当前位置:育文网>教学文档>教案> 《乘法分配律》教案

《乘法分配律》教案

时间:2022-09-04 13:05:36 教案 我要投稿

《乘法分配律》教案

  作为一位杰出的教职工,就有可能用到教案,教案有助于顺利而有效地开展教学活动。那么应当如何写教案呢?下面是小编整理的《乘法分配律》教案,欢迎阅读,希望大家能够喜欢。

《乘法分配律》教案

《乘法分配律》教案1

  教学内容:

  教科书例6、例7及“做一做”,练习十四。

  (一)知识教学点

  1.使学生理解乘法分配律的意义。

  2.掌握乘法分配律的应用。

  (二)能力训练点

  通过观察、分析、比较,培养学生的分析、推理和概括能力。

  (三)德育渗进点

  通过乘法分配律的应用,激发学生的学习兴趣。

  (四)羹育渗遇点

  使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

  指导学生观察、分析、讨论、实践,使学生感知乘法分配律。运用已有经验

  (D识迁移类推,通过合作学习,学会知识。

  1.教学重点:乘法分配律的意义及应用。

  2.教学难点:乘法分配律的反应用。

  小黑板(转板)、口算卡片、投影仪、投影片、红(白)方木块。

  (一)锚垫孕伏

  1.口算:(卡片)

  25× 17×4 125×24

  引导学生说一说运用了什么运算定律,这样计算有什么好处?

  2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)

  (6+4)×5 6×4+4×5

  (二)探究新知

  1.导人新课:

  前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可使

  一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)

  2.教学例5:

  (1)出示例5:

  (2)引导学生观察、讨论、交流。

  (3)教师引导学生观察两种算式,发现了什么?使学生懂得:

  ①两个算式相等。

  ②两个算式可用等号连接。

  学生答,教师板书:(18+7)×6=150

  18×6+7×6二150

  (]8+7)×6二18×6+7×6 .

  (4)教师出示:20×(15+9)

  20× 15+20×9=480

  20×(15+9)二20×15+20×9

  组织学生分组讨论,使学生明确:每组中算式所表示的意义。

  反馈练习:按题目要求,请你说出一个等式。(投影出示)

  (——+——)×——=——×——+——×——

  学生答,教师填写投影。

  (通过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发

  散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐

  达到水到渠成。)

  教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:

  ①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘

  数和乘数的位置。)

  ②两个加数分别同一个数相乘再把两个积相加。

  ③等号左右两边两个算式相等。

  3.概括定律:

  通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生

  结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4二——×4+——×4

  (62+12)×3=——×——+——×——

  教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个

  数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学

  生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)

  5.我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学

  们观察我们练习的.乘法结合律,在运算上有什么特点?

  使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加

  数分别同这个数相乘,再把两个积相加比较简便。

  6.教学例7:

  (1)出示例7:

  102×43

  =(100+2)×43

  =4300+86

  =4386

  想:把102看成(100+2),再用43分别去乘100和2,可以用口算

  用了乘法结合律。

  教师说明:熟练后第二步可以不写,画上虚线。

  (2)出示9×37+9×63

  ①组织同学讨论。

  ②组织同学阅读教科书第65页。

  ③启发学生明白了什么?

  (乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学

  生知识迁移类推,通过合作学习,能够自己学会新知。)

  (三)巩固发晨

  1.练习十四第1题。

  2.在横线上填上适当的数。

  (”(24+8)×125=一×一+一×一

  (2)25×(20+4)=25×——+25×——

  (3)45×9+55×9=(——+——)×——

  (4)8×27+73×8=8×(——+——)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相

  同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

  3.把相等的算式用等号连接起来:

  (1)32×48+32×52 32×(48+52)

  (2)(24+8)×5 24×5+24×8

  (3)20×(17+15) 20×17+20×15

  (4)(40+28)×5 40×5+28

  (5)(10×125)×8 - 10×8+125× 8

  (6)4×(30+25) 4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选择题:

  (1)28×(42十29)与下面的( )相等

  ①28×42+28×29 ②(28+42)×(28+29)

  (2)与6×8—6×8相等的式子是( )

  (3)与(10+8+9)×5相等的式子是( )

  ①10×5+8×5+9×5 ②10+5×8+5×9

  5.练习十四第4题,投影出示。

  6,分组计算练习十四第3题。

  (四)课堂小结

  ③28×42×29

  今天学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分

  别与一个数相乘,再把两个积相加。

  练习十四第2题

《乘法分配律》教案2

  教学内容

  教科书第64页例6,第64页做一做中的题目和练习十四的第1、2题。

  教学目的:

  使学生理解并掌握乘法分配律,培养学生的分析推理能力。

  教学重难点

  乘法分配律

  教具、学具准备

  教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。

  教学过程:

  一、复习

  教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。

  二、新课

  1.教学例6。

  教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

  图中一共有多少个正方形?你是怎样想的?先请一个学生回答,教师把学生所列的算式写在黑板上。

  还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:

  (5十3)4 54十34

  教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

  这两个算式的计算结果怎样?

  这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:

  这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

  (5十3)4=54十34

  等号左面的算式是什么意思?(5与3的和乘以4。)

  等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)

  教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

  教师:下面我们再看两组算式,先看:(18十7)6 186十76

  左面的算式是什么意思?(18与7的和乘以6。)

  右面的算式是什么意思?(18与7分别乘以6,再把两个积相加。)

  算一算左面的算式等于什么?(18加7是25,25乘以6是150。)

  算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150。)

  教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。

  这两个算式相等,说明18与7的和乘以6等于什么?(说明18与7的和乘以6等于18与7先分别乘以6再相加。)

  教师:我们再来看两个算式 20(15十9) 20xx十209

  先来计算一下这两个算式各等于多少?

  两个算式都等于多少?

  这两个算式相等,说明20乘以15与9的和等于什么?

  2.进行抽象概括。

  教师指着上面的算式提问:

  仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)

  教师指出:两个数的.和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

  再看等号右面的三个算式有什么相同的地方?学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

  等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书乘法分配律。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。

  教师:如果用 表示三个数,乘法分配律可以写成下面的形式:

  (a+b) c=ac+bc

  等号左面(a+b) c表示什么意思?(表示两个数的和同一个数相乘。)

  等号右面ac+bc 表示什么意思?(表示把两个加数分别同这个数相乘,再把两个积相加。)

  三、巩固练习

  教师在黑板上写算式:(200十3)27,提问:

  1.这个算式中是哪两个数的和乘以哪个数?

  根据乘法分配律,这个算式等于哪两个乘积的和?

  教师在黑板上再写算式:18527十1527,提问:

  这个算式中是哪两个数分别乘以哪一个数?

  根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?

  2.做第64页做一做中的题目。

  先让学生读题,再想一想每个方框里应该填什么数。

  在(32十25)4中,两个数的和指的是什么?同一个数相乘指的是哪个数?

  根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?

  第一小题的方框里应该填什么数?(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)

  第二小题应该怎样填?根据什么运算定律?(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)

  四、作业

  练习十四的第1、2题。

《乘法分配律》教案3

  教学内容:教科书第54页得例题和第55页的“想想做做”。

  教学目标:

  1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2、使学生在观察、比较、猜测、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨和简洁。

  3、使学生在数学活动过程中获得成功的体验,进一步增强数学学习的兴趣和自信心。

  教学重点、难点:发现并理解乘法分配律

  教学过程:

  一、 铺垫孕伏

  1口算

  125×53×8 25×44

  指名说出运用什么方法使计算简便

  2出示两组算式

  (6+4)×7 6×7+4×7

  20×(5+2) 20×5+20×2

  (10+25)×4 10×4+25×4

  先口算,再说说每一组算式有什么关系?(结果相同)

  所以我们可以用什么符号连接这两个算式?(等号)

  谈话导入:

  上学期我们学习了乘法的交换律和结合律。今天我们要学习乘法的另一个定律。

  二、 探究新知

  1、谈话:同学们,学校马上要进行广播操比赛了,体育老师准备给比赛的同学每人买一套服装,我们一看。

  出示课件:(课本第54页例题情景图)

  2、 提问:从图上你获得了哪些信息?

  (每件短袖32元 每条裤子45元 每件夹克衫65元)

  3、 提问:

  体育老师买5件夹克衫和5条裤子,一共要付多少元?你能自己列综合等式解决这个问题吗?

  4、 学生试做

  5、教师巡视,让用(65+45)×5和65×5+45×5两种不同方法解答的学生分别口答。

  教师板书:(65+45)×5=110×5=550(元)

  65×5+45×5=325+225=550(元)

  6、指名学生说说自己列的算式和思路

  解法一:先算买一套衣服用多少元

  解法二:先算买夹克衫和买裤子各用多少元

  7提问:

  这道题的两种算法不同,比较一下他们的结果。你发现了什么?(结果相同)

  8谈话:结果相同的两个算式,可以用等号相连接

  板书:(65+45)×5=65×5+45×5

  9照上面的等式,你还能再说出一个吗?

  课件出示(—+-)×-=-×-+-×-

  10谈话:这样的等式有很多,今天我们一起来研究这样等式的规律。

  三、 概括定律

  1提问:

  观察例题这两个算式,等号左边先算什么,再算什么?右边呢?

  学生回答后(65+45)×5是用65与45的`和同5相乘;65×5+45×5是把65和45分别同5相乘。

  2提问:谁能用一句话把等号左边算式的特点概括出来?右边呢?

  板书:两个数的和同另一个数相乘

  两个数分别同一个数相乘,再把两个积相加

  3提问:

  既然等式两边计算结果相同,我们可以得到什么?

  :两个数的和同另一个数相乘等于这两个数分别与另一个数相乘再相加

  4同桌把乘法分配律完整地说一遍

  5谈话:大家说得很好,你们发现的这个规律就是乘法分配律。(板书课题)

  6练习

  (1)、(42+35)×2=————

  (2)、27×12+43×12=————

  7、提问:如果现在要用字母来表示这个规律,你们认为应该用几个字母呢?(3个)

  8、谁会用字母a、b、c表示乘法分配律

  板书:(a+b)×c=a×c+b×c

  四、 巩固练习

  1根据乘法分配律,填出另一道算式

  15×26+15×14=□○(□○□)

  72×(30+6)=□○□○□○□

  2课本第55页“想想做做”第2题

  (1)学生用手势判断

  (2)谈话:第三题意见不统一,你是怎么判断的,不能确定时可以用什么方法?(计算)

  提问:

  怎么改算式,让同学们一看就知道他们相等?

  (74可以写成74×1)

  (3)提问:

  第4题的两个算式为什么不相等?怎样改写可以使它们相等?

  3选择题

  24×(49+51)与下面的————式相等

  (1)24×51+24×49

  (2)(24+49)×(24+51)

  (3)24×49×51

  4拓展题:

  把例题中的问题改成5件夹克衫比5条裤子多多少元,可以怎么做?学生试做后发现:两个数的差与一个数相乘,也可以用这两个数分别与这个数相乘,再把它们的积相减,这也是乘法分配律。

《乘法分配律》教案4

  教学目标

  1.引导学生探究和理解乘法分配律。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:借助实际问题体会、认识乘法乘法律。

  教学难点:用乘法交换律和结合律算式。

  预设过程

  一、引入

  1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?

  2、理解题意

  二、探新

  1、学生独自列式

  2、小组交流想法

  3、汇报:根据学生的`回答板书

  25×(4+9)=25×4+25×9=325

  25×(4+9)=25×4+25×9

  指名学生说出每一步表示的意义

  (4+9)×25=4×25+9×25=325

  (4+9)×25=4×25+9×25

  4、改题:如果改为买45副,你又可以怎样算?

  45×(4+9)=45×4+45×9

  (4+9)×45=4×45+9×45

  5、观察:请你们仔细观察上面这几题,

  6、你们发现了什么?

  相同点:左边都是两个数的和与一个数相乘,

  右边都是两个数和这个数相乘再相加。

  不同点:算式左边和右边有什么不同?

  联系:算式左边和算式右边有什么联系?

  6、举例:这样的算式你能再举出一些吗?

  7、概括:你们能把上面的规律概括成一句话吗?

  两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  你能用字母表示吗?(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  8、质疑:还有什么问题?

  三、巩固

  1、做一做

  判断并说明理由

  2、第5题:下面哪些算式运用了乘法分配律

  3、第6题

  103×1220×5524×20525×24

  四、:你们还有什么问题?

  五、布置作业:

  1、口算

  2、作业本

  3、寻找生活中乘法分配律的例子。

  板书设计

  作业设计:

  课堂作业本P15

  口算训练P16

  教学反思

  课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。

  在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,

  生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。

  生2:是呀,一个数好像是公共财产,都是它们共有的。

  这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。

《乘法分配律》教案5

  教学目标:

  1、发现、理解和掌握乘法分配律;

  2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;

  3、培养学生观察、归纳、概括等初步的逻辑思维能力。

  4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。

  教学重点:乘法分配律的意义及其应用。

  教学难点:应用乘法分配律进行简便计算。

  教学过程:

  一、创设情境,激发兴趣:

  (请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?

  生:(齐)高兴激动。

  生1::打个招呼,宋老师好。

  生2:宋老师好!

  师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?

  生:不是,是分别握手。

  生:乘法分配律(小声地)

  (设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)

  二、自主探索,合作交流

  师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。

  1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?

  (1)阅读理解:让学生充分表达自己知道了什么。

  生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。

  生2:每个小组共有6人。

  (2)分析解答:

  学生汇报自己的解法,引导学生说明不同算法的理由。

  板书:(4+2)×25 4×25+2×25

  2.两个算式的结果怎样?用什么符号连接?生读等式

  板书:(4+2)×25=4×25+2×25

  生读算式(4+2)×25=4×25+2×25

  3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?

  口头列式,得出(58+42)×9=9×58+9×42(生读等式)

  4、观察这两组算式,请你写出一些类似的式子.

  每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)

  投影展示

  生1:(1+2)×3=1×3+2×3

  (3+2)×4=4×3+2×4

  (10+2)×5=10×5+2×5

  (6+4)×5=6×5+4×5

  生2:(4×2)×3=4×3+2×3

  生3:他的算式是错的,括号里应该是两数之和。

  生4:( + )× = × + ×

  (a+b)×c= a×c+ b×c

  a×(b+c) = a×b+ a×c

  师;尝试用文字总结发现的规律

  生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。、、、、

  等号两边的算式有什么相同和不同?

  5、集体归纳。

  抓住:两个数和、分别相乘

  小结:这个规律是具有普遍性的。你们发现的`这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)

  两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。

  6、讨论记忆乘法分配律的方法。

  师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。

  生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。

  生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。

  、、、、、

  学生的方法很多。

  (设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)

  三、巩固新知,尝试练习

  1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?

  (12+200)×3=□×3+□×3

  15×(40+2)=□×40+□×2

  2、数学游戏:找朋友

  (1)找出得数相等的两个算式,(将算式卡片展示在黑板上)

  (设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)

  提问: 22×7+18 和(22+18) ×7 是朋友吗?如果要让它们成为朋友,该怎么改?

  (2)整理卡片,分成两组

  甲组 乙组

  ① 100×31+2×31 ① (100+2)×31

  ② 9×(37+63) ② 9×37+9×63

  ③ (22+18)×7 ③ 22×7+18×7

  分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。

  (设计意图:制造冲突,引出认知矛盾)

  男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)

  小结:能口算,并且能凑整十、整百数,算起来比较简便。

  利用乘法分配律可以使一些计算简便。

  (这一环节进行充分运用,渗透简便运算的意识)

  四、运用规律,内化新知

  (8+4)× 25= 34×72+34×28=

  先观察,说一说算式特点,再尝试计算、 指名板演、全班交流

  (设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)

  五、课堂总结与评价:

  用自己的话说一说什么是乘法分配律?

  (设计意图:培养学生的归纳总结意识和数学语言的表达能力。)

  板书设计:

  乘法分配律

  (4+2)×25 = 4×25+2×25

  (a+b)×c= a×c+ b×c

  甲组 乙组

  ① 100×31+2×31 ① (100+2)×31

  ② 9×(37+63) ② 9×37+9×63

  ③ (88+12)×7 ③ 88×7+12×7

《乘法分配律》教案6

  教材分析:

  乘法分配率是进行简便计算的一个难点,由于学生没有足够相关的生活经验和类似的认识,因此比较难于把握。故把重点放在引导学生探索问题,通过学生互动,发现规律,提出设想,验证结论,最后灵活运用结论解决问题。

  学情分析

  由于平时进行课堂教学改革,学生学习数学的热情比较高,一部分学生还喜欢发表自己的见解,借以带动全班的学习,所以我决定创设情景,调动学生自主学习,通过操作、交流突破难点。

  学习目标:

  1.动手“做”数学;

  2.充分发挥“兵”帮“兵”的作用;

  3.组织学生解决问题。

  设计理念:

  根据课程改革的目标,实现以人为本的现代教学观,切实改进课堂教学,改变传统牵着学生走的教学行为。

  学生是按照自己的思维方式去认识世界的,因此要组织好学生的活动,让学生通过探索,自己去发现问题,提出问题,从而解决问题,真正落实学生的主体地位。在教学中,教师能根据学生的情况善导,体现学生会学,并使学生学会科学的学习方法,提高学习质量,强化学习兴趣,不断发展和完善自己。

  教学媒体设计:

  1.自制多媒体课件,主要是与课题相关的练习(以“小灵通”、摘取“智慧果”的形式激发兴趣,并配备音乐调节情绪,同时利用Powerpoint制作板书设计加大课堂密度)。

  2. 实物投影仪;学生准备2厘米和3厘米的小棒各2捆。

  教学过程,设计及分析:

  一、创设故事情景

  教授将手指蘸入煤油和蜜糖的杯子里,用嘴尝得津津有味,但学生跟着做却无一不上当,因为教授伸进的是食指,吸的是中指,以此说明观察的重要性,告诫学生注意下面的操作要认真观察,这其实也是一种思维品质。

  二、导入

  1.用2厘米和3厘米的小棒各两根,围成一些图形,说一说你用哪些简便的方法算出小棒的总长度,从中发现什么。

  学生:(3+2)×2=3×2+2×2

  师:你们是怎样发现的.?

  学生:①通过计算,知道结果是一样的;②无论怎样摆,都是4根小棒,所以总长度是不变的。

  (通过学生的摆和说,引导他们向乘法分配率的表达形式逼近)

  2.用2厘米和3厘米的小棒各3根,进行类似上面的操作。

  学生:这样摆比较有规律,很容易看出小棒的总长度,并且可以知道(3+2)×3=3×3+2×3)。

  (让学生把有规律的摆法投影出来)

  3.用2厘米和3厘米的小棒各4根,仿照上面再操作。

  要求:在学生摆拢以后,以小组为单位进行参观和评价。让学生把有规律的做法进行实物投影,并介绍想法和发现。

  学生:

  3×4+2×4=(3+2)×4 (8+2)×2=8×2+2×2

  7×2+3×2=(7+3)×2 (3+2)×4=3×4+2×4

  (6+4)×2=6×2+4×2

  分析:通过参观,知道有各种各样的摆法;通过评价,知道我们能创造数学,

  发现规律,能灵活地运用知识解决问题,并进一步向乘法分配率逼近。

  4.猜想:你能说出类似的例子吗?

  (学生自由说,教师把有代表性的写在黑板上。)

  如:(12+72)×8=12×8+72×8 25×84+75×84=(25+75)×84

  …… …… …… …… …… …… …… …… ……

  5.小组讨论。

  (1) 根据以上算式的特征进行讨论,讨论后以小组的形式发表见解;

  (2) 师生共同归纳各种见解:两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变。

  教师:这就是乘法分配率。

  板书课题:乘法分配率。

  分析:综观传统的教学方法,教师还是牵着学生走,所以乘法分配率是强加给学生的,故学生就容易出错,更谈不上灵活运用了。根据学生的年龄特点和心理特点,教学应该从直观思维入手,而以抽象思维结束,因此,我就采用了“操作──探究──发现”的教学模式进行教学了。

  三、新授

  1.自学书本;

  2.质疑,提出新见解;

  3.师生共同解决问题。(充分发挥学生互助作用,以点带动全班的学习。)

  4.教师:用公式怎样表示乘法分配率?谈谈你的看法。

  (要求学生正确读出公式,引出乘法分配率可以进行简便计算。)

  5.形成性练习:用简便方法计算下面各题。

  35×37+65×37 102×45 38×99+38

  要求:学生想办法,学生说思路,学生评,学生互助并加以改正。

  四、小结

  (学生以谈体会的形式进行,包括方法、感觉、情感和态度方面)

  五、拓展性练习

  计算下面各题:12×25 63×25-59×25 38×101-38

  说明:这些题目学生是可以用多种方法计算的,目的是训练发散性思维,提高灵活解决问题的能力。在学法上充分发挥“兵”帮“兵”的指导作用。

  六、反馈生活中的数学

  师:这节课我们学习了乘法分配率,在日常生活中我们也经常运用乘法分配率解决一些问题,你能举出例子吗?

  (同位互说,或者小组商量,再发言。)

  七、布置作业

  1.基础题:第66页第4、7题。

  2.思考题:第66页插图。

《乘法分配律》教案7

  教学内容:教科书第68页例5,第69页做一做中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。

  教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。

  教学过程 :

  一、复习

  教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。

  二、新课

  1.教学例5。

  教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

  图中一共有多少个正方形?你是怎样想的?先请一个学生回答.教师把学生所列的算式写在黑板上。

  还有别的算法吗?你是怎样想的'?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:

  (5+3)4 54+34

  教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。

  第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

  这两个算式的计算结果怎样?

  这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

  (5+3)4=54+34

  等号左面的算式是什么意思?(5与3的和乘以4。)

  等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)

  教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

  教师:下面我们再看两组算式,先看:(18+7)6 186+76

  左面的算式是什么意思?(18与7的和乘以6。)

  右面的算式是什么意思?(18与7分别乘以6,再把两个积相加)

  算一算左面的算式等于什么?(18加7是25,25乘以6是150。)

  算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150)

  教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。

  这两个算式相等。说明18与7的和乘以6等于什么?说明18与7的和乘以6等于18与7先分别乘以6再相加。)

  教师:我们再来看两个算式 20(15+9) 20xx+209

  先来计算一下这两个算式各等于多少?

  两个算式都等于多少?

  这两个算式相等,说明20乘以15与9的和等于什么?

  2.进行抽象概括。

  教师指着上面的算式提问:

  仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)

  教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

  再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

  等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。

  教师:如果用a、b、c表示三个数,可以写成下面的形式:

  (a+b)c=ac+bc

  等号左面(a+b)c表示什么意思?(表示两个数的和同一个数相乘)。

  等号右面ac+bc表示什么意思?(表示把两个加数分别同这个数相乘;再把两个积相加。)

  三、巩固练习

  教师在黑板上写算式:(200十3)27,提问:

  1.这个算式中是哪两个数的和乘以哪个数?

  根据,这个算式等于哪两个乘积的和?

  教师在黑板上再写算式:18527十1527,提问:

  这个算式中是哪两个数分别乘以哪一个数?

  根据,这个算式等于哪两个数的和乘以哪一个数?

  2.做第69页做一做中的题目。

  先让学生读题,再想一想每个方框里应该填什么数。

  四、作业

  练习十四的第1、2题。

《乘法分配律》教案8

  教学说明:

  乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。

  一、观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。

  二、讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。

  三、练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。

  四、简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的'灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。

  教学内容:

  乘法分配律P28-29例1、例2

  教学目标

  1、知道乘法分配律的字母表达式。

  2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。

  3、会用乘法分配律使一些计算简便。

  教学重点

  理解掌握乘法分配律。

  教学难点

  乘法分配律的得出及其运用。

  教学安排

  一、观察与思考:

  1、出示例1:(1)看下图计算,有多少个小正方体?

  A、用实物演示引出两种算法。

  (5+3)×2=16(个)5×2+3×2=16(个)

  B、观察以上两式得到:(5+3)×2=5×2+3×2

  2、出示生活实例:

  ①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?

  引导学生用两种方法解答,然后通过计算观察得出:

  (30+20)×4=200(元)30×4+20×4=200(元)

  即:(30+20)×4=30×4+20×4

  ②2角硬币和5角硬币各6枚,一共有多少钱?

  请学生同桌说说两种计算方法,然后汇报结果。

  (2+5)×6=42(角)2×6+5×6=42(角)

  即:(2+5)×6=2×6+5×6

  3、请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?

  (前后两式是相等的、先算和再算积与先算积再算和是一样的……)

  这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率

  二、讨论与归纳:

  1、出示问题,读读想想。

  A、以上三组算式分别先算什么?再算什么?

  B、它们之间有什么联系?

  先小组讨论,再派代表汇报交流。

  得出乘法分配律的正确说法。

  看书,齐读乘法分配律。

  2、质疑。

  为什么乘法分配律说:“两个数的和与一个数相乘”而不是“两个数的和去乘以一个数。”?

  (两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)

  3、用字母表示乘法分配律。

  (A+B)×C=A×C+B×C

  三、练习:

  1、根据乘法分配律填上适当的数或运算符号。

  (8+6)×3=8○3○6○3

  (25+9)×40= ×40+ ×40

  (56+)×3=56× +8×

  2、判断:

  13×(4+8)=13×4+8 ()

  13×(4+8)=13×8+4×8 ()

  13×(4+8)=13×4+13×8 ()

  四、简便运算:

  1、出示例2:(125+70)×8

  请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。

  算好后同桌观察讨论:怎样算比较好?为什么?

  教师总结:用乘法分配律能使一些计算简便。

  2、选择题:

  16×24+84×24的简便算法是()。

  A、(16+24)×84 B、(16+84)×24 C、(16×84)×24

  3、用简便方法计算下列各题(先同桌讨论,再独立完成)。(有★的不会做的学生可以不做)

  (25+9)×8 29×175+25×29 48×128-28×48 ★75×99+75

  ★4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)

  41×□+59×23 □×□+63×28

  五、 小结:

  1、乘法分配律及字母表达式。

  2、运用乘法分配律应注意什么?

  ①运算符号②分配合理

《乘法分配律》教案9

  教案内容:

  一、课题:《乘法分配律》

  二、主要讲解的内容:

  课本第26页例7及相关练习题

  三、学习目标

  1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。

  2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。

  3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。

  教学重难点

  借助乘法的意义理解乘法分配律的意义和内涵。

  四、教学准备:多媒体课件,电脑,网络,耳机等

  学生准备:数学书、笔、练习本、笔记本

  五、教学环节

  1、反馈家庭作业(表扬做的优秀的.学生,鼓励并引导完成不太好的学生积极完成作业)

  2、复习导入

  算一算,比一比

  (10+5)×5= (8+2)×7=

  10×5+5×5= 8×7+2×7=

  课前同学们已经完成了复习任务,请同桌交流计算的结果和发现。我们已经学习了乘法交换律、结合律,应用它们可以使一些计算简便。

  什么是乘法的交换律和结合律?今天这节课我们再来学习乘法的另一个运算定律。

  3、新授

  还记得我们提出的第三个问题吗:一共有多少名同学参加了这次植树活动?

  ①自主探索,独立解决问题

  你怎样解决这个问题?列式计算。【设计意图:让学生独立解决问题,促成多种解决问题方法的生成,为探索运算定律准备了资源。】②汇报交流,明确算法 学生先自己做上传自己想法,连麦让个别学生说明。

  谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。

  方法一:先算每个小组人数,再算总人数。

  (4+2)×25

  =6×25

  =150(人)

  方法二:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数,再算总人数。

  4×25+2×25

  =100+50

  =150(人)

  同学们用不同的方法解决了这个问题,计算结果都是150人。

  ③观察对比,概括规律

  这两个算式之间有什么关系呢?

  (4+2)×25=4×25+2×25

  你能用自己的语言来描述这个等式吗?学生发语音

  左边是4加2的和与25相乘,右边是4和2分别与25相乘,然后再相加。左右两边结果相等。

  教师适时用箭头表示出来。

  请你再举几个这样的例子吗,写在练习本上。

  拍照展示

  观察这些等式,你有什么发现?

  两个数的和与一个数相乘,或者先把它们与这个数分别相乘再相加,结果相等。

  ④你能结合乘法的意义理解这个规律吗?

  如:(4+2)×25=4×25+2×25

  左边表示6个25,右边表示4个25加2个25,也是6个25,所以两者结果相等。

  得出结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  ⑤用字母怎样表示这个规律?

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  4、练习巩固

  (1)下面哪些算式是正确的?正确的画“√”,错误的画“×”。

  56×(19+28)=56×19+28 ( )

  32×(7×3)=32×7+32×3 ( )

  64×64+36×64=(64+36)×64 ( )

  答案:× × √

  解析:【考查目标1、2】借助乘法意义判断,进一步理解乘法分配律的含义,注重形式表达的认识与强化。

  (2)观察下面的竖式,说一说在计算的过程中运用了什么运算定律。

  答案:运用了乘法分配律25×12=25×2+25×10

  解析:【考查目标1、2】结合两位数乘两位数的笔算过程,唤起学生已有的经验,体会乘法的算法与乘法分配律的关系。

  (3)李阿姨购进了60套这种运动服,花了多少钱?

  答案:(75+45)×60

  =120×60

  =7200(元)

  解析:【考查目标3】借助熟悉的生活问题情境,在列出不同算式的基础上,以生活情境的材料解释算式意义,进一步加深对乘法分配律意义的认识和理解。

  5、课堂小结通过本节课的学习,你都有哪些收获?

  这节课我们一起研究了一个新的运算定律:乘法分配律

  用字母表示是(a+b)×c=a×c+b×c

  左边表示(a+b)个c,右边表示a个c加b个c,所以两者结果相等。

  如果反过来,等式仍然成立。

  如4×7+4×3=4×(7+3)

  利用这个定律可以使计算简便,帮助我们解决许多问题。

  6、钉钉家校本布置家庭作业,当天提交。

《乘法分配律》教案10

  教学目标:

  略

  知识与技能:

  1、让学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

  2、使学生会用字母表示乘法分配律。

  3、能用乘法分配律进行简便计算。

  过程与方法:

  1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2、学生在发现规律的过程中,发展比较、分析、抽象、概括的能力,增强用符号表达数学的意识,进一步体会数学与生活的联系。

  情感态度与价值观:

  1、感受数学知识之间的内在联系,培养学生发现、探究的意识。

  2、让学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  重点:

  理解乘法分配律的意义,并归纳出定律,会运用乘法分配律。

  难点:

  抓住等号左右两边算式的特征和联系,理解乘法分配律的.意义。

  教学过程:

  一、谈话导入,揭示课题。

  师:昨天,同学们通过微视频自学了什么内容?(乘法分配律)

  这节课我们就进一步深入的学习乘法分配律。

  二、交流自主学习任务单

  师:通过观看《乘法分配律》的微视频,你知道了什么?

  (乘法分配律的意义,如何理解乘法分配律)

  (一)小组交流:任务一

  1、任务一:乘法分配律的意义

  从“举例”、“意义”和“用字母表示”这3点展开交流。

  2、学生汇报:

  师:谁有不同的举例?像这样的例子可以举多少个?(无数个)

  通过举例,你有什么发现?

  (揭示乘法分配律的意义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律)

  用字母表示:(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  师:“分别相乘”你是怎样理解的?请结合字母表示说一说。

  (二)小组交流:任务二

  1、任务二:理解乘法分配律

  从“画图”、“乘法的意义”这2点展开交流。

  2、学生汇报:(画图理解)

  师:谁有不同的画法?(课件演示)

  仔细看图和等式,谁看懂了?说给大家听。

  1、求这个长方形的周长。

  4×2+6×2=(4+6)×2

  长方形的'周长=(长+宽)×2

  师:看来,我们在三年级学习的长方形的周长公式中就孕伏了今天学习的乘法分配律。

  2、组合图形大长方形的面积:

  4×2+6×2=(4+6)×2

  师:计算组合图形的面积中也有乘法分配律,利用数形结合的方法来理解乘法分配律,很好。

  3、结合乘法分配律来理解多位数乘法的笔算。

  25实际上是把12分成25×12×12()+()进行计算=25×(+)

  师:同学们能联系旧知识学习新知识,真棒!只要你做一个有心人,你就会发现其实数学中有些新、旧知识是有联系的。

  4、乘法的意义理解乘法分配律。

  4×2+6×2

  表示:()个2()个2

  一共()个2

  所以:4×2+6×2=(+)×2

  三、巩固练习。

  1、下面哪些算式是正确的?正确的画“√”,错误的画“×”,并说说判断理由。

  56×(19+28)=56×19+28()

  32×(7×3)=32×7+32×3()

  64×64+36×64=(64+36)×64()

  2、脱式计算:(两种方法计算)

  (8+4)×25(8+4)×25

  师:你喜欢哪种计算方法,为什么?

  3、用简便方法计算下面各题。

  125×48 34×72+34×28

  99×38+38 73×30—3×30

  4、解决生活中的实际问题。

  这套运动服上衣65元,裤子35元。李阿姨购进了42套这种运动服,花了多少钱?(列综合算式解答)

  四、总结

  通过今天的学习你有什么收获?

《乘法分配律》教案11

  教学内容:人教社教材四年级下册P26页例7

  教学目标:

  1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。

  2、会应用乘法分配律,使某些运算简便。

  3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。

  教学重点:

  让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。

  教学难点:理解和掌握乘法分配律的推导过程。

  教学设计思路:

  1、通过买衣服的情境转入乘法分配律。

  2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。

  3、会用乘法分配律进行简单的计算。

  教学过程

  一、创设情境,生成问题

  1、生活引入,激发兴趣

  今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。

  出示:两件上衣(价格分别是100元、80元)

  两条裤子(价格分别是70元、50元)

  2、提出问题,独立思考

  出示:(1)一共有几种搭配方法?

  (2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。

  二、探索交流,建构规律

  1、生选择搭配方案并计算。

  2、组内研讨,并出示:

  (1)一共有几种搭配方案?

  (2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?

  3、汇报交流:

  (1)探讨第一种方案。

  师:哪一个同学想先来给项老师推荐他的方案?

  (预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(100 70)×5

  B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)

  (2)探讨第二种方案。

  (3)探讨第三种方案。

  (4)探讨第四种方案。

  教师板书:

  一套 ×套数 = 5件上衣 5条裤子

  (150 100)× 5 = 150×5 100×5

  (150 70)× 5 = 150×5 70×5

  (100 100)× 5 = 100×5 100×5

  (100 70)× 5 = 100×5 70×5

  4、生列举例子。

  (1)出示:活动要求

  A、写出三个这个的算式。

  B、交流:你怎么来说明你写的算式左右两边是相等的?

  (2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的`。

  5、用字母表示乘法分配律。

  问:谁能用一个算式表示全班所有同学的算式?

  6、学生归纳概括:乘法分配律的意义。

  三、巩固应用,训练提升

  1、在□里填上适当的数。

  (15 20)×12=□×12 □×12

  25×(4 9)=□×4 □×9

  8×(10 5)=□×□ □×□

  30×24=30×□ 30×□

  2、把左右两边相等的算式用线连接起来。

  48×12 52×12 15×18 26×18

  (15 18)×26 25×40 25×4

  25×(40 4) (48 52)×12

  14×(45-5) 11×4 25×4

  (11×25)×4 14×45-14×5

  四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?

《乘法分配律》教案12

  教学内容:

  P36/例3(乘法分配律)

  教学目的:

  1、引导学生探究和理解乘法分配律。

  2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  乘法分配律的意义和应用。

  教学难点:

  乘法分配律的反应用。

  教学过程:

  一、铺垫孕埋伏

  思考问题。

  在学习乘法的.运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?

  二、新授

  小组讨论,尝试用不同的方法解决。

  教师引导学生用多种方法解答。

  学生汇报自己的解法。引导学生说明不同算法的理由。

  (1)(4+2)×25

  =6×25

  =150(人)

  4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。

  (2)4×25+2×25

  =100+50

  =150(人)

  4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。

  小组合作:

  (1)两组算式有什么相同点?

  (2)两组算式有什么不同点?

  (3)两组算式有什么联系?

  汇报。

  教师要根据学生的汇报,灵活地进行引导,总结出要点。

  你还能举出像这样的几组算式吗?

  学生举例。

  根据学生举例板书。

  到底我们举的例子是不是符合这样的规律呢?请学生验证。

  请学生用语言表述出发现的规律。

  板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  你有什么好方法帮助我们大家记住乘法分配律?

  简记为:

  和与一个数相乘=积相加

  三、巩固练习

  P36/做一做

  P38/5

  在练习小结中,帮助学生记忆乘法分配律。

  四、小结

  学生汇报自己的收获。

  教师引导小结,相应完善板书。

  板书设计:

  乘法分配律

  一共有多少名同学参加了这次植树活动?

  (1)(4+2)×25(2)4×25+2×25

  =6×25 =100+50

  =150(人)=150(人)

  (4+2)×25=4×25+2×25

  ┆(学生举例)

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  两个数的和与一个数相乘,可以先把它们与这个

  数分别相乘,再相加。这叫做乘法分配律。

《乘法分配律》教案13

  一、教学内容:

  乘法分配律教材第36页的例3

  二、教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、通过观察、分析、比较,培养学生的分析、推理和概括能力。 3、发挥学生主体作用,体验探究学习的快乐。

  三、教学重点:指导学生探索乘法的分配律。

  四、教学难点:乘法分配律的应用。

  五、教学准备:小黑板、口算题、例题、练习题等。

  六、教学策略:本节课的学习我主要采取自主探究学习,把问题教 学法,合作教学法,情境教学法等结合运用于教学过程中。使学 生自主、勇敢地体验尝试和实践活动来进行综合学习。

  七、教学过程:

  (一)、设疑导入

  同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?( 简便)

  接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

  (二)、探究发现

  1.猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)25。)

  这道题算得怎么不如刚才的快啊?(它和前面的题目不一样)

  好,我们来看一下它与前面的题目有什么不同?

  这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  为什么这样算哪?

  你是怎么知道的?你知道什么是乘法分配律吗?

  你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2.验证。

  师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的`算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

  (学生计算,并汇报。)

  师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  您现在正在阅读的《乘法分配律》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《乘法分配律》教学设计及反思

  3.结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律乘法分配律。(出示课件,学生齐读分配律的意义。)

  师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)c=ac+bc

  师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

  反思:

  本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

  一、主动探究,实现亲身经历和体验

  现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)25这样一个特殊的算式。

  接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想验证结论联想。为学生的可持续学习奠定了基础。

  二、多向互动,注重合作与交流

  在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对乘法分配律这一运算定律的主动建构。学生对乘法分配律的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓一枝独秀不是春,百花齐放迎春来。

《乘法分配律》教案14

  教学内容:教科书第64页例7,练习十四的第3一10题。

  教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。

  教学难点:应用乘法分配律简便计算

  教具准备:将复习中的题目写在小黑板上。

  教学过程:

  一、复习

  教师出示试题:

  1.(35+65)×37 2.35×37+65×37

  3.85×(174+26) 4.85×174+85×26

  5.(80+8)×25 6.80×25+8×25

  7. 32×(200+3) 8.32×200+32×3

  “根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

  教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  “哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

  “这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  1.教学例7

  (1)教师出示例题:计算9×37+9×63。

  教师:这道题是要计算两上乘积的和。

  “仔细看一看这道题里的两上乘法计算中的因数有什么特点?”

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)

  “联系上面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)

  “这是应用了什么运算定律?”

  教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概况,首先,要计算的`是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  (2)教师出示例题:102×43

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  “想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)

  教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。

  板书:102×43

  =(100+2)×43

  =100×43+2×43

  =4386

  “上面计算中的第二步根据是什么?”(乘法分配律)。

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

  三、课堂练习

  做练习十四的题目。

  1.第3题,2.让学生口算。当计算101×57和45×102时,3.提问:“你是怎样做的?得多少?”

  2、第4题,5.先让学生自己计算。核对时让学生回答。

  “如果按运算顺序计算,应该先算什么?”

  “怎样计算简便?根据是什么?”

  第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。

  “下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

  3、第7题,7.先让学生独立做,8.然后集体核对,9.核对的要让学生说一说是怎样做的。当核对“26×3”时,10.学生说出计算方法后,11.再让学生说一说计算过程。学生发言后,12.教师说明:26乘以3可以写作(20+6)×3,13.根据乘法分配律等于20乘以3的积再加6乘以3的积,14.这实际上是应用了乘法分配律。这就是说,15.我们过去学过的乘法口算有些应用了乘法分配律。这道题中的第7小题应用乘法结合律比较简便,16.第4、6、8、9题应用乘法分配律比较简便。

  4、 第9题和第10题,18.先让学生独立做,19.核对时要让学生说出每个算式的意义。

  5.提前做完的学生可以做第l9*题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:(80—30)×110一30×110;

  (80—30—30)×110;

  (80—30×2)×110。

  四、作业

  练习十四的第5、6、8题。

《乘法分配律》教案15

  教学目标:

  知识与技能

  1、理解乘法分配律的意义,并能正确地描述。

  2、初步懂得运用乘法分配律进行简算。

  过程与方法

  1、让学生参与乘法分配律的归纳过程,培养学生概括、分析、推理的能力。

  2、使学生了解从特殊到一般,再由一般到特殊这种认识事物的方法。

  情感态度与价值观

  通过观察、验证、归纳等数学活动,使学生体验数学问题的探索性,感受数学思考过程的条理性。使学生感受数学和现实生活的联系,培养学生学习数学的兴趣。

  教学重难点:

  重点

  充分感知并归纳乘法分配律。

  难点

  理解乘法分配律的意义,充分感知并归纳乘法分配律。

  教学准备:

  多媒体课件。

  教学设计:

  一、创设情景,引入新课

  同学们,你们看了自然环境被破坏而出现的沙尘暴、水土流失等一些情景的图片,有什么想说的吗?

  生:1、我想大声的呼吁:请不要再滥伐树木了,不然的话沙尘暴会更厉害。

  2、请保护好我们共同的家园吧!

  3、要保护我们的家园,还要大量植树。

  师:说的太好了。要保护我们的家园就要植树造林,种植花草。同学们,你们还记得前段时间学校植树活动的情况吗?

  (多媒体展示植树的场景,并附文字:一共有25个小组参加植树活动,每组里4人负责挖坑、种树,2人负责抬水、浇树)

  二、探究新知

  1、探究乘法运算定律

  (1)发现问题,提出问题,独立解决问题

  师:同学们,你都得到了哪些数学信息?

  学生回答。

  师:根据这些信息,你能提出什么问题?

  生:一共有多少同学参加了这次植树活动?

  教师随学生的回答板书问题。

  师:请根据这些信息解决这个问题。

  学生列式计算。

  (2)交流解决问题的方法

  生展示汇报:

  (4+2)×25 4×25+2×25

  =6×25 =100+50

  =150(人) =150(人)

  师:谁和第一位同学的算式一样?请举手。谁来说一说你们解决问题的步骤?

  生:先用加法算出每组有几人,再乘25算出一共有多少人?

  师:谁和第二位同学的算式一样?请举手。谁来说一说第二种方法解决问题的步骤?

  生:根据收集到的信息,先分别算出负责挖坑种树的人数和抬水浇树的人数,再把这两部分合起来算出一共有多少人?

  师:回答的很好。我们来看4×25和2×25分别表示什么?还有不同的想法吗?

  生:我也是先算出每组有几人?即(4+2)×25。

  师:同学们用不同的方法解决了这个问题,请大家一起回答这次植树活动的学生一共有多少人?(150人)

  2、探究乘法分配律

  (1)探讨

  师:同学们用不同的方法解决了这个问题并且计算结果相同,那么,这两个算式之间有什么关系?

  出示:(4+2)×25 4×25+2×25

  生:两个算式的结果相等,在这两个算式中间可以用等号连接。

  师:谁能用自己的语言来描述这个等式。

  生1:4加2的和乘25等于4乘25加上2乘25。

  2:4加2的和乘25等于先把4和2分别与25相乘再相加。

  师:刚才同学们是先算出每组有几人,再算一共有多少人,算式为25×(4+2)。想一想:计算25乘4加2的和还可以怎样算呢?动手试试再把想法说给同桌听。

  师:谁来给大家说自己的想法?

  生:25乘4加2的和,可以先把25分别与4和2相乘,再相加。也就是先算25×4和25×2,再把两个积相加。即25×(4+2)=25×4+25×2

  (2)举例观察

  师:我们知道了4加2的和与25相乘,可以先把4和2与25分别相乘,再相加。请你再举出几个这样的例子,写在本子上。你怎么来说明你写的.算式左右两边是相等的?

  师:谁来汇报你写的式子,师随生汇报板书。请同学们观察这两组等式以及自己写的等式,有什么发现?请先和同学交流。

  (3)交流概括

  师:谁来说说自己的发现?

  生:我发现,两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。

  师:两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。这就叫乘法分配律。

  板书课题:乘法分配律。

  师:刚才同学们写的算式都对,那我们可不可以用一个算式就能表示出所有的式子?

  生试着在练习本上写,并抽学生汇报。

  生1:a、b表示两个加数,c表示因数。a加b的和乘c等于a乘c加b乘c。即(a+b)×c=a×c+b×c。

  生2:a表示因数,b、c表示两个加数,a乘b加c的和等于a乘b加上a乘c。即a×(b+c)=a×b+a×c。

  三、巩固练习

  1、在□里填上适当的数。

  (15+20)×12=□×12+□×12

  25×(4+9)=□×4+□×9

  8×(10+5)=□×□+□×□

  75×24=75×□+75×□

  2、把左右两边相等的算式用线连接起来。

  48×12+52×12 15×18+26×18

  (15+18)×26 25×40+25×4

  25×(40+4)(48+52)×12

  14×(45-5)11×4+25×4

  (11×25)×4 14×45-14×5

【《乘法分配律》教案】相关文章:

乘法分配律教案09-04

小学乘法分配律教案03-17

《乘法分配律》小学教案03-31

《乘法分配律》教案15篇02-17

乘法分配律教案15篇02-17

乘法分配律教案(15篇)02-17

《乘法分配律》教案(通用19篇)01-19

乘法分配律教案合集15篇02-18

乘法分配律教案(通用15篇)03-18