、c两两相交,∠1=60°,∠2=∠4,∠3=,∠5=?
设计意图说明:学生叙述,教师板书。补充练习的目的是为了使学生加深对知识的理解,参考答案:①D②180°③120°、90°
5、小结提高
可以采用师生问答的方式或先让学生归纳、补充,然后教师补充的方式进行,主要围绕下列问题:
(1)本节课我们学了什么知识?
(2)你有什么收获?
设计意图说明:发挥学生的主体意识,培养学生的归纳能力。
6、布置作业
(1)必做题:教科书第9页习题5.1第1、2、7题。
(2)选做题:
设计意图说明:学生可以根据自己的不同水平选择不同的作业。
①如图3:直线AB与CD相交于点O,已知∠AOC+∠BOD=90°,则∠BOC=?
②已知两条直线相交而成的四个角,其中的一个角为50°,求其余三个角的度数。
③如图4:AB⊥CD于点O,直线EF过点O,若∠AOE=65°,求∠DOF的度数。
选做题参考答案:①135°②130°,50°,130°③25°
(3)备选题:
①如图5:OA⊥OC,OB⊥OD,∠1=55°,求∠2,∠3的度数。
②两条直线交于一点,有几对对顶角?
三条直线交于一点,有几对对顶角?
四条直线交于一点,有几对对顶角?
X条直线交于一点,有几对对顶角?
备选题参考答案:①35°,35°②21=2(对)32=6(对)
43=2(对)x(x-1)=(x2-x)(对)
五、设计思想
本课设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以启发探究式教学为主导,以学生熟悉的桥梁两端斜拉的平行线和侧面的相交线等实景引入课题,增加了学生的学习兴趣。
教师应发扬教学民主,成为学生数学活动的组织者、引导者和合作者。通过多媒体教学辅助手段,引导学生在活动中观察,启发学生用比较直观的语言来叙述邻补角和对顶角的概念,充分体现“数学教学主要是数学活动的教学”这一教育精神。
组织好小组合作学习,加强师生之间的互动,培养学生在独立思考问题的基础上,能够尊重与理解他人的意见,并培养与他人合作的能力。
相交线教案3
教学建议
1.知识结构
2.重点和难点分析
(1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.
(2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.
3.教法建议
(1)因为本节是由相交线的模型——用钉子固定的两根木条来引入的.所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.
(2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的`角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.
(3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解对顶角和邻补角的概念,能在图形中辨认.
2.掌握对顶角相等的性质和它的推证过程.
3.会用对顶角的性质进行有关的推理和计算.
(二)能力训练点
1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.
2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.
(三)德育渗透点
从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.
(四)美育渗透点
通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.
二、学法引导
1.教师教法:教具直观演示法启发引导、尝试研讨.
2.学生学法:动手动脑、积极参与、认真研讨、学会概括.
三、重点、难点及解决办法
(一)重点
(二)难点
在较复杂的图形中准确辨认对顶角和邻补角.
(三)疑点
对顶角、邻补角的图形识别.
(四)解决办法
强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.
六、师生互动活动设计
1.通过实例创设情境,引导学生进入课题.
2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.
3.通过学生研讨、练习巩固完成性质的讲解.
4.通过学生总结完成课堂小结.
5.通过随堂练习,检测学生学习情况.
相交线教案4
学习目标:
1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3、通过辨别对顶角与邻补角,培养识图的能力。
学习重点:邻补角和对顶角的'概念及对顶角相等的性质。
学习难点:在较复杂的图形中准确辨认对顶角和邻补角。
学具准备:剪刀、量角器
学习过程:
一、学前准备
1、预习疑难:。
2、填空:①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。②同角或的补角。
二、探索与思考
(一)邻补角、对顶角
1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。
相交线教案5
相交线
课型:新授课 备课人:徐新齐 审核人:霍红超
学习目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质的探索.
教学过程
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的'一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
二、自学指导
观察剪刀剪布的过程,引入两条相交直线所成的角
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
三、 问题导学
认识邻补角和对顶角,探索对顶角性质
(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.
(3).概括形成邻补角、对顶角概念.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
四、典题训练
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
2.:判断下列图中是否存在对顶角.
小结
相交线教案6
教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.
2.掌握对顶角相等的性质和它的推证过程.
3。通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.
教学反思
教学过程
一、创设情境,引入课题
先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的`.
教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.
二、探究新知,讲授新课
1.对顶角和邻补角的概念
学生活动:观察上图,同桌讨论,教师统一学生观点并板书.
【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.
学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:
(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.
(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质
提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等).
注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.
或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).
学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等).三、范例学习
学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.
变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9四、课堂小结
学生活动:表格中的结论均由学生自己口答填出.
五、布置作业:课本P3练习
相交线教案7
学习目标:
知识目标
了解两条直线互相垂直的概念;
2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
能力目标
培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。
德育目标
培养学生辩证唯物主义思想及不断发现,探索新知识的精神。
情感目标
通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。
重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线
教具:多媒体、投影仪、自制的可旋转的两根木条等
互究策略:(教学流程)
一、背景1.旗杆与旗台边缘线的垂直关系;红十字会标志;
2.两条直线相交,产生两对对顶角,且对顶角相等。
二、师生互究1.创设问题情境
师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?
师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……
师:让我们共同探索图甲这种特殊情况。
2.回顾再现:对顶角相等
两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC
1. 提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。
师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2) 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?
生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)
2. 提升:两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。
师:ⅰ)如图(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O。“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。
ⅱ)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°
5.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;生:……
师:请同学们用三角尺或量角器:
ⅰ)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?
ⅱ)设这一点在直线AB上,重作上述过程。
:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义
师:
a)、靠已知直线——找待过定点——画已知直线的垂线(一靠、二过、三垂直)。
b)、有一条并且只有一条没有第二条。
师:如图(5)请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。
6.学生探索:如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?
7.教师:只有线段AB最短,且当AB与DC垂直时,才最短。
提高为:线段AB的长度就是点A到直线DC的距离。
思考:点A到直线DC的距离与点A到点C的距离有什么区别?
点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的'垂线的垂足;点A到点C的距离:两点之间线段的长度。
三、较量1.P170 1 、 2 、 3 2.应用:
⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。
⑵、教材P170 做一做⑶、体育课上怎样测量跳远成绩。
图(7)
脚印
脚印
四、分享:
a) 两条直线互相垂直的概念;
b) 如何过已知直线上或已知直线外的一点作唯一的垂线。
五、探索:① P174 1 、 2
③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。
【相交线教案】相关文章:
相交线教案03-09
相交线说课稿01-09
《相交线》说课稿09-22
数学教案相交线、对顶角12-30
相交线教学反思03-12
《相交线》教学反思03-12
相交线与平行线教学反思03-09
《相交线》说课稿 8篇12-16
初中数学《相交线》说课稿02-15