当前位置:育文网>教学文档>教案> 高中数学教案

高中数学教案

时间:2022-07-20 20:54:12 教案 我要投稿

高中数学教案(通用15篇)

  在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。那么你有了解过教案吗?以下是小编整理的高中数学教案,欢迎大家分享。

高中数学教案(通用15篇)

高中数学教案1

  1.教学目标

  (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

  2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

  3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的.高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

高中数学教案2

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的.单调性的探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的单调性以及三角函数值的取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

高中数学教案3

  教学目标

  (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

  (2)理解直线与二元一次方程的关系及其证明

  (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

  教学重点、难点:直线方程的一般式.直线与二元一次方程 ( 、 不同时为0)的对应关系及其证明.

  教学用具:计算机

  教学方法:启发引导法,讨论法

  教学过程

  下面给出教学实施过程设计的简要思路:

  教学设计思路

  (一)引入的设计

  前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

  问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

  问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 (或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的`最高次数为一次”.

  启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

  学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

  【问题1】“任意直线的方程都是二元一次方程吗?”

  (二)本节主体内容教学的设计

  这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

  学生或独立研究,或合作研究,教师巡视指导.

  经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

  思路一:…

  思路二:…

  ……

  教师组织评价,确定最优方案(其它待课下研究)如下:

  按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.

  当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.

  当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?

  学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

  平面直角坐标系中直线 上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  综合两种情况,我们得出如下结论:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于 、 的二元一次方程.

  至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成 或 的形式,准确地说应该是“要么形如 这样,要么形如 这样的方程”.

  同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

  学生们不难得出:二者可以概括为统一的形式.

  这样上边的结论可以表述如下:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 (其中 、 不同时为0)的二元一次方程.

  启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

  【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?

  不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

  师生共同讨论,评价不同思路,达成共识:

  回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 (其中 、 不同时为0)系数 是否为0恰好对应斜率 是否存在,即

  (1)当 时,方程可化为

  这是表示斜率为 、在 轴上的截距为 的直线.

  (2)当 时,由于 、 不同时为0,必有 ,方程可化为

  这表示一条与 轴垂直的直线.

  因此,得到结论:

  在平面直角坐标系中,任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线.

  为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.

  【动画演示】

  演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.

  至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

  (三)练习巩固、总结提高、板书和作业等环节的设计

  略

高中数学教案4

  教学目标:

  1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.

  2.会求一些简单函数的反函数.

  3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.

  4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.

  教学重点:求反函数的方法.

  教学难点:反函数的概念.

  教学过程

  教学活动

  设计意图一、创设情境,引入新课

  1.复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.

  3.板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.

  二、实例分析,组织探究

  1.问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2.问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3.渗透反函数的概念.

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.

  三、师生互动,归纳定义

  1.(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.

  2.引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因.

  3.两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4.函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1.(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x-1 (2)y=x 1

  【例2】求函数的反函数.

  (教师板书例题过程后,由学生总结求反函数步骤.)

  2.总结求函数反函数的步骤:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x与y互换得.

  3° 写出反函数的定义域.

  (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

  (2)的反函数是________.

  (3)(x<0)的反函数是__________.

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的`反思理解.学生思考练习,师生共同分析纠正.

  五、巩固强化,评价反馈

  1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.

  六、作业

  习题2.4第1题,第2题

  进一步巩固所学的知识.

  教学设计说明

  "问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

高中数学教案5

  教学目标

  知识与技能目标:

  本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

  (1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

  (2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

  (3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

  导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

  在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

  过程与方法目标:

  (1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

  (2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

  (3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

  情感、态度、价值观:

  (1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

  (2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

  教学重点与难点

  重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

  难点:发现、理解及应用导数的几何意义。

  教学过程

  一、复习提问

  1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

  定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

  求导数的步骤:

  第一步:求平均变化率导数的几何意义教案;

  第二步:求瞬时变化率导数的几何意义教案.

  (即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

  2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?

  生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

  师:这就是平均变化率(导数的几何意义教案)的几何意义,

  3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

  如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

  导数的.几何意义教案

  追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

  由导数的定义知导数的几何意义教案导数的几何意义教案。

  导数的几何意义教案

  由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。

  C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

  二、新课

  1、导数的几何意义:

  函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

  即:导数的几何意义教案

  口答练习:

  (1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

  (C层学生做)

  (2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

  导数的几何意义教案

  2、如何用导数研究函数的增减?

  小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

  同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

  例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

  导数的几何意义教案

  函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

  3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

  例2求曲线y=x2在点M(2,4)处的切线方程.

  解:导数的几何意义教案

  ∴y'|x=2=2×2=4.

  ∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

  由上例可归纳出求切线方程的两个步骤:

  (1)先求出函数y=f(x)在点x0处的导数f'(x0).

  (2)根据直线方程的点斜式,得切线方程为y-y0=f'(x0)(x-x0).

  提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

  (先由C类学生来回答,再由A,B补充.)

  例3已知曲线导数的几何意义教案上一点导数的几何意义教案,求:(1)过P点的切线的斜率;

  (2)过P点的切线的方程。

  解:(1)导数的几何意义教案,

  导数的几何意义教案

  y'|x=2=22=4. ∴在点P处的切线的斜率等于4.

  (2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.

  练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

  (答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).

  B类学生做题,A类学生纠错。

  三、小结

  1.导数的几何意义.(C组学生回答)

  2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

  (B组学生回答)

  四、布置作业

  1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。

  2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

  3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

  4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

  (C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

  教学反思:

  本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

  本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

  完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

高中数学教案6

  教学目标:

  1.理解流程图的选择结构这种基本逻辑结构.

  2.能识别和理解简单的框图的功能.

  3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.

  教学方法:

  1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.

  2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.

  教学过程:

  一、问题情境

  1.情境:

  某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

  其中(单位:)为行李的重量.

  试给出计算费用(单位:元)的一个算法,并画出流程图.

  二、学生活动

  学生讨论,教师引导学生进行表达.

  解 算法为:

  输入行李的重量;

  如果,那么,

  否则;

  输出行李的重量和运费.

  上述算法可以用流程图表示为:

  教师边讲解边画出第10页图1-2-6.

  在上述计费过程中,第二步进行了判断.

  三、建构数学

  1.选择结构的概念:

  先根据条件作出判断,再决定执行哪一种

  操作的结构称为选择结构.

  如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.

  2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判

  断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

  (2)选择结构也称为分支结构或选取结构,它要先根据指定的`条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

  (3)在上图的选择结构中,只能执行和之一,不可能既执行,又执

  行,但或两个框中可以有一个是空的,即不执行任何操作;

  (4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和

  两个退出点.

  3.思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学教案7

  内容分析:

  1、 集合是中学数学的一个重要的基本概念

  在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础

  例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明

  然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的引言和集合的基本概念

  学习引言是引发学生的学习兴趣,使学生认识学习本章的意义

  本节课的教学重点是集合的基本概念。

  集合是集合论中的原始的、不定义的概念

  在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识

  教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集

  ”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2.教材中的章头引言;

  3.集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)。

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的.?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}

  (2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…}

  (3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}

  (4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}

  (5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集,记作N*或N+

  Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

  元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写。

高中数学教案8

  高中数学趣味竞赛题(共10题)

  1 、撒谎的有几人

  5个高中生有,她们面对学校的新闻采访说了如下的话:

  爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”

  玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”

  千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?

  2、她们到底是谁

  有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。

  穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?

  3、半只小猫

  听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。

  “一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的'老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?

  4、被虫子吃掉的算式

  一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。

  那么,请问原来的算式是什么样子的呢?

  5、巧动火柴

  用16根火柴摆成5个正方形。请移动2根火柴,

  使

  正形变成4。

  6、折过来的角

  把正三角形的纸如图那样折过来时,角?的度数是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、啊!双胞胎?

  丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。

  结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?

  9、赠送和降价哪个更好?

  1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?

  10、折成15度

  用折纸做成45度很简单是吧。那么,请折成15度,你会吗?

高中数学教案9

  教学目标

  1.了解映射的概念,象与原象的概念,和一一映射的概念.

  (1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

  (2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

  (3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

  2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

  3.通过映射概念的学习,逐步提高学生对知识的探究能力.

  教学建议

  教材分析

  (1)知识结构

  映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

  由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

  (2)重点,难点分析

  本节的教学重点和难点是映射和一一映射概念的形成与认识.

  ①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

  映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

  ②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

  教法建议

  (1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

  (2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

  (3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

  (4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

  (5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

  教学设计方案

  2.1映射

  教学目标(1)了解映射的概念,象与原象及一一映射的概念.

  (2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

  (3)通过映射概念的学习,逐步提高学生的探究能力.

  教学重点难点::映射概念的形成与认识.

  教学用具:实物投影仪

  教学方法:启发讨论式

  教学过程:

  一、引入

  在初中,我们已经初步探讨了函数的`定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

  二、新课

  在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

  我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

  提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

  让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

  提问2:能用自己的语言描述一下这几个对应的共性吗?

  经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

高中数学教案10

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题 创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  【归纳概括 建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影] 与 的关系如何?

  (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

  第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

  第2步,求每一个组合中 个元素的全排列数为 .

  根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的.选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

  作业参考答案

  2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.

  3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.

  探究活动

  同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

  解 设四人分别为甲、乙、丙、丁,可从多种角度来解.

  解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

  甲拿乙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丁制作的贺卡时,则贺卡有3种分配方法.

  由加法原理得,贺卡分配方法有3+3+3=9种.

  解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

  正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).

  逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).

高中数学教案11

  教学目标:

  1。了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

  2。会求一些简单函数的反函数。

  3。在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

  4。进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

  教学重点:

  求反函数的方法。

  教学难点:

  反函数的概念。

  教学过程:

  教学活动

  设计意图一、创设情境,引入新课

  1。复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2。同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

  3。板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

  二、实例分析,组织探究

  1。问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2。问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3。渗透反函数的概念。

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的`能力。

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

  三、师生互动,归纳定义

  1。(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

  2。引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因。

  3。两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4。函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1。(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x—1 (2)y=x 1

  【例2】求函数的反函数。

  (教师板书例题过程后,由学生总结求反函数步骤。)

  2。总结求函数反函数的步骤:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x与y互换得。

  3° 写出反函数的定义域。

  (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

  (2)的反函数是________。

  (3)(x<0)的反函数是__________。

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

  五、巩固强化,评价反馈

  1。已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2。已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

  六、作业

  习题2。4 第1题,第2题

  进一步巩固所学的知识。

  教学设计说明

  "问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

高中数学教案12

  教学目标1.进一步理解线性规划的概念;会解简单的线性规划问题;

  2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;

  3.进一步提高学生的合作意识和探究意识。

  教学重点:线性规划的概念及其解法

  教学难点

  代数问题几何化的过程

  教学方法:启发探究式

  教学手段运用多媒体技术

  教学过程:1.实际问题引入。

  问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?

  2.探究和讨论下列问题。

  (1)实际问题转化为一个怎样的数学问题?

  (2)满足不等式组①的条件的点构成的区域如何表示?

  (3)关于x、y的一个表达式z=70x+50y的几何意义是什么?

  (4)z的几何意义是什么?

  (5)z的最大值如何确定?

  让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的直线所对应的z最大.

  则zmax=6×70+6×50=720

  结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.

  解题反思:

  问题解决过程中体现了那些重要的数学思想?

  3.线性规划的有关概念。

  什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.

  4.进一步探究线性规划问题的解。

  问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?

  要求:请你写出约束条件、目标函数,作出可行域,求出最优解。

  问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?

  5.小结。

  (1)数学知识;(2)数学思想。

  6.作业。

  (1)阅读教材:P.60-63;

  (2)课后练习:教材P.65-2,3;

  (3)在自己生活中寻找一个简单的.线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。

  《一个数列的研究》教学设计

  教学目标:

  1.进一步理解和掌握数列的有关概念和性质;

  2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

  3.进一步提高问题探究意识、知识应用意识和同伴合作意识。

  教学重点:

  问题的提出与解决

  教学难点:

  如何进行问题的探究

  教学方法:

  启发探究式

  教学过程:

  问题:已知{an}是首项为1,公比为 的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?

  研究方向提示:

  1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;

  2.研究所给数列的项之间的关系;

  3.研究所给数列的子数列;

  4.研究所给数列能构造的新数列;

  5.数列是一种特殊的函数,可以从函数性质角度来进行研究;

  6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

  针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

  课堂小结:

  1.研究一个数列可以从哪些方面提出问题并进行研究?

  2.你最喜欢哪位同学的研究?为什么?

  课后思考题: 1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,… ,上述一些研究结论会有什么变化?

  2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以进行类比研究?

  开展研究性学习,培养问题解决能力

  一、对“研究性学习”和“问题解决”的认识 研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。

  “问题解决”(problem solving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。

  问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。

  二、“问题解决”课堂教学模式的建构与实践 以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。

  (一)关于“问题解决”课堂教学模式

  通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。

  (二)数学学科中的问题解决能力的培养目标

  数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。

  (三)“问题解决”课堂教学模式的教学流程

  (四)“问题解决”课堂教学评价标准

  1. 教学目标的确定;

  2. 教学方法的选择;

  3. 问题的选择;

  4. 师生主体意识的体现;

  5.教学策略的运用。

  (五)了解学生的数学问题解决能力的途径

  (六)开展研究性学习活动对教师的能力要求

高中数学教案13

  三维目标:

  1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

  2、过程与方法:

  (1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

  (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

  3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

  4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

  教学方法:

  讲练结合法

  教学用具:

  多媒体

  课时安排:

  1课时

  教学过程:

  一、问题情境

  假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?

  二、探究新知

  1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、

  2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

  下列抽样的方式是否属于简单随机抽样?为什么?

  (1)从无限多个个体中抽取50个个体作为样本。

  (2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

  (3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)

  3、常用的简单随机抽样方法有:

  (1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

  思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。

  分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的.n个号签上的号码所对应的n个个体作为样本。

  (2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。

  第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;

  继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

  三、课堂练习

  四、课堂小结

  1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

  2、简单随机抽样的方法:抽签法随机数表法

  五、课后作业

  P57练习1、2

  六、板书设计

  1、统计的有关概念

  2、简单随机抽样的概念

  3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法

  4、课堂练习

高中数学教案14

  教学目标

  (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

  (2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

  (3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

  (4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

  (5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

  教学建议

  一、知识结构

  二、重点难点分析

  本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。

  从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。

  公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。

  排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。

  在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。

  在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。

  三、教法建议

  ①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的`顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

  ab,ac,ba,bc,ca,cb,

  其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。

  ②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。

  从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。

  在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。

  在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。

  要特别注意,不加特殊说明,本章不研究重复排列问题。

  ③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。

  导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。

  公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:

  (1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;

  (2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。

  ④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。

  ⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。

高中数学教案15

  1.1.1 任意角

  教学目标

  (一) 知识与技能目标

  理解任意角的概念(包括正角、负角、零角) 与区间角的概念.

  (二) 过程与能力目标

  会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

  (三) 情感与态度目标

  1. 提高学生的推理能力;

  2.培养学生应用意识. 教学重点

  任意角概念的理解;区间角的集合的书写. 教学难点

  终边相同角的集合的表示;区间角的集合的书写.

  教学过程

  一、引入:

  1.回顾角的定义

  ①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

  二、新课:

  1.角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

  ②角的名称:

  ③角的分类: A

  正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

  负角:按顺时针方向旋转形成的角

  ④注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角.

  ⑤练习:请说出角α、β、γ各是多少度?

  2.象限角的概念:

  ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

  例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

  ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

  答:分别为1、2、3、4、1、2象限角.

  3.探究:教材P3面

  终边相同的角的表示:

  所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +

  k·360° ,

  k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z

  ⑵ α是任一角;

  ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

  360°的整数倍;

  ⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

  例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

  ⑴-120°;

  ⑵640°;

  ⑶-950°12’.

  答:⑴240°,第三象限角;

  ⑵280°,第四象限角;

  ⑶129°48’,第二象限角;

  例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

  例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

  4.课堂小结

  ①角的定义;

  ②角的分类:

  正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角

  负角:按顺时针方向旋转形成的角

  ③象限角;

  ④终边相同的角的表示法.

  5.课后作业:

  ①阅读教材P2-P5;

  ②教材P5练习第1-5题;

  ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,

  解:??角属于第三象限,

  ? k·360°+180°<α<k·360°+270°(k∈Z)

  因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

  故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<

  各是第几象限角?

  <k·180°+135°(k∈Z) .

  <n·360°+135°(n∈Z) ,

  当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,

  属于第二象限角

  <n·360°+315°(n∈Z) ,

  当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,

  属于第四象限角

  因此

  属于第二或第四象限角.

  1.1.2弧度制

  (一)

  教学目标

  (二) 知识与技能目标

  理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.

  (三) 过程与能力目标

  能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

  (四) 情感与态度目标

  通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点

  弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点

  “角度制”与“弧度制”的区别与联系.

  教学过程

  一、复习角度制:

  初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

  二、新课:

  1.引 入:

  由角度制的定义我们知道,角度是用来度量角的, 角度制的`度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

  2.定 义

  我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.

  3.思考:

  (1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

  (2)引导学生完成P6的探究并归纳: 弧度制的性质:

  ①半圆所对的圆心角为

  ②整圆所对的圆心角为

  ③正角的弧度数是一个正数.

  ④负角的弧度数是一个负数.

  ⑤零角的弧度数是零.

  ⑥角α的弧度数的绝对值|α|= .

  4.角度与弧度之间的转换:

  ①将角度化为弧度:

  ②将弧度化为角度:

  5.常规写法:

  ① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.

  ② 弧度与角度不能混用.

  弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

  例1.把67°30’化成弧度.

  例2.把? rad化成度.

  例3.计算:

  (1)sin4

  (2)tan1.5.

  8.课后作业:

  ①阅读教材P6 –P8;

  ②教材P9练习第1、2、3、6题;

  ③教材P10面7、8题及B2、3题.

【高中数学教案】相关文章:

高中数学教案03-20

高中数学教案09-28

高中高二数学教案10-13

高中数学教案【热门】02-27

【热门】高中数学教案03-03

高中数学教案(精选15篇)12-30

高中数学教案精选15篇01-10

高中数学教案15篇04-11

高中数学教案(15篇)07-11

高中数学教案(合集15篇)08-18