当前位置:育文网>教学文档>教案> 圆的面积教案

圆的面积教案

时间:2022-03-23 19:06:55 教案 我要投稿

圆的面积教案

  作为一名教职工,时常要开展教案准备工作,借助教案可以更好地组织教学活动。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的圆的面积教案,仅供参考,大家一起来看看吧。

圆的面积教案

圆的面积教案1

  第一单元圆的周长和面积

  一.本单元的基础知识

  本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。

  二.本单元的教学内容

  P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

  三.本单元的教学目标

  1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

  2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的.周长与面积。

  四.本单元重难点和关键

  1.教学重点:求圆的周长与面积。

  2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

  3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

  五.本单元的教学课时

  13课时

圆的面积教案2

  教学目标:

  1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2、能够利用公式进行简单的面积计算。

  3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学重难点:渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学过程

  一、尝试转化,推导公式

  1、确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

  师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2、尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

  请大家看屏幕(利用课件演示),老师先给大家一点提示。

  师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?

  师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?

  引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

  3、探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  预设:

  分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。

  师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的`长方形(课件演示,如图八)。

  4、推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?

  预设:

  根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。

  师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?

  预设:

  教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

  预设:

  老师根据学生的回答进行相关的板书。

  师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。

  二、运用公式,解决问题

  1、教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  预设:

  教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2、完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。

  订正。

  3、教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

  预设:

  教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

  交流,订正。

  三、课堂作业。

  教材第70页第2、3、4题。

  四、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  课后作业:完成数练第31页。

圆的面积教案3

  第六课时:

  组合图形的面积计算

  教学目标:

  1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

  2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

  教学难点:

  应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  教学准备:

  圆规,环形图片,教学情境图。

  一、创设情境,引入新知

  1.出示自然界中的一些环形图片。

  (l)观察图片,说说这些图形都是由什么组成的。

  (2)你能举出一些环形的实例吗?

  2.引入:今天这节课我们就一起来研究环形面积的`计算方法。

  二、合作交流,探究新知

  1.教学例11。

  (1)出示例11题目,读题。

  (2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

  (3)小组讨论,理清解题思路。

  (4)集体交流

  ①求出外圆的面积。

  ②求出内圆的面积。

  ③计算圆环的面积。

  (5)学生按步骤独立计算。

  (6)组织交流解题方法,教师板书

  ①求出外圆的面积:3.14×102 =314(平方厘米)

  ②求出内圆的面积:3.14×62 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  (7)提问:有更简便的计算方法吗?

  (8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

  还可以利用乘法分配率进行简便计并。

  简便计算

  3.14×102-3.14×62

  =3.14×(102-62)

  =3.14×64

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

  2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

  <<<12>>>

  学生回答后,教师板书

  或

  3.完成“试一试”。

  (1)出示题目和图形,学生读题。

  (2)提问:这个组合图形是由哪些基本图形组合而成的?

  (3)半圆和正方形有什么相关联的地方?

  学生交流后,明确:正方形的边长就是半圆的直径。

  (4)思考一下,半圆的面积该怎样计算?

  (5)学生独立计算。

  (6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0

  4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。

  三、巩固练习,加深理解

  1.完成“练一练”。

  (l)看图,弄清题意。

  (2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?

  (3)第一个图形中,两个基本图形有什么联系?第二个图形呢?

  明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。

  (4)学生独立计算。

  (5)集体交流。

  2.完成练习十五第9题。

  (1)学生先量出相关数据。

  (2)根据数据独立完成计算。

  (3)集体交流。

  3.完成练习十五第13题。

  (1)估计每种花卉所占圆形面积的几分之几。

  (2)计算每种花卉的种植面积。

  (3)集体交流。

  4.完成练习十五第14题。

  (1)学生根据图形做出直观的判断,并说说直观判断的方法。

  (2)通过计算检验所做出的判断。

  5.完成练习十五第15题。

  (1)学生读题,观察示意图。

  (2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么

  条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?

  (3)学生独立计算。

  (4)集体交流。

  6.思考题。

  (1)学生充分思考后再列式计算。

  (2)组织交流。

  四、课堂小结

  师:这节课学习了什么内容?你有什么启发?

  先由学生自主发言,然后教师补充完善。

  板书设计:

  ①求出外圆的面积:3.14×102 =314(平方厘米)

  ②求出内圆的面积:3.14×62 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  简便计算

  3.14×102-3.14×62

  =3.14×(102-62)

  =3.14×64

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

圆的面积教案4

  1、基础练习:计算下面各图形的周长和面积。只列式,不计算。(P128图略)

  2、火眼金睛。(判断对错)

  ①一个三角形,底6分米,高5分米,它的面积是30平方分米。()

  ②一个边长5米的正方形,它的面积是20平方米。()

  ③一个圆,直径是2厘米,它的面积是12.56平方厘米。()

  3、对号入座。

  ①边长是4米的正方形,()

  A周长面积;B周长面积;C周长=面积;D周长和面积无法比较

  ②一个平行四边形和一个三角形等底等高,已知平行四边形的'面积是25平方厘米,那么三角形面积是()平方厘米。

  A、5B、12.5C、25D、50

  4、走进生活。

  ①假如你家里要在一块边长2米的正方形木板上,剧一个最大的圆用来做饭桌面,请你算出这个圆面的面积并说出理由。

  ②设计比演,时间3分钟。现在请你来当小设计师,发挥你的设计才能,运用这几种平面图形对学校正门前的空地的布局进行重新规划设计,我们看看谁的设想既美观又合理。(注:设计时可以把图形进行组合)

  (1)小组在白纸上进行设计。汇报:用什么图形设计出了什么?

  (2)你准备怎样计算你设计中这些图形的周长和面积呢?

  七、全课小结。通过同学们的认真学习,大胆创新设计,我相信你们当中有很多同学会成为杰出的设计师。

  八、作业。把你的设计完成,并写出每个图形的周长和面积的计算。

  九、板书设计:(电脑演示)

  平面图形的周长和面积

  贴卡片ac=4a

  s=a2hbc=a+b+h

  aas=ah2

  b

  ac=2(a+b)

  c=2(a+b)s=ahac=a+b+c+d

  s=abcd

  bs=(a+b)h2

  c=2лr;s=лr2

  (联系转化应用)

圆的面积教案5

  小学数学第十一册第四单元圆练习题

  一、填空。

  (1) 写出下面各题的最简整数比。

  ①圆的半径和直径的比是( ),圆的周长和直径的比是( )。

  ②小圆的半径是4厘米,大圆的半径是6厘米。小圆直径和大圆直径的比是( ),小圆周长和大圆周长的比是( ),小圆面积和大圆面积的比是( )。

  (2)把圆分成若干等份,然后把它剪开,可以拼成一个近似于长方形的图形,这个长方形的长相当于圆的( ),长方形的宽相当于圆的( )。

  (3)圆的周长是37.68分米,它的面积是( )平方分米。

  (4)圆的半径扩大3倍,它的面积就扩大()。

  (5)一个圆的周长、直径和半径相加的和是9.28厘米,这个圆的直径是()厘米;面积是()。

  (6)在一个边长为12厘米的正方形纸板里剪出一个最大的圆,剩下的面积是( )。

  (7)要在底面半径是10厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝( )厘米。

  (8)用圆规画一个圆,如果圆规两脚之间的距离是6厘米,画出的这个圆的周长是( )厘米。这个圆的面积是( )平方厘米。

  7、用一根长12.56厘米的铁丝围成一个正方形,正方形的面积是()平方厘米;如果用这根铁丝围成一个圆,这个圆的面积是()平方厘米。

  二、判断题。正确的画“√”,错的打“×”,并订正。

  (1)在一个圆里,两端都在圆上的线段叫做圆的直径。( )

  (2)小圆半径是大圆半径的12 ,那么小圆周长也是大圆周长的12 。( )

  (3)小圆半径是大圆半径的12 ,那么小圆面积也是大圆面积的12 。( )

  (4)半圆的周长就是这个圆周长的一半。( )

  (5)求圆的周长,用字母表示就是C=πd或C=2πr。( )

  三、选择题。将正确答案的序号填在括号里。(8%)

  (1)画圆时,固定的一点叫()。

  ① 顶点② 圆心 ③ 字母O

  (2)从圆心到圆上任意一点的()叫做半径。

  ① 直线② 射线 ③ 线段

  (3)周长相等的图形中,面积最大的是()。

  ① 圆 ②正方形③长方形

  (4)圆周率表示()

  ① 圆的周长②圆的面积与直径的倍数关系 ③圆的周长与直径的倍数关系

  (5)半径为r的圆面积等于()。

  ① πr2 ② 2πr2 ③πd

  (6)圆的直径长度决定圆的()。

  ① 位置② 大小 ③ 形状

  (7)圆的半径扩大3倍,它的面积就扩大()。

  ① 3倍 ② 6倍 ③ 9倍

  (8)已知圆的周长是106.76分米,圆的半径是()。

  ① 17分米②8.5分米 ③ 34分米

  四、应用题。

  (1)一个大厅里挂有一只大钟,它的分针长40厘米。这根分针的针尖1天转动多少厘米?

  (2)一个大厅里挂有一只大钟,它的时针长35厘米。这根时针的针尖1天转动多少厘米?

  (3)小明骑的自行车车轮直径是70厘米,每分钟转100周,从家到学校有1300米,小明大约要骑几分钟?(得数保留整数)

  (4)一个农民新开挖一个圆形水池,水池的周长是50.24米,求水池占地的面积是多少平方米?

  (5)一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。剩下的面积是多少平方厘米?

  (6)一个环形铁片,内圆半径是8厘米,外圆半径是10厘米,这个环形铁片的面积是多少?

  (7)公园里有一个圆形花坛,周长50.24米,在它的周围有一条宽1米的小路,小路的面积是多少平方米?

  (8)学校操场(如左图,单位:米),操场的周长是多少米?面积是多少平方米?

  小学数学六年级(上册)圆测试题 (上)

  一、填空

  1、( )决定圆的大小,( )决定圆的位置。

  2、圆是( )图形,它有( )条对称轴,( )是圆的对称轴,

  3、( )是圆中最长的线段。

  4、一个圆周长扩大4倍,半径扩大( )倍,直径扩大()倍,面积扩大()倍。

  5、大圆的半径等于小圆的直径,那么大圆的面积是小圆面积的( )倍。

  6、圆的周长公式是( )或( ),圆的面积公式是( ),半圆形的周长公式( ),圆周长的一半公式是( )

  7、周长相等的长方形,正方形,圆。( )的面积最大,()的面积最小。

  8、π,3.14,3.1414,0.314,31.4,从小到大排列是()。

  9、圆的周长总是直径()倍,是半径的( )倍。

  10、画出一个圆的周长是18.84厘米,那么圆规两脚间的距离是( )。

  11、在同一个圆里,直径和半径的关系用字母表示是()。

  12、一个半圆,半径是r,它的周长是( )。

  二、判断

  1、直径是半径的2倍。

  2、两端都在圆上的线段,叫半径。

  3、半径是2厘米的圆周长和面积相等。

  4、将一个圆通过切拼,转化成一个长方形,面积和周长没有变化。

  5、如果圆的直径是d,它的面积是 πd2 。

  6、圆周率就是3.14

  7、半圆形的周长就是圆周长的一半。

  8、直径是圆的对称轴。

  9、一个圆的面积和一个正方形的面积相等,它们的.周长也相等

  10、半圆形的面积就是圆面积的一半

  三、应用

  1、 一个圆形水池,直径是20米,在水池周围围一圈栅栏,再在水池外围修一条宽4米的环形小路。

  (1)、栅栏的长度是多少?

  (2)、这条小路的面积是多少?

  2、 一根12.96 米的绳子,绕树10圈还长0.4米,树干横截面的面积是多少?

  3、一辆自行车轮胎外直径是80厘米,如果平均每分钟转动200圈,它要通过一座长1500米的桥,大约需要多少分钟?(得数保留整数)

  4、一张长方形纸片,长4厘米,宽2厘米,要用它剪一个最大的半圆,这个半圆面积是多少,周长是多少,剩下的纸片的周长是多少?面积是多少?

  5、 一个圆的周长是6280米,半径增加1厘米,面积增加了多少平米?

  6、 一只挂钟的时针长8厘米,针尖一昼夜走过的路程是多少厘米?

  7、 一只挂钟的分针长8厘米,针尖一昼夜走过的路程是多少厘米?扫过的面积是多少?

  8、 一只挂钟的分针长8厘米,经过15分钟分针走过的路程是多少?扫过的面积是多少?

  9、 一只挂钟的分针长8厘米,从2时到5时,分针尖端走过的路程是多少?

  10一个半圆的周长是10.28厘米,这个半圆的半径是多少,面积是多少?

  11、 一台压路机前轮直径是10分米,长是15分米,这台压路机的前轮滚动一圈,压过的路长是多少?压过路面的面积是多少米?

  12、一座圆形游泳池,刘星沿着游泳池走了一圈,一共是628步,他每步的长约是0.6米。这个游泳池占地面积是多少?

圆的面积教案6

  教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。

  教学目标:

  1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。

  2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。

  3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。

  教学设计思想:

  复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的'认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。

  教学过程:

  一、创设情境,揭示课题。

  二、回顾整理,讨论交流。

  1、怎样求圆的周长?求圆的面积有几种情况?

  2、圆的周长和面积公式是怎样推导出来的?

  3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)

  4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)

  5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?

  三、发现生活中的数学问题

  教师结合图片演示,让学生提出有关圆的周长和面积的问题。

  图片内容:农村的喷灌、碾子、拴在木桩上的小羊。

  四、走进美丽的图形世界

  教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。

  五、开心词典

  以开心词典的形式,让学生做六道选择题。

  六、走进生活,解决问题

  1、小猴子骑独轮车走钢丝。求车轮要转多少周。

  2、用绳子绕树干10周,求横截面的直径。

  3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?

  4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?

  七、思考生活中的数学问题

  1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?

  2、阅读关于400米标准跑道的小资料。

  课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答

圆的面积教案7

  教学内容:课本例3,第115页练习二十七的第1~5题。

  教学目的通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  点:圆面积计算公式。

  难点:圆面积计算公式的推导。

  教具、学具:圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

  教学过程():

  一、复习。

  1.口算:

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

  二、新授。

  1.圆的面积的含义。

  问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

  以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

  再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  向学生说明:如果分的等份越多所拼的图形就越接近长方形。

  教师边提问边完成圆面积公式的推导:

  拼成的图形近似于什么图形?

  原来圆的面积与这个长方形的面积是否相等?

  长方形的长相当于圆的哪部分的`长?

  长方形的宽是圆的哪部分?

  长方形的面积=长×宽

  圆的面积 = ×

  = ×

  = ×

  =

  用S表示圆的面积,那么圆的面积可以写成:

  3.圆面积公式的应用。

  出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =3.14×

  =3.14×16

  =50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  2.练习二十七的第1~4题。

  强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。

  四、作业。

  练习二十七第5、6题。

圆的面积教案8

  教学内容

  教材40页、41页例1、例2、例3及做一做,练习十第2-5题。

  素质教育目标

  (一)知识教学点

  1.理解圆柱的侧面积和表面积的含义。

  2.掌握圆柱侧面积和表面积的计算方法。

  3.会正确计算圆柱的侧面积和表面积。

  (二)能力训练点

  能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备

  1.教师、学生每人用硬纸做一个圆柱体模型。

  2.投影片。

  教学步骤

  一、铺垫孕伏

  1.口答下列各题(只列式不计算)。

  (1)圆的半径是5厘米,周长是多少?面积是多少?

  (2)圆的直径是3分米,周长是多少?面积是多少?

  2.长方形的面积计算公式是什么?

  3.教师出示圆柱体模型,指同学说出它有什么特征?

  二、探究新知

  1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

  (1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

  (2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

  2.教学例1

  (1)出示例1,指同学读题,找出已知条件和所求问题。

  学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

  板书:3。14×0。5×1。8

  =1。75×1。8

  ≈2。83(平方米)

  答:它的侧面积约是2。83平方米。

  (2)反馈练习:完成做一做41页第1题。

  学生独立解答,然后订正。

  3.教学

  (1)教师说明:圆柱的侧面积加上两个底面积就是。

  (2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

  4.教学例2

  (1)投影片出示例题2、圆柱的几何图形和表面积的.展图。

  (2)指同学读题,找出已知条件和所求问题。

  (3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

  (4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

  教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

  做完后订正,订正时让学生说出有关的计算公式。

  (5)反馈练习:完成做一做第2题。

  指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

  5.教学例3

  (1)出示例3,指名读题,找出已知条件和所求问题。

  (2)教师提示:解答这道题应注意什么?

  启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

  (3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

  (4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

  (5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

  (6)“四舍五入”法与“进一法”有什么不同。

  通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数

圆的面积教案9

  教学内容:

  圆的面积。

  教学目标:

  1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

  3. 渗透转化的数学思想和极限思想。

  教学重点:

  正确计算圆的面积。

  教学难点:

  圆面积公式的推导。

  学情分析:

  本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

  学法指导:

  教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

  教具准备:

  多媒体课件,圆片。

  学具准备:

  把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

  教学设计:

  一、复习旧知,导入新课

  1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

  2. 课件:出示一块圆形的.桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

  3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

  提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

  这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

  二、动手操作,探索新知

  1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

  2. 推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr × r S=πr2 师小结公式

  S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  3. 利用公式计算。

  (1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

  (2)出示例3,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成第95页做一做的第1题。

  (4)看书质疑。

  三、运用新知,解决问题

  1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

  2. 测量一个圆形实物的直径,计算它的周长及面积。

  3. 课件演示

  用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、布置作业

  1. 第97页的第3题和第4题。

  2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

  板书设计:

  圆的面积

  长方形的面积= 长× 宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

圆的面积教案10

  学材分析

  教学重点:

  面积计算公式的正确运用。

  教学难点:

  面积公式的推导过程。

  学情分析

  学生对圆面积公式的推导过程理解有一定的难度。

  学习目标

  1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.会用圆面积的计算公式,正确计算圆的面积。

  导学策略

  导练法、迁移法、例证法

  教学准备

  圆的面积模型、圆规、投影仪、投影片

  教师活动

  学生活动

  一.引入

  1.什么叫做圆面积?

  2.出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?

  3.引出课题。

  二.推导

  1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?

  2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的`纸片。

  3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。

  4.分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?

  板书:图形面积=等腰三角形面积n=底高2n=Cr2n

  =2rn

  圆的面积=r2

  边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)

  5.在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。

  三.巩固

  试一试。

  四.总结

  五.作业

  学生口答

  师生共同操作

  师生共同操作

  教学反思

  已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。

圆的面积教案11

  教学目标:

  1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

  2、理解圆的面积公式的推导过程,感受转化的数学思想。

  3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

  教学重难点:

  重点:理解和掌握圆面积的计算方法。

  难点:圆面积公式的推导。

  准备:圆形纸片

  一. 创设情境。

  S:同学们,请看这里?(展示课件动画)

  S:现在小马有一个问题:我的这个活动范围是一个什么形状? X:是圆形。(板书:圆)

  S:小马还有一个问题,我的活动范围占地多大?这个多大指的是圆

  的什么量呢?

  X:是圆的面积。

  S:对了,就是圆的面积,我们现在就来一起学习:圆的面积。(板书课题)

  二. 探索交流,学习新知。

  1. 出示电子课本。

  S:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的面积呢?你认为怎么做,大胆来说一说。

  X1:公式。

  X2:转化成学过的图形来计算。

  S:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的重点。)要转化成学过的图形,这个方法不错,那咱们来回想一下,咱们以前学过哪些图形的面积?(单击课件)

  X:长方形,正方形,三角形,平行四边形,梯形等等。

  (单击课件)

  S:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。 X:长方形,正方形,平行四边形。

  S:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的电子课本(电子课本)

  S读:在硬纸上画一个圆。。。。。大家附页1中的圆都准备好了

  吗?

  X:准备好了。

  S:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?

  X:(学生自由回答)

  S:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。

  (课件演示)

  2. 讲解课件。

  4份时S问:这个像是咱们以前学过的图形吗?

  X:不像。

  S:不像没关系,咱们继续分,再分成8份,这次呢?

  X:有点像平行四边形了。

  S:继续分。(演示到32份)

  S:这下更像一个平行四边形了,但是,这还没完,咱们来回顾一下刚才我们的拼图过程。(单击课件)

  S:咱们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的份数越来越多。。。。。最后,它会无限地接近一个什么形状呢? X:平行四边形。

  X:长方形。

  S:到底是长方形还是平行四边形。

  S:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?

  X:长方形。

  (板书:长方形)

  S:它不是真正的`长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。

  3. 电子课本P68

  S:如果分的。。。。。。长方形。同时我们的小精灵又给我们提出了一个问题:拼成的。。。。。关系?

  S:请大家注意看我的课件演示。(讲解)

  板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =C*r 2

  =2π

  2r*r

  =πr*r

  2 =πr

  2即 S=πr

  S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?

  X:半径。

  S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?

  S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?

  X:半径。

  学生先做题,再用课件演示答案。

  三. 拓展练习。

  1. 回答(尽量不要动笔)。

  2. 计算(78.5 m2)

  S= πr2

  2 = 3.14×5

  = 3.14×5×5

  =3.14×25

  =78.5 (m2)

  四. 回顾总结。

  谁愿意和大家分享你的学习成果?(学生自己总结)

  老师补充:1.化圆为方。

  2. S= πr2

  3.计算圆面积的必要条件是什么(半径)

  板书:

  1. 化圆为方。

圆的面积教案12

  教学内容:圆的面积第67—68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

  教学目标:

  ⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

  ⒊渗透转化的数学思想。

  教学重点:圆面积的含义。圆面积的推导过程。

  教学难点:圆面积的推导过程。

  教学过程:

  一、复习。

  1、已知r,周长的一半怎样求?

  2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这

  些图形的面积计算公式。

  s=abs=a2s=ahs=ahs=(a+b)h

  二、新课。

  1、什么是圆的面积?(出示纸片圆让生摸一摸)

  圆所占平面大小叫做圆的面积。

  2、推导圆的面积公式。

  (1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

  若分的分数越多,这个图形越接近长方形。

  (1)找:找出拼出的图形与圆的周长和半径有什么关系?

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长宽

  所以:圆的面积=圆的周长的一半圆的.半径

  S=r

  S圆=r=r2

  3、你还能用其他方法推算出圆的面积公式吗?

  (1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。

  因为:三角形面积=底高

  圆面积=

  =rr

  =r2

  (2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,

  因为:平行四边形面积=底高

  圆面积=r

  =r8

  =r2

  还可以取3份、4份等,同学们可以一一推算。

  三、运用知识解决实际问题。

  1、例1一个圆的直径是20m,它的面积是多少平方米?

  已知:d=20厘米求:s=?

  r=d2202=10(m)

  s=Лr2

  3。14102

  =3。14100

  =314(平方厘米)

  2、根据下面所给的条件,求圆的面积。

  r=5cmd=0。8dm

  3、解答下列各题。

  (1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

  (2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

  四、作业。

  课本P70第1、5题。

圆的面积教案13

  教学目标:

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重点:

  正确计算圆的面积。

  教学难点:

  圆面积公式的推导。

  教具准备:

  多媒体课件二套,圆片。

  一。情景导入

  1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)

  师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。

  (板书:圆的面积)

  2.师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)

  师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?

  生:这堂课我们要学习圆的面积是怎样求出来的。

  生:学生圆的面积公式。

  师:你们知道圆的面积公式后,你们还想到什么问题?

  生:圆的面积公式根据什么推导出来的。

  师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。

  (通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)

  二、动手操作,探索新知

  1. 猜测(每项用课件出示)

  师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?

  生:不等。

  师:为什么?

  生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。

  师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?

  生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。

  师:圆的面积和正方形比较谁的面积大?

  生:圆的面积大

  师:可以观察出圆的面积范围在2r2-4r2

  (这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)

  2. 回忆旧知,

  师:圆能不能直接用面积单位支量呢?为什么?

  生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。

  师:该怎么办呢?(教室沉默)

  师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)

  师:这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢?

  生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)

  师:这个办法很好。那么把圆形转化成什么图形呢?

  [评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]

  3.动手操作

  (1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)

  师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)

  (2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?

  生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)

  师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示

  (3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)

  学生汇报讨论结果。生答师继续演示课件。

  生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长宽

  所以圆的面积=周长的`一半半径

  S=r

  S=r2

  师:结合公式S=r2,说说圆的面积是怎样推导出来的?

  (4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)

  生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。

  因为 三角形的面积=底高2

  所以 圆的面积=周长的半径的4倍

  S=4r2

  S=r2

  师:我们用三角形也推出了圆的面积公式 S=r2 。同学们还有其它图形来验证吗?

  (5)生:我们把圆转化成梯形来验证。(课件演示)

  生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。

  因为梯形的面积=(上底+下底)高2

  所以圆的面积=周长的一半半径的2倍

  S=2r2

  S=r2 用梯形的面积

  3.小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)

  我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。

  唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!

  圆的面积必需要具备哪些条件?

  [评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]

  (三)课后巩固

  1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。

  (照应了开头,又学练习了面积的计算。)

  2、 根据下面条件求出圆的面积

  r =5分米 d =3米

  3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?

  (用学到的知识来解决生活中的问题,培养学生的应用能力)

  (四)师:这堂课大家学到了什么?有什么收获?

  (学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)

  [评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

圆的面积教案14

  【第一课时】 圆的面积

  一、 教学目标

  1.知识与技能

  理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。

  2.过程与方法

  引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。

  3.情感态度与价值观

  通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。

  二、教学重点

  正确计算圆的面积。

  三、教学难点

  圆面积公式的推导。

  四、教学具准备

  课件、学具。

  五、教学过程

  (一)情境导入

  1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?

  今天这节课我们就来学习圆面积的求法。(板书题目:圆的面积)

  2.看到今天的课题,你都想知道什么?

  3.什么是圆的面积?在哪?摸摸看。

  (学生摸手中圆形纸片,并用手指出圆的面积)

  过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的推导过程。

  (二)复习旧知识

  1.你还记得我们已经学过了哪些图形的面积求法吗?

  (生:长方形、正方形、平行四边形、三角形、梯形)

  2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)

  3.问:其它图形呢?(学生简要叙述其他面积推导过程)

  4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。

  (三)学习新课

  1.请你猜猜看,圆的面积公式应该怎么推导出来?

  (生:转化成已知的图形进行推导)

  2.怎么转化?想想办法。任意的分成几份行吗?

  (生:沿圆的直径将圆平均分成若干份)

  3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:

  (1)以组为单位,先摆图形。

  (2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。

  (3)有问题及时记录,以便讨论。

  (学生动手拼摆并贴在白纸上)

  4.你们遇到什么问题了吗?

  (生:边不是直的,是弯的)。

  5.谁能帮助他解决这个问题?

  (学生谈自己的想法)

  6.是的,边不是直的这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)

  【可使用圆的图片27】

  7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?

  (学生谈自己的想法)

  8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。

  (学生谈自己的想法)

  9.汇报不同推导方法:

  转化成长方形的:

  长方形的面积=a × b 圆的面积=c×r 2

  =π r × r

  =π r 2

  转化成平行四边形的:

  平行四边形的面积= a × h

  圆的面积= c × r 2

  =π r × r

  =π r 2

  转化成三角形的:

  三角形的面积= 1× a × h 2

  圆的面积= 1c×4r 24

  c× r 2 =

  =π r 2

  转化成梯形的: 梯形面积=1×(a+b)× h 2

  15c3c×(+)×2r 21616

  1c××2r 22

  c× r 2圆形面积= ==

  =π r 2

  10.观察一下,这些推导过程有什么相同的地方?

  (生:都是将圆转化成已知图形去推导的)

  11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。

  现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)

  (四)巩固练习

  1.求圆的面积(单位:厘米)

  r=3 答案:s=28.26(平方厘米)

  d=20答案:s=314(平方厘米)

  c=125.6答案:s=1256(平方厘米)

  2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?

  答案:3.14×22 =12.56(平方米)

  3.判断

  (1)直径是2厘米的圆,它的面积是12.56平方厘米。()

  (2)两个圆的`周长相等,面积也一定相等。()

  (3)圆的半径越大,圆所占的面积也越大。()

  (4)圆的半径扩大3倍,它的面积扩大6倍。 ()

  4.听故事解题:

  巴依老爷买来一群羊。

  巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。

  阿凡提说:“老爷,这个长方形羊圈太小了!”

  巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”

  阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”

  同样聪明的同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。

  (五)小结

  今天这节课你有什么收获?

  【第二课时】 圆环面积

  一、 教学目标

  1.知识与技能

  掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。

  2.过程与方法

  在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。

  3.情感态度与价值观

  进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。

  二、教学重点

  圆环的特征、圆环面积公式的推导及运用。

  三、教学难点

  灵活运用圆环面积的计算方法解决相关的简单实际问题。

  四、教学具准备

  课件、学具。

  五、教学过程

  (一)学习方法回顾、铺垫回忆一下

  我们在推导圆面积计算公式时用到了什么学习方法?

  (生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)

  这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会

  想 会

  新 旧

  这节课我们继续用这种方法研究新问题。

  (二)创设实际应用的问题情境

  1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?

  (1)动画光盘(2)歌曲光盘

  (3)空白封面光盘

  2.想知道这张光盘的内容吗?我们一起来看看。

  欣赏学生的校园活动照片。

  这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?

  3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。

  4.小组内摸一摸准备的光盘实物,再让学生实投指一指。

  师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】

  5.这个图形有什么特点?

  生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)

  6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。

  板书课题:圆环

  外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。

圆的面积教案15

  教材分析:

  初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

  学情分析:

  学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  教学目标:

  1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

  2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

  3、通过小组合作交流,培养学生的.合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。

  4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

  教学重点:

  通过观察操作,推导出圆面积公式及其应用。

  教学难点:

  极限思想的渗透与圆面积公式的推导过程。

  教学过程:备注:

  活动一:创设情景,提出问题

  1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?

  2、圆的面积--含义:圆所占平面的大小叫做圆的面积。

  3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?

  活动二:猜想比较:

  出示图

  师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?

  活动三:自主探究,验证猜想

  1、引导转化:

  师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?

  以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?

  2、动手操作:

  (1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。

  操作引导:A、剪--怎样剪?剪成几份?B、拼--怎样拼?拼成什么?

  (2)展示交流并介绍,选出最合理的剪法。

  (3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?

  想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)

  (4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。

  3、自主推导

  (1)小组合作,选择喜欢的1~2个图形,尝试推导公式。

  (2)学生展示、介绍自己的推导过程

  (3)教师板演圆面积的推导过程

  4、情景延续:

  (1)如果绳长为5米,计算圆的面积和周长。

  (2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?

  5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)

  活动四:实践运用,体验生活

  1、量出自己带来的圆形物体的直径,并计算出面积。

  2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。

  活动五:全课小结

  通过本节课的学习你有哪些收获?

  板书设计

【圆的面积教案】相关文章:

圆的面积教案09-20

《圆的面积》教案03-06

数学圆的面积教案02-16

【热】圆的面积教案03-31

人教版圆的面积教案02-19

圆的面积教案10篇01-24

圆的面积教案4篇01-26

圆的面积教案八篇02-02

精选圆的面积教案4篇02-06