当前位置:育文网>教学文档>教案> 圆的面积教案

圆的面积教案

时间:2022-02-17 13:50:05 教案

圆的面积教案合集8篇

  作为一位无私奉献的人民教师,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那要怎么写好教案呢?以下是小编收集整理的圆的面积教案8篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

圆的面积教案合集8篇

圆的面积教案 篇1

  小学数学第十一册第四单元圆练习题

  一、填空。

  (1) 写出下面各题的最简整数比。

  ①圆的半径和直径的比是( ),圆的周长和直径的比是( )。

  ②小圆的半径是4厘米,大圆的半径是6厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比是( ),小圆面积和大圆面积的比是( )。

  (2)把圆分成若干等份,然后把它剪开,可以拼成一个近似于长方形的图形,这个长方形的长相当于圆的( ),长方形的宽相当于圆的( )。

  (3)圆的周长是37.68分米,它的面积是( )平方分米。

  (4)圆的半径扩大3倍,它的面积就扩大()。

  (5)一个圆的周长、直径和半径相加的和是9.28厘米,这个圆的直径是()厘米;面积是()。

  (6)在一个边长为12厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。

  (7)要在底面半径是10厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。

  (8)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。

  7、用一根长12.56厘米的铁丝围成一个正方形,正方形的面积是()平方厘米;如果用这根铁丝围成一个圆,这个圆的面积是()平方厘米。

  二、判断题。正确的画“√”,错的打“×”,并订正。

  (1)在一个圆里,两端都在圆上的线段叫做圆的直径。( )

  (2)小圆半径是大圆半径的12 ,那么小圆周长也是大圆周长的12 。( )

  (3)小圆半径是大圆半径的12 ,那么小圆面积也是大圆面积的12 。( )

  (4)半圆的周长就是这个圆周长的一半。( )

  (5)求圆的周长,用字母表示就是C=πd或C=2πr。( )

  三、选择题。将正确答案的序号填在括号里。(8%)

  (1)画圆时,固定的一点叫()。

  ① 顶点② 圆心 ③ 字母O

  (2)从圆心到圆上任意一点的()叫做半径。

  ① 直线② 射线 ③ 线段

  (3)周长相等的图形中,面积最大的是()。

  ① 圆 ②正方形③长方形

  (4)圆周率表示()

  ① 圆的周长②圆的面积与直径的倍数关系 ③圆的周长与直径的倍数关系

  (5)半径为r的圆面积等于()。

  ① πr2 ② 2πr2 ③πd

  (6)圆的直径长度决定圆的()。

  ① 位置② 大小 ③ 形状

  (7)圆的半径扩大3倍,它的面积就扩大()。

  ① 3倍 ② 6倍 ③ 9倍

  (8)已知圆的周长是106.76分米,圆的半径是()。

  ① 17分米②8.5分米 ③ 34分米

  四、应用题。

  (1)一个大厅里挂有一只大钟,它的分针长40厘米。这根分针的针尖1天转动多少厘米?

  (2)一个大厅里挂有一只大钟,它的时针长35厘米。这根时针的针尖1天转动多少厘米?

  (3)小明骑的自行车车轮直径是70厘米,每分钟转100周,从家到学校有1300米,小明大约要骑几分钟?(得数保留整数)

  (4)一个农民新开挖一个圆形水池,水池的周长是50.24米,求水池占地的面积是多少平方米?

  (5)一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的'圆。剩下的面积是多少平方厘米?

  (6)一个环形铁片,内圆半径是8厘米,外圆半径是10厘米,这个环形铁片的面积是多少?

  (7)公园里有一个圆形花坛,周长50.24米,在它的周围有一条宽1米的小路,小路的面积是多少平方米?

  (8)学校操场(如左图,单位:米),操场的周长是多少米?面积是多少平方米?

  小学数学六年级(上册)圆测试题 (上)

  一、填空

  1、( )决定圆的大小,( )决定圆的位置。

  2、圆是( )图形,它有( )条对称轴,( )是圆的对称轴,

  3、( )是圆中最长的线段。

  4、一个圆周长扩大4倍,半径扩大( )倍,直径扩大()倍,面积扩大()倍。

  5、大圆的半径等于小圆的直径,那么大圆的面积是小圆面积的( )倍。

  6、圆的周长公式是( )或( ),圆的面积公式是( ),半圆形的周长公式( ),圆周长的一半公式是( )

  7、周长相等的长方形,正方形,圆。( )的面积最大,()的面积最小。

  8、π,3.14,3.1414,0.314,31.4,从小到大排列是()。

  9、圆的周长总是直径()倍,是半径的( )倍。

  10、画出一个圆的周长是18.84厘米,那么圆规两脚间的距离是( )。

  11、在同一个圆里,直径和半径的关系用字母表示是()。

  12、一个半圆,半径是r,它的周长是( )。

  二、判断

  1、直径是半径的2倍。

  2、两端都在圆上的线段,叫半径。

  3、半径是2厘米的圆周长和面积相等。

  4、将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。

  5、如果圆的直径是d,它的面积是 πd2 。

  6、圆周率就是3.14

  7、半圆形的周长就是圆周长的一半。

  8、直径是圆的对称轴。

  9、一个圆的面积和一个正方形的面积相等,它们的周长也相等

  10、半圆形的面积就是圆面积的一半

  三、应用

  1、 一个圆形水池,直径是20米,在水池周围围一圈栅栏,再在水池外围修一条宽4米的环形小路。

  (1)、栅栏的长度是多少?

  (2)、这条小路的面积是多少?

  2、 一根12.96 米的绳子,绕树10圈还长0.4米,树干横截面的面积是多少?

  3、一辆自行车轮胎外直径是80厘米,如果平均每分钟转动200圈,它要通过一座长1500米的桥,大约需要多少分钟?(得数保留整数)

  4、一张长方形纸片,长4厘米,宽2厘米,要用它剪一个最大的半圆,这个半圆面积是多少,周长是多少,剩下的纸片的周长是多少?面积是多少?

  5、 一个圆的周长是6280米,半径增加1厘米,面积增加了多少平米?

  6、 一只挂钟的时针长8厘米,针尖一昼夜走过的路程是多少厘米?

  7、 一只挂钟的分针长8厘米,针尖一昼夜走过的路程是多少厘米?扫过的面积是多少?

  8、 一只挂钟的分针长8厘米,经过15分钟分针走过的路程是多少?扫过的面积是多少?

  9、 一只挂钟的分针长8厘米,从2时到5时,分针尖端走过的路程是多少?

  10一个半圆的周长是10.28厘米,这个半圆的半径是多少,面积是多少?

  11、 一台压路机前轮直径是10分米,长是15分米,这台压路机的前轮滚动一圈,压过的路长是多少?压过路面的面积是多少米?

  12、一座圆形游泳池,刘星沿着游泳池走了一圈,一共是628步,他每步的长约是0.6米。这个游泳池占地面积是多少?

圆的面积教案 篇2

  教学目标:

  1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

  2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

  教学难点:

  应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  教学准备:

  圆规,环形图片,教学情境图。

  教学过程:

  一、创设情境,引入新知

  1.出示自然界中的一些环形图片。

  (l)观察图片,说说这些图形都是由什么组成的。

  (2)你能举出一些环形的实例吗?

  2.引入:今天这节课我们就一起来研究环形面积的计算方法。

  二、合作交流,探究新知

  1.教学例11。

  (1)出示例11题目,读题。

  (2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

  (3)小组讨论,理清解题思路。

  (4)集体交流

  ①求出外圆的面积。

  ②求出内圆的面积。

  ③计算圆环的面积。

  (5)学生按步骤独立计算。

  (6)组织交流解题方法,教师板书

  ①求出外圆的面积:3.14102 =314(平方厘米)

  ②求出内圆的面积:3.1462 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  (7)提问:有更简便的计算方法吗?

  (8)学生回答后,小结:求圆环的面积一般是把外圆的`面积减去内圆的面积

  还可以利用乘法分配率进行简便计并。

  简便计算

  3.14102-3.1462

  =3.14(102-62)

  =3.1464

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

  2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

圆的面积教案 篇3

  教学内容:

  圆的面积。

  教学目标:

  1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

  3. 渗透转化的数学思想和极限思想。

  教学重点:

  正确计算圆的面积。

  教学难点:

  圆面积公式的推导。

  学情分析:

  本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

  学法指导:

  教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

  教具准备:

  多媒体课件,圆片。

  学具准备:

  把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

  教学设计:

  一、复习旧知,导入新课

  1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

  2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

  3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

  提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

  这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

  二、动手操作,探索新知

  1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

  2. 推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr × r S=πr2 师小结公式

  S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  3. 利用公式计算。

  (1)用新的'方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

  (2)出示例3,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成第95页做一做的第1题。

  (4)看书质疑。

  三、运用新知,解决问题

  1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

  2. 测量一个圆形实物的直径,计算它的周长及面积。

  3. 课件演示

  用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、布置作业

  1. 第97页的第3题和第4题。

  2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

  板书设计:

  圆的面积

  长方形的面积= 长× 宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

圆的面积教案 篇4

  【教学内容】

  北师大版小学数学第十一册第一单元P16--18圆的面积

  【教学目标】

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会化曲为直的思想,初步感受极限思想。

  【教学重点】

  能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  【教具准备】

  投影仪,CAI课件,等分好的圆形纸片。

  【学具准备】

  等分好的圆形纸片。

  【教学设计】

  【教学过程】

  【教学过程说明】

  一、 创设情境。提出问题

  (投影出示P16中草坪喷水插图)

  师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察并讨论,然后指名回答。

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;

  生3:我补充一点,这个圆形的中心就是喷头所在的地方。

  师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、探究思考。解决问题

  1、估计圆面积大小

  师:请大家估计半径为5米的圆面积大约是多大?

  (让同学们充分发挥自己感官,估计草坪面积大小)

  2、用数方格的方法求圆面积大小

  ①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  生1、我是根据圆里面的正方形来估计的,外面

  方格图面积为1010=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50--100平方米之间;

  生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

  生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r2r=4r2

  而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是rr2=1/2r2,;那么四个三角形的面积即是41/2r2=2r2,那么圆形面积大约为3r2,

  师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  三、探索规律

  1、由旧知引入新知

  师:大家还记得我们以前学习的平行四边形、三角形、

  梯形面积分别是由哪些图形的'面积来的吗?

  (学生回答,教师订正。

  那么圆形的面积可由什么图形面积得来呢。

  2、探索圆面积公式

  师:拿出我们剪好的图形拼一拼,看看能成为一个什

  么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

  生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。

  师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?

  生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。

  (学生在说的同时教师注意板书)

  师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?

  生:等分为32份的更接近长方形。

  师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?

  生:等分的份数越多,就越接近长方形。

  师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

  生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底高,那么圆形面积公式=圆周长的1/2半径即可。

  生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。

  师:用字母怎么表示圆面积公式呢?

  生:S=RR

  生:还可以写作S=R2

  师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

  3、应用圆面积公式

  师:现在请大家用圆面积公式计算喷水头转动一周可

  以浇灌多大面积的农田。

  (学生独立解答,知名回答)

  四、应用圆面积公式解决实际问题

  1、P18,NO1

  学生独立解答,集体订正的时候要求学生说出每一步

  计算过程和依据。

  2、P18,NO2

  让学生理解题意后,鼓励学生在头脑中想象,猜一猜

  结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。

  五、小结

  师:谁能用自己的话说说圆面积的推导过程。

圆的面积教案 篇5

  一、复习导入

  1.课件出示圆:关于圆这个图形,你已经了解了一些什么?

  学生口答。

  2.那么你还想学习关于圆的哪些知识呢?(课件显示什么是圆的面积)

  二、教学例7

  1.初步猜想:猜一猜圆的面积可能与什么有关?

  2.实验验证:圆的面积与半径或直径究竟有着怎样的关系呢?我们可以来做个实验。

  (1)教师逐步出示例题中的第一幅图:先出示正方形,再以。正方形的边长为半径画一个圆。

  提问:①图中正方形的面积与圆的半径有什么关系?②猜一猜,圆的面积大约是正方形的几倍?(引导学生观察得出圆的面积小于正方形的4倍,有可能是3倍多一些,并让学生适当说明自己的想法。)

  出示方格图后指出:可以用数方格的方法再来验证刚才的猜想。

  提问:想一想,我们怎样去数方格?学生交流时注意引导:①先数出1/4个圆的面积;②特别接近满格的可以看作满格,其余不满一格的可以凑成一满格。

  在学生数出后,让学生用计算器算一算,这个圆的面积大约是正方形面积的几倍,并将结果记录下来。

  (2)指出:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。

  让学生观察例题中的下面两幅图,计算并填写图下的表格。

  3.交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?

  学生交流中相机总结:(1)圆的面积是它的半径平方的3倍多一些。(2)圆的面积可能是半径·平方的丌倍。

  三、教学例8

  1.谈话导人:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。

  2.操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成16份的圆,仿照教师的拼法拼一拼。

  提问:拼成的图形像个什么图形?

  追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直)

  3.初步想像:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?用实物或投影演示,验证或修正学生的想像。

  4.进一步想像:如果将圆平均分成64份、128份……也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

  交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。

  5.推导公式。

  (1)拼成的长方形与原来的圆有什么联系?在小组里讨论交流。

  交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。

  追问:如果圆的半径是厂,长方形的长和宽各应怎样表示?(重点引导学生理解c/2=2πr/2=πr)

  (2)根据长方形面积的计算方法,怎样来计算圆的面积?

  根据学生的回答,完成形如教科书第105页上的板书,并得出公式:S=πr。

  追问:①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?②有了这样一个公式,知道圆的.什么条件,就可以计算圆的面积了?

  6.做“练一练”。

  核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。

  四、教学例9

  1.谈话导人:在日常生活中,经常会遇到与圆面积计算有关的实际问题:

  2.出示例9。学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。

  3.学生独立列式解答,并组织交流。

  五、做练习十九的第1题

  1.指名读题,并要求说说对题意的理解。

  2.学生独立尝试解答。

  3.反馈交流。对解答错误的学生帮助其分析错误的原因。

  六、全课小结

  今天这节课,你有什么收获? (重点引导关注:圆的面积公式是怎样的?我们是怎样推导出圆的面积公式的?解决实际问题时,根据圆的半径和直径,分别怎样求圆的面积?等等。

圆的面积教案 篇6

  第一课时

  教学内容

  圆的面积

  教材第67、第68页的内容。

  教学要求

  1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。

  2.培养学生运用转化的思想解决问题的能力。

  重点难点

  重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

  难点:理解圆的面积公式的推导过程。

  教具学具

  实物投影,各种图形的纸片。

  教学过程

  一导入

  1.我们学过哪些平面图形的面积公式?

  2.长方形、平行四边形和三角形的面积公式分别是什么?

  3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。

  二教学实施

  1.明确圆的面积的'概念。

  (1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?

  学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。

  (2)圆的大小是由什么决定的?

  (3)展示由“曲”变“直”的渐变图。

  引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。

  2.学生动手操作,推导圆的面积公式。

  为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,

  (1)指导学生动手摆学具,并思考几个问题:

  你摆的是什么图形?

  你摆的图形的面积与圆的面积有什么关系?

  所摆图形的各部分相当于圆的什么?

  你如何推导出圆的面积?

  (2)学生动手摆学具,然后发言。

  拼成长方形:

  老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。

  出示教材第67页上面的图加以说明。

  拼成的近似长方形的长和宽与圆的各部分有什么关系?

  从图中可以看出圆的半径是r,长方形的长是πr,宽是r。

  长方形的面积=长×宽

  ↓ ↓↓

  圆的面积=πr×r=πr2

  如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。

  3.利用公式计算圆的面积。

  出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?

  指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。

  板书:20÷2=10(m)

  3.14×102

  =3.14×100

  =314(m2)

  314×8=2512(元)

  答:铺满草坪需要2512元。

  老师强调指出:列出算式后,要先算平方,再与π相乘。

  三课堂作业新设计

  1.直接写出得数。

  22= 32= 42= 52= 62= 72=

  82= 92= 102= 0.22=0.72= 0.92=

  2.求下面各圆的面积。

  3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?

  4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?

  四思维训练

  计算阴影部分的面积。(单位:分米)参考答案

  课堂作业新设计

  1.491625364964811000.040.490.81

  2.12.56平方分米28.26平方分米1256平方厘米28.26平方米

  3.28.26平方分米

  4.1.1304平方米

  思维训练

  3.44平方分米

  板书设计

  圆的面积

  长方形的面积=长×宽

  ↓ ↓↓

  圆的面积=πr×r=πr2

  20÷2=10(m)

  3.14×102

  =3.14×100

  =314(m2)

  314×8=2512(元)

  答:铺满草坪需要2512元。

  备课参考教材与学情分析

  本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  课堂设计说明

  1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。

  2.教学时,强调知识迁移的过程。

  平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。

  3.组织学生观察猜想。

  先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。

圆的面积教案 篇7

  教学内容:圆的面积第67—68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

  教学目标:

  ⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

  ⒊渗透转化的数学思想。

  教学重点:圆面积的含义。圆面积的推导过程。

  教学难点:圆面积的推导过程。

  教学过程:

  一、复习。

  1、已知r,周长的一半怎样求?

  2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这

  些图形的面积计算公式。

  s=abs=a2s=ahs=ahs=(a+b)h

  二、新课。

  1、什么是圆的面积?(出示纸片圆让生摸一摸)

  圆所占平面大小叫做圆的面积。

  2、推导圆的面积公式。

  (1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

  若分的分数越多,这个图形越接近长方形。

  (1)找:找出拼出的图形与圆的周长和半径有什么关系?

  圆的半径=长方形的宽

  圆的周长的.一半=长方形的长

  长方形面积=长宽

  所以:圆的面积=圆的周长的一半圆的半径

  S=r

  S圆=r=r2

  3、你还能用其他方法推算出圆的面积公式吗?

  (1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。

  因为:三角形面积=底高

  圆面积=

  =rr

  =r2

  (2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,

  因为:平行四边形面积=底高

  圆面积=r

  =r8

  =r2

  还可以取3份、4份等,同学们可以一一推算。

  三、运用知识解决实际问题。

  1、例1一个圆的直径是20m,它的面积是多少平方米?

  已知:d=20厘米求:s=?

  r=d2202=10(m)

  s=Лr2

  3。14102

  =3。14100

  =314(平方厘米)

  2、根据下面所给的条件,求圆的面积。

  r=5cmd=0。8dm

  3、解答下列各题。

  (1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

  (2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

  四、作业。

  课本P70第1、5题。

圆的面积教案 篇8

  教学目标:

  1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

  2、理解圆的面积公式的推导过程,感受转化的数学思想。

  3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

  教学重难点:

  重点:理解和掌握圆面积的计算方法。

  难点:圆面积公式的推导。

  准备:圆形纸片

  一. 创设情境。

  S:同学们,请看这里?(展示课件动画)

  S:现在小马有一个问题:我的这个活动范围是一个什么形状? X:是圆形。(板书:圆)

  S:小马还有一个问题,我的活动范围占地多大?这个多大指的是圆

  的什么量呢?

  X:是圆的面积。

  S:对了,就是圆的面积,我们现在就来一起学习:圆的面积。(板书课题)

  二. 探索交流,学习新知。

  1. 出示电子课本。

  S:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的面积呢?你认为怎么做,大胆来说一说。

  X1:公式。

  X2:转化成学过的图形来计算。

  S:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的重点。)要转化成学过的图形,这个方法不错,那咱们来回想一下,咱们以前学过哪些图形的面积?(单击课件)

  X:长方形,正方形,三角形,平行四边形,梯形等等。

  (单击课件)

  S:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。 X:长方形,正方形,平行四边形。

  S:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的电子课本(电子课本)

  S读:在硬纸上画一个圆。。。。。大家附页1中的圆都准备好了

  吗?

  X:准备好了。

  S:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?

  X:(学生自由回答)

  S:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。

  (课件演示)

  2. 讲解课件。

  4份时S问:这个像是咱们以前学过的图形吗?

  X:不像。

  S:不像没关系,咱们继续分,再分成8份,这次呢?

  X:有点像平行四边形了。

  S:继续分。(演示到32份)

  S:这下更像一个平行四边形了,但是,这还没完,咱们来回顾一下刚才我们的拼图过程。(单击课件)

  S:咱们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的份数越来越多。。。。。最后,它会无限地接近一个什么形状呢? X:平行四边形。

  X:长方形。

  S:到底是长方形还是平行四边形。

  S:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?

  X:长方形。

  (板书:长方形)

  S:它不是真正的长方形,而是一个无限接近于长方形的`近似长方形。 正如课本68页最上面的这句话。

  3. 电子课本P68

  S:如果分的。。。。。。长方形。同时我们的小精灵又给我们提出了一个问题:拼成的。。。。。关系?

  S:请大家注意看我的课件演示。(讲解)

  板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =C*r 2

  =2π

  2r*r

  =πr*r

  2 =πr

  2即 S=πr

  S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?

  X:半径。

  S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?

  S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?

  X:半径。

  学生先做题,再用课件演示答案。

  三. 拓展练习。

  1. 回答(尽量不要动笔)。

  2. 计算(78.5 m2)

  S= πr2

  2 = 3.14×5

  = 3.14×5×5

  =3.14×25

  =78.5 (m2)

  四. 回顾总结。

  谁愿意和大家分享你的学习成果?(学生自己总结)

  老师补充:1.化圆为方。

  2. S= πr2

  3.计算圆面积的必要条件是什么(半径)

  板书:

  1. 化圆为方。