当前位置:育文网>教学文档>教案> 小数的意义教案

小数的意义教案

时间:2024-05-17 21:59:21 教案 我要投稿

小数的意义教案汇编15篇

  作为一名老师,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。那要怎么写好教案呢?下面是小编整理的小数的意义教案,仅供参考,希望能够帮助到大家。

小数的意义教案汇编15篇

小数的意义教案1

  [教学内容] 小数的意义(第2-5页)

  [教学目标]

  1、结合具体情境,体会生活中存在着大量的小数。

  2、通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义,会正确读写小数。

  [教学重、难点] 通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。

  [教学准备] 学生、老师准备计数器。

  [教学过程]

  一、生活中的小数

  (事先布置学生找一找生活中的小数)让学生说说生活中除了某些商品的价格用到小数外,还在哪些地方见到过小数。

  结合树上的例子让学生尝试用自己的语言说明在每个情境中消失表示的是什么,由此激发学生进一步学习小数意义的兴趣。

  二、小数的意义

  1、自学小数的意义(看书第3页)

  2、小组交流

  3、汇报:出示正方形,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。

  4、以1米为例结合具体的数量理解小数

  把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。

  5、归纳小数的意义

  通过学生的讨论归纳出小数的.意义。

  三、小数部分的数位及读写:

  1、小数部分的数位及数位间的进率

  先复习整数部分的数位,再介绍小数部分的数位,一位小数是十分之几,小数点右边的第一位是十分位;两位小数是百分之几,小数点右边的第二位是百分位;三位小数是千分之几,小数点右边的第三位是千分位。

  在计数器的各位上拨3个珠子,说一说各表示多少,体会数位间的进率。

  2、小数的读写

  让学生试读,注意提醒学生小数部分的读法与整数部分不同。

  3、写一写、读一读、说一说。

  对照计数器写出小数,并读一读,说出各数位上的数表示什么。让学生先独立完成,再小组交流。

  四、数学游戏:

  通过数和形的对应,加深对各数位间关系的理解。

  五、作业:

  第5页1-4

  [板书设计]

  小数的意义

  千 百 十 个 十 百 千

  位 位 位 位 ?分 分 分 数位

  位 位 位

  整数部分 小数点小数部分

小数的意义教案2

  学习内容:

  小数的意义和产生,课本32-33页内容。

  学习目标:

  1、我能通过观察知道小数的产生。

  2、我能通过分析明白小数的意义。

  3、我知道小数的计算单位及单位间的进率。

  学习重难点:

  小数的意义和计算单位及进率

  学习过程:

  课前谈话

  孩子们们,平时喜欢猜谜语吗?(喜欢)

  老师这里有一个谜语,大家想猜一猜吗?(可以)

  请竖起你的小耳朵,认真听,看谁能猜中?

  生来公平,拿在手中,要问长短,它最分明。打一度量器具。

  生猜尺子。

  师:他猜尺子,大家同意吗?你猜中了,给他掌声鼓励!

  咱们这节课中就让尺子来帮助我们进行学习,那让我们上课吧!

  一、教学小数的产生:

  首先,我想先考考大家的估算能力可以吗?那好,请大家估计一下课桌高度是多少?谁先说?学生--

  课桌的高度大约1米多一些,大家估计的差不多,可见咱们班同学的估算能力还是很好的!

  师:那如果我们想知道课桌准确的高度该怎么办呢?生:用尺子

  师:哎,尺子。孩子们,生活中我们对尺子已经非常的熟悉了吧,下面就请大家用手中的米尺测量一下身边物体的长度。请同桌两人合作测量。师:哪个孩子先来汇报测量数据。

  师:还有谁愿意起来汇报,还有吗?教师有选择的板书:1米8分米,2分米5厘米等二三个即可。

  教师:通过刚才同学们的汇报,我们可以知道,课桌的长度、高度,数学课本的长度,铅笔的长度都不是整米数,像这样不能得到整数结果时,我们常用小数来表示。例如课桌的长度可以写成1.2米,数学课本的长度为0.35米。

  在生活中,人们进行测量和计算时,往往不能正好得到整数的结果,于是人们就发现和运用了小数。

  点击出示“你知道吗?”课件展示小数的历史。

  这节课就让我深入研究一下小数的'意义。(板书课题)齐读课题。

  设计意图:适当复习有关记量单位的有关知识,唤醒学生已有的知识经验,为新知识的学习奠定一定的知识和心理方面的基础。

  二、探究小数的意义:

  1、认识一位小数

  师:孩子们,想一想米尺上面有哪些不同的长度单位,我听同学们说了很多,哪位同学能按照从大到小的顺序说一说呢,板书:米,分米,厘米,毫米。师:我们在进行测量长度时,不够1米时,需要把1米平均分成10份,100份,1000份,用较小的长度单位来测量。孩子,请思考,把1米平均分成10份,每份是1分米,也可以说是10厘米,这一份的长度就是1米的十分之一,是十分之一米。

  师:孩子们,请看你手中的米尺,观察!从0到10,这是几分米?生:1分米,师:用米做单位,用分数怎么表示呢?生:十分之一米。师:还可以用什么数表示呢?师:十分之一米也可以写成0.1米。板书

  师:请同学们再继续观察手中的米尺从0到30,是几分米,十分之几米?用小数怎么表示?哪个孩子想到了?来这个孩子你说,说说你的想法?说的很好孩子,板书

  师:那从0到70,是十分之几米呢?小数如何表示?孩子,你来,解释下好吗?解释的真清楚。板书

  师:孩子观察这组分数有什么共同的特点?板书:分母是10,咱们班孩子特别善于观察,来孩子再观察这组小数有什么共同特点?像这样小数点后面只有一位的小数叫一位小数。板书:一位小数。

  师:请同学们告诉我,十分之一米和0.1米,十分之三米和0.3米,十分之七和0.7之间有什么关系?如果让你选择一个数学符号来表示它们之间的关系,你会选择哪个符号呢?说说你的想法,用红笔填写等于号。

  师:说的很好,请同学们观察这组分数和小数,十分之一米等于0.1米,百分之一等于0.01,千分之一等于0.001,你发现了什么?

  生1:我发现分数和小数的关系非常的密切,可以把分数写成小数。

  生2:我发现,分母是10的分数可以写成一位小数。

  师:同学们的发现可真不少,那说了这么多,请同学们思考一位小数就是表示什么呢?师:看来一位小数就是表示分母是10的分数。

  设计意图:通过让生观察米尺,找出不同的几分米,让孩子在实践中体会到十分之几和一位小数的关系。

  2、认识两位小数

  师:我们已经知道了一位小数表示十分之几,那么请同学们猜一猜两位小数与什么样的分数有关系呢?

  师:好的,我们一起来验证大家的猜想。请在米尺上面找出1厘米,

  找到了吗?师:这1厘米的长度是1米的几分之几?用分数怎么表示呢?板书分数,小数可以表示为0.01

  师:请同学们想一想,3厘米呢?是几分之几米?可以观察手中的米尺进行思考!谁来说,来你,这个孩子,说说你的想法?小数可以写为?说说你的想法孩子,说的不错!

  6厘米呢?孩子!用米做单位是百分之几米?怎样用小数表示?

  师:这组分数的共同特点是怎样的?这些小数又有什么共同点吗?

  生汇报,师板书百分之一等于0.01,百分之三等于0.03,百分之六等于0.06.师:来,看这里,同学们有什么发现?生1:分母是100的分数可以写成两位小数。生2:可以说两位小数表示百分知几。

  设计意图:学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是一百的分数可以写成两位小数。

  3、认识三位小数

  同学说的非常好,如果我们把这把米尺平均分成1000份,每一份是多少呢?从0到1表示1毫米,那它是几分之一米呢?(课件出示米尺放大图)写成小数呢?板书(一千分之一米,0.001米)

  师:孩子,那这样的12份呢?师板书。123份呢?师板书。

  师:指板书,从这里你们又发现了什么?

  生1:我发现分母是1000的分数可以写成三位小数。

  生2:三位小数表示千分之几。

  师:说的非常好,指板书一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师:请同学们想一想四位小数表示什么?五位小数呢?

  生:四位小数表示万分之几,五位小数表示十万分之几。

  师:同学们都很聪明,请看这里回忆我们的探讨过程,和小组内的同学交流一下,你都发现了什么?

  生1,:我认为分母是10,100,1000等的分数可以用小数来表示。生2:我们知道,十分之几可以写成一位小数,百分之几可以写成两位小数。生3:还可以说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师:同学们总结的真好!我们知道了分母是10,100,1000,的分数可以用小数表示,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几......

  设计意图:让学生经历只是的形成过程,有意识的促进迁移,让学生体验成功,培养学生的学习兴趣和信心。

  如果我们还想在这把米尺上面找到更精确的数值怎么办呢?有同学知道吗?更小的单位还有微米,纳米,也就是说继续把1米平均分成多少份?随着我们队测量精确度的要求越来越高,你会发现这个长度单位可以越分越小,最后小的肉眼都看不到,数学就是这么神奇!

  4、学习小数单位

  孩子,请看这些分数,十分之一,十分之六和十分之八,这些分数都是有几个十分之一组成的?如果把这些分数用小数表示的话,我们可以这样思考0.1,0.6,0.8这些小数都是有几个0.1组成的呢?由此看来这些一位小数的计数单位就是十分之一,也可以用0.1表示;

  那么两位小数的计数单位是多少呢?请思考!

  师:说的很对,这些两位小数都是由几个0.01组成的,所以它们的计数单位就是百分之一,也可以用0.01来表示。

  师:继续思考三位小数的计数单位是多少?嗯,很对!三位小数的计数单位就是千分之一,也可以用0.001来表示。

  师:孩子们请看屏幕,我们会有更好的理解。师:我们刚才学习的一位小数,它是把1米平均分成10份,表示这样的1份或者几份,其中的1份就是它的计数单位,可以用十分之一表示,也可以用0.1表示,

  师:那谁能说说两位小数呢?师:说的很好,三位小数,谁来说。

  5、学习单位进率

  以前我们学过整数的计数单位每相邻两个计数单位之间的进率是多少呢?有谁知道?

  那相邻的两个小数计数单位之间的进率是多少呢?还会是10吗?生:是。师:说说你的理由!师:嗯!好,非常好,我们现在就来解决这个问题。孩子请思考1分米等于多少厘米?嗯,好的!1分米等于10厘米,相当于0.1米等于10个0.01米,所以我们可以说0.1和0.01这两个相邻计数单位的进率是10,师:谁来说说0.01和0.001这两个相邻计数单位之间的进率呢?1厘米等于10毫米,相当于0.01等于10个0.001,由此得出0.01和0.001之间的进率也是10.师:那三位小数呢?师:看来小数和整数一样,相邻的两个计数单位之间的进率是10.

  三:巩固练习

  学习了这么多关于小数的知识,老师想知道大家掌握的怎么样了,我们一起来做几道小练习,试一试。

  1、把下面各图中涂色的部分用分数和小数表示出来。让生分别写出分数和小数。

  2、做一做,填空。

  0.3里面有()个0.1

  0.09里面有()个0.01。

  0.35里面有()个0.01.

  0.006里面有()个0.001。

  0.136里面有()个0.001.

  4个()是0.004.

  3、练一练

  四、课堂总结

  同学们,马上要下课了,能跟我谈谈你们的体会和收获吗?

  同学们,关于小数的知识还有很多很多,有机会我们在一起探讨好吗?整理好学习用品,下课!

小数的意义教案3

  教学目标:

  1、通过测量活动,进一步理解小数的意义,体会小数在生活中的实际应用。

  2、会进行单名数和复名数单位之间的换算。

  3、体会小数与分数之间的关系,会进行互化。

  4、通过动手操作,培养学生合作学习的能力,养成良好的学习习惯。

  教学重点:

  通过探索单位换算的过程,进一步体会小数的意义。

  教学难点:

  把单名数化成复名数。

  教学准备:

  多媒体课件。

  课时:

  课时一

  教学过程:

  一、导入:

  师:(课件展示教材第4页上面的图)同学们好,咱们一起来看看这位小朋友在做什么?(学生小声议论:可能是在测量黑板的长度吧?)仔细观察一下,你知道这位小朋友量出的黑板长度是多少少吗?

  生:学生边观察边交流。师板书课题。

  设计意图在观察过程中让学生收集数据,探讨并理解几分米或几厘米换算成以“米”作单位应怎样表示,鼓励学生想出不同的表示方法。

  二、探讨与交流:

  1、学生汇报:黑板长2米,又多出36厘米。

  师:这些数有什么地方不一样吗?

  生:数的单位不一样。

  师:单位不同,计量起来不方便,那咱们该如何解决这个问题呢?

  生:把这些数据的单位换算成统一的。

  师:你认为换算成哪个单位来计量更合适呢?

  生:我觉得换算写成以“米”为单位比较合适(也有同学说换算成以“分米”为单位比较合适)。

  师:那咱们一起来讨论一下如何用“米”来表示黑板的长度吧。

  2、活动要求:

  (1)要求学生分组讨论把以“厘米”作单位的数换算成以“米”作单位的数应该怎样操作。可以使用不同的方法。

  (2)汇报结果:鼓励学生用自己的语言说出自己的想法。

  生:因为1米=100厘米,把1米平均分成100份,36厘米就是36份,就是100(36)米,如果用小数表示就是0、36米。所以黑板的长度就可以表示为2、36米。

  师:(归纳)把1米平均分成10份,1份或几份可以用一位小数表示;

  把1米平均分成100份,1份或几份可以用两位小数表示······

  (1)一位小数表示十分之几;

  (2)两位小数表示百分之几。

  设计意图:进一步使学生掌握以“分米”“厘米”作单位的数换算成以“米”作单位的数,可以用小数表示。

  三、探讨与延伸

  师:刚才咱们学习了长度单位的一种表示方法,那么,鹌鹑蛋和鸵鸟蛋的质量又如何表示呢?(师出示图片课件,生思考回答)

  生:可以用克与千克来表示。

  师:称量质量较小的物体一般用克作单位,称量质量较大的物体一般用千克作单位。那么如何用千克来表示鹌鹑蛋和鸵鸟蛋的质量呢?

  生1:鹌鹑蛋的质量是12克= 1000(12)千克=0、012千克。

  生2:鸵鸟蛋的.质量是先把500克用千克表示出来再加上原来的的1千克。500克=1000(500)千克=0、5千克,鸵鸟蛋重0、5千克+1千克=1、5千克。

  师:(归纳)把1千克平均分成1000份,1份或几份可以用三位小数表示,也就是说三位小数表示千分之几。同学们通过思考,懂得了用小数表示物体的质量,大家表现得都很好。用小数表示物体的质量在生活中的应用很广泛,所以,大家都应该熟练掌握。

  设计意图:结合情境图,让学生明白由低级单位数化成高级单位数的方法,培养学生的分析能力和合作学习能力。

  四、生活与应用:

  师:为了能更好的熟悉低级单位和高级单位数之间的互化,咱们现在做个活动,前后位的同学相互合作,通过目视估算出对方的身高和体重。

  活动要求:

  1、目测估算出的结果要尽可能的接近事实。

  2、把身高转换成以米为单位的数,体重转换成以千克为单位的数。

  3、与其他同学互相交流,选出较为准确的数据,汇报给老师。

  生:(认真估测、交流并汇报)

  设计意图引导学生把课堂上学到的知识运用到生活中去,发现生活中更多的数学信息。

  五、巩固练习:

  1、师:咱们先看一看这个表格,哪位同学愿意来填一填?(师出示教材第5页“练一练”第一题课件)

  学生纷纷举手抢答。师给予评议。

  2、师:(出示课件“练一练”第二题。)同学们知道图片上的这只鸟叫什么名字吗?它是世界上飞的最快的鸟?叫军舰鸟。大家认真读题后,自己独立完成有关军舰鸟的数学信息。

  六、总结:这节课咱们学习了长度单位和质量单位换算的方法,其他的数量单位也是可以换算的。生活中,很多时候都需要进行单位换算,你可以与同学一起去找一找。

  七、作业:教材第5页第4题。

  八、板书设计:

  36厘米=0.36米

  12克=0.012千克

  500克=0.5千克

  九、后记:

  这节课的内容主要是要求学生会把低级单位的数转化为高级单位的数,会进行单名数和复名数的互化。在单位换算方面,特别是在小数意义的基础上理解单位换算,相对孩子们来说有一定的难度,所以对于这部分知识,只是要求孩子们重在理解,掌握方法。

  在备课时,我就考虑到由于孩子们在日常生活中对小数的接触不是很多,小数的意义又具有一定程度的抽象性,怎样在教学中找出孩子们生活与这一数学知识的契合点,让他们能自然地融入到学习中去,作了详细地分析。由于孩子们的接受能力有所不同,在教学中我对问题的设置与教材略有变化。我认为这样学生学习起来比较顺畅。

小数的意义教案4

  教学目标

  1.了解小数是如何产生的,理解和掌握小数的意义。

  2.明确小数与分数之间的联系,掌握小数的计数单位以及它们之间进率。

  3.经历小数的发现、认识过程,感知知识与生活之间的密切联系,体验探究发现和迁移推理的学习方法,培养动手实践、合作探究的学习习惯。

  教学重难点

  重点:理解和掌握小数的意义、小数的计数单位以及它们之间的进率。

  难点:理解小数的计数单位以及它们之间的进率。

  教学工具

  课件

  教学过程

  一、复习导入

  师出示课件(m,dm,cm)并问到:首先来见见几位老朋友,你还认识它们吗?谁来读一读?

  指一名学生试读

  师:一起读

  生齐读。

  师:想一想,括号里应填几?

  指名回答。

  出示课本情境图

  师:他们测量的结果分别是多少?

  生:1米1分米、1米2分米

  师:如果只用米作单位,该怎样表示呢?

  生:1.1米、1.2米(师板书)

  师:生活中,在哪些地方可以见到小数?来看几幅图片。(课件出示生活中的小数)

  师:我们把小数点后面有一个数的.小数叫做一位小数,找一找还有一位小数吗?

  小数点后面有两个数的叫做两位小数,能找一找吗?

  谁能说一个三位小数?

  师:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。这节课我们继续认识小数。(板书课题:小数的意义)

  二、探究新知

  1、探究一位小数的意义

  师出示课件:把一米平均分成十份,这里的一份是多少?

  生:一分米

  师:用分数表示是多少米呢?生:十分之一米

  师:用小数表示是多少米呢?

  生:0.1米

  师:把一米平均分成10份,1份是1分米,用分数表示是十分之一米,小数是0.1米。这里还有两个括号需要填写,大家独立完成,可以吗?

  生完成,师指名回答,并让生说一说是怎么想的,集体评价。

  师:观察这些分数和小数,你有什么想说的吗?

  生如果有困难,师引导:观察这些分数的分母是几?小数是几位小数?

  得出结论:分母是10的分数可以用一位小数表示。(师板书)

  师:理解了吗?考考你,完成作业纸巩固练习1

  生完成,指名回答,集体订正。

  2、探究两位小数的意义

  师:刚才我们把一米平均分成10份,如果平均分成100份,会是什么样子呢?来看一下。(课件出示)

  师:其中的一份是多少呢?

  生:1厘米

  师:用分数表示是多少米呢?

  生:一百分之一米

  师:用小数表示呢?

  生:0.01米

  师:真聪明,那么后面的括号继续交给你独立完成。

  生完成,师指名说,集体评价。

  师:再来观察一下这些分数和小数,又有什么发现呢?

  生交流,得出:分母是100的分数可以用两位小数表示。(师板书)

  师:学会了吗?还得考考你。请大家完成作业纸上巩固练习2

  生独立完成,指名回答,集体订正。

  3、探究三位小数的意义

  师:把一米平均分成1000份是什么样子呢?又会有怎样的发现呢?

  现在把这个任务交给你和同桌,交流讨论,完成第三个探究。

  生生合作交流,师巡视。

  生完成,汇报结果,集体订正。

  师:观察这里的分数与小数,能得到一个结论吗?

  生:分母是1000的分数可以用三位小数表示。(师板书)

  4、推想、概括小数的意义

  师:试想一下:把一米平均分成一万份,其中的一份用分数怎样表示?小数呢?如果平均分成十万份呢?

  师:能不能把我们刚才的这些发现概括成一句简洁明了的话呢?

  生交流,师引导说出:分母是10、100、1000......的分数可以用小数表示。(师板书)

  师:现在把我们所学的知识应用起来,请大家完成作业纸《应用感受,巩固意义》

  生完成,指名回答,订正。

  5、认识小数的计数单位与进率

  师出示课件:思考一下,0.3里有几个0.1?

  生:0.3里有3个0.1

  师:0.06里有几个0.01呢?0.007里有几个0.001呢?

  生依次回答.

  师:0.1、0.01、0.001写成分数分别是多少呢?

  生:十分之一、百分之一、千分之一

  师:小数的计数单位就是十分之一、百分之一、千分之一......,分别写作0.1、0.01、0.001......

  师:再思考:十分之一里有几个百分之一?百分之一里有几个千分之一?

  生回答。

  师:所以小数相邻两个计数单位的进率是?

  生:是10

  三、综合应用、拓展提升

  生独立完成作业纸上的《综合应用》

  第一题:指名回答,集体订正

  第二题:指名回答,并说一说是怎样想的。

  四、拓展视野

  课件出示教材“你知道吗?”指名读一读。

  五、课堂小结

  这节课你有什么收获呢?

小数的意义教案5

  【教学内容】 五年级上册第28页至30页例1和例2及相应的“试一试”和“练一练”,练习五1-5题。

  【教学目标】

  1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

  2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

  3.培养良好的学习习惯,提高学生的探究、归纳比较、抽象概括的能力。

  【教学重、难点】理解小数的意义。

  【教学过程】

  一、交流信息,引入课题

  课前我们收集了一些关于小数的资料,老师选择了一些,谁愿意给大家介绍一下?

  (1)一块橡皮0.3元;一张信封0.05元;一本练习本0.48元。

  (2)一枚1分硬币的厚度大约是0.001米。

  (3)老师用的签字笔笔芯是0.38毫米的。

  (4)艾兰德 “维生素C含片”净含量:0.65克×120片。

  (5)钱嘉容的家到学校大约有3.9千米,她的爸爸身高1.82米。

  像0.3这样的一位小数三年级时我们已经认识,这些小数和它们有什么不一样?会读吗?只读小数,谁来读一读。

  你们觉得读小数时需要提醒大家注意什么?(小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。)

  【设计意图:学生的知识起点是三下时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情。教材为什么三下就安排初步认识小数,因为生活中小数随处可见,孩子不陌生,早些了解也便于孩子在生活中交流。孩子对小数不陌生,因此两位小数、三位小数虽课本没安排学习,但孩子的读法早已在生活中习得,因此小数的读写方法不作为本节课的教学重点,只课之初始阶段稍做提醒,指出读法中的注意点,即尊重孩子的实际情况。】

  这节课我们将继续学习小数的意义。(板书课题:小数的意义)

  二、教学例1,初步感知

  1、出示例1。我们先来看第一条信息。

  这些小数表示物品的单价。

  如果你到商店去买这些物品,该怎样付钱呢?(课件出示: 3角 5分 48分)

  谈话: 这里的0.3元用分数可以怎么表示?你是怎么想的?(板书:0.3元)

  小结:1元=10角,3角是1元的3/10,可以写成0.3元。(板书:3/10元 0.3元)

  2、初步认识两位小数。

  你能仿照(0.3元)这样的思路说说0.05元和0.48元的意思吗?先独立想想,再同桌交流。(如果学生感到困难,提示:1元是多少分;1分是1元的几分之几;那5分呢?48分呢?可以怎样想?)

  0.05元,谁来说说你是怎么想的?(同桌互相说说)

  1元=100分,5分是1元的5100 ,可以写成0.05元;

  0.48元谁来说?

  1元=100分,48分是1元的48100 ,可以写成0.48元;

  板书:5100 元 0.05元 48100 元 0.48元

  3、看看这些小数,为什么(0.05)这里要写0?(因为是5分钱,1元=100分)几分钱用小数表示就是——,这里(0.48)为什么没有0?几角几分用小数表示就是——

  【设计意图:小数的`意义较为抽象,学生掌握起来有一定困难。但以元为单位的小数所表示的金额是学生在生活中已经初步认识了的,比较熟悉,这些经验能支持学生理解小数的意义,从而实现感性认识到理性认识的飞跃。在初步感知阶段,利用“0.3元该怎么付?”学生把元转化成角,进而追问0.3元用分数可以怎么表示?得出3角是1元的3/10,可以写成0.3元。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。】

  三、教学例2,概括意义

  (一)进一步理解两位小数的意义。

  1、刚才我们借助圆角分间的关系认识小数,其实还可以借助其它一些事物,这是一把米尺,把1米平均分成100份,每份长多少(1厘米)?为了方便看得清楚,我们截取一部分将它放大。想一想, 1厘米是1米的几分之一?用小数怎么表示?

  投影:1米=100厘米,1厘米是1米的1/100,可以写成0.01米。

  谁能这样完整的说说。(板书:1厘米 1/100米 0.01米)

  2、4厘米和9厘米写成以“米”作单位的分数和小数各是多少?拿出练习纸,在第一题处填一填。和屏幕校对。谁来说说(4厘米)你是怎么想的?0.09米有多长?

  (二)自主探究三位小数的意义。

  1、出示第一屏,收集的小数信息:请同学们看第2条信息,读——0.001米?你认为它比要0.01米的长度——短!究竟有多长?

  2、老师将米尺再截短再放大,现在你能在米尺上指出0.001米吗,并告诉大家你是怎样想。(能仿照刚才的思路说说想法)

  谁再来说说0.001米的意思?板书:11000 米 0.001米

  你能说一个毫米数,让大家像这样来说说吗?板书两个

  3、练习纸上找到材料2完成填空。(课件出示,直接校对)

  这些用米作单位的三位小数都表示1米的——千分之几。

  (三)观察发现,概括意义

  1、一起来观察板书,先竖着看看,再横着看,仔细观察这一行分数和对应的小数,你有什么发现?想一想四人小组交流。汇报

  竖着看,这3个数量都是——相等的!下面两个数量的单位都是——相同的!这说明分数、小数之间有着密切的联系!(根据学生交流情况可适当擦去写板书,只留下分数、小数,便于观察、比较、抽象概括意义。)

  从分数往小数看,什么样的分数可以直接写成小数呢?

  看看下面的小数,可以分成几类?

  从小数往分数看,一位小数、两位小数、三位小数各表示什么?还能往下想吗?四位小数呢?(表示万分之几)能想的完吗?

  引导出示:分母是10、100、1000……的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  指出:这就是小数的意义,引导学生完整的看一看 。

  (四)回到第一屏学生收集的信息,解释3、4条信息中小数的意义。

  【设计意图:例2的教学分成三段进行。第一段继续教学两位小数,以“米”为单位改写成小数,从中体会不仅是“元”为单位的百分之几可以写成两位小数,其他百分之几的分数都可以写成两位小数。第二段教学三位小数,让学生把学习两位小数的经验迁移到三位小数上。数学学习的本质在于数学思维,第三段初步概括小数的意义,对一位、两位、三位……小数意义的具体分析后,抓住展示和交流这一时机,通过清晰直观的板书,从上往下又从左往右地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解。】

小数的意义教案6

  [教材分析]

  这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。

  [教学内容]

  义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。

  [教学目标]

  1.使学生经历实际测量等活动,了解小数的产生过程。

  2.通过实际情境感悟分数可以用小数来表示,理解小数的意义,认识小数的计数单位和进率。

  3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。

  [教学重点、难点]

  理解小数的意义

  [课前准备]

  课件,课前调查的数据资料

  [教学过程]

  (一)创设情境

  1.感受生活中整数和分数的运用。

  (1)课件出示。

  一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一

  (2)师:看来在我们的生活中,整数的应用是非常普遍和广泛的。当我们

  得不到正好的整数结果时,可以用分数来表示。

  2.感受生活中小数的运用,质疑反思,体会小数的产生。

  (1)学生介绍课前搜集到的数据信息

  (2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?

  (3)抓住现实信息引发思考

  提问:生活中,我们在哪些时候会常常用到小数?

  让学生自己动手测量桌子的长度或数学书封面的长和宽

  3.揭示课题:

  看来小数的存在也有它一定的价值,这节课我们就来研究小数的产生及意义。

  (设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)

  (二)研究改写方法,探究小数的意义

  1.1米

  初步探究一位小数的改写。

  (1)出示线段图。

  (2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?

  ①(学生预设:把1米平均分成10份,每份是米。)

  ②也可以用小数来表示,每一份是0.1米。

  ③其中的两份用小数可以怎样表示,你怎么想?

  (学生预设:把1米平均分成10份,每两份是米,小数是0.2米)

  ④图中还有哪部分表示0.1?(请学生指图)

  (3)理解0.2并感知0.1与0.2有什么关系

  ①哪部分表示0.2?想一想对0.2你还能说些什么?

  ②0.2与0.1有什么关系?

  (0.1+0.1=0.2,0.2是两个0.1…)

  ③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。

  ④对比:米与0.1米,米与0.2米…有怎样的关系?

  ⑤观察米=0.1米,米=0.2米,…你发现了什么?

  ⑥提问:一位小数表示什么?

  2.在迁移辨析中理解两位小数的改写。

  (1)出示教材中的'图:如果把1米平均分成100份,其中的1份用分数怎样表示?用小数怎样表示?

  (2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。

  (根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)

  师:同学们你们观察上面这些算式,你们有什么发现?

  (学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)

  (3)练习:说出小数的意义

  课件呈现:0.6、0.09、0.12、0.86、0.1

  (设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)

  3.深入、灵活理解三位小数的改写

  (1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?

  (2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?

  (3)课件出示三组数据。

  第一组:1/100023/100026/1000

  第二组:3/100043/100089/1000

  第三组:9/100065/10008/1000

  (4)提出要求:请小组合作自选一组分数,一边改写一边讨论。

  4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。

  5.拓展:请同学们想一想四位小数表示多少?五位小数呢?

  (设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)

  (四)认识小数的计数单位和进率。

  1.回顾整数的计数单位

  师:回忆一下,我们都已经学习了哪些计数单位?

  (个、十、百、千、万、十万、百万、千万、亿)

  2.说说它们之间有什么关系?

  3.1个一是10个(),是100个(),是1000个(),是10000个()…

  4.提问:所以小数的计数单位应该是什么?

  5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。

  6.依照这一体系,你能说说小数的计数单位间的进率吗?

  (五)巩固练习

  1.填数(数学书第51页“做一做”)

  2.比一比(数学书第55页练习九第1题)

  3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。

  (六)畅谈收获

  通过这节课的学习,你有哪些收获?还想了解什么?

  (设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)

  [板书设计]

  小数的产生和意义

  1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米

  2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米

  3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米

  一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几

  小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……

  每相邻两个计数单位之间的进率为10。

小数的意义教案7

  教材分析:

  人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。

  学情分析:

  根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:

  图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。

  教学目标:

  1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。

  2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。

  3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。

  教学重点:通过整理和练习,巩固本单元知识。

  教学难点:通过整理和练习,对知识的进一步领悟。

  教学预设:

  一、梳理知识

  1、回顾知识。

  (1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)

  (2)引导回顾:回忆一下,这一单元我们学了哪些知识?

  根据生说师相机板贴知识点。

  2、整理知识。

  (1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?

  (2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)

  (3)回答一生,理解要求

  评价:这样的介绍符合要求吗?

  (4)知识归类:他用到了这儿的什么知识?

  3、独立思考

  (5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?

  (6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。

  学生记录。

  师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。

  (7)汇报,根据生说师相机板书内容。

  预设:

  ①意义:3个0.1;画图;十分位上是3,个位是0等。

  ②大小比较:比0.2大比0.4小的一位小数。

  ③小数点的移动规律:如3的小数点左移一位是几。

  ④近似数:如0.29保留一位小数。

  ⑤单位换算:如300千克等于几吨。

  (8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。

  【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】

  二、查漏补缺

  1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)

  2、根据生说,课件相机出示相应内容并分析。

  预设:

  (1)小数与单位换算。

  ①出示错例。

  ②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?

  学生总结方法,师板书。

  ③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。

  ④汇报,师相机书写过程。

  (2)小数的近似数。

  ①出示错例。

  ②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?

  生分析原因。

  ③引导总结:对于做这样的题你有什么要提醒大家的?

  (3)小数的性质与大小比较。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?

  ③同桌交流:想好的跟同桌说一说。

  ④汇报。

  (4)小数点的移动规律。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。

  出示题,做题,问:仔细观察,你有什么发现?

  (5)小数的意义和读写法。

  ①课件出示:找0、4题

  ②学生判断:图2、

  ③激疑:图1为什么不可以?(0.04)图3呢?(0.8)

  ④总结:都涂了4格,为什么表示的小数却不一样?

  图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。

  ⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?

  ⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。

  【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的'内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】

  三、巩固提升

  1、猜数。

  (1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。

  (2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?

  生猜。

  师:有多少种可能?(无数种)

  (3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?

  生猜,师相机板书。

  师:那这个数最小是几?

  最大是几?(1、74,1、749……)(师板书)

  师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)

  师:那找得到这个最大的数吗?(找不到)

  师:那有多少种可能?(无数种)

  (4)第三猜:那再给你一个信息:它是一个两位小数。

  生猜,师判断:大了,小了。

  (5)揭晓答案:1.66

  2、找位置。

  (1)那你能在这条线上找到1、66的位置吗?

  (2)那要准确地找到它,谁有好方法?

  3、说关系。

  (1)出示1、0、1、0、01。

  (2)问:1、0、1、0、01之间有着怎样的关系?

  【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】

  四、课堂小结

  这节课我们是怎么复习的?对你以后的学习有什么启示?

  【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】

  374650285750小数的意义和性质整理和复习

  小数的意义和性质整理和复习

  742950228600意义和读写

  意义和读写

  板书(部分):

  63500057150

  742950114300性质和大小比较

  性质和大小比较

  74295025400小数点的移动规律

  小数点的移动规律

  768350273050单位换算

  单位换算

  768350203200近似数

  近似数

  教学反思:

  这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。

  1、制定任务,高效梳理。

  学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。

  2、基于学情,有效复习。

  复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。

  小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。

  本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。

  这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。

  3、精选练习,合理拓展。

  复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。

小数的意义教案8

  教学目标:

  1.知识与技能:结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义。

  2.过程与方法:经历探索小数意义的过程,了解小数在生活中的广泛应用。

  3.情感目标:在探索交流的学习过程中,体验数学学习的乐趣。

  教学重点:

  理解小数的意义。

  教具准备:

  长方形、正方形的图片,多媒体课件等。

  教法学法:

  根据课程标准和教材内容,我将采用启发式教学法引导学生主动地进行观察、实验、猜测、验证、推理与交流。

  教学学法:

  动手实践、自主探索与合作交流成为学生学习的主要方式,促进学生的个性发展和能力提升。

  教学过程:

  为达成以上目标,突出重点,突破难点,我设计以下五个教学环节。

  一、创设情境,提供素材。

  这一环节分两步,第一步观察情境,读写小数。

  课件出示信息窗,引导学生观察,并提问:从图中你了解了哪些数学信息?学生观察图片,说出各种鸟蛋的质量,接着追问:你是怎样读写这些小数的?学生试着读写小数。教师随时订正学生读写小数的方法。因为学生已经学习过一位小数的读写方法,在此不必做过多讲解,放手让学生在读写的过程中总结出小数的读写方法,完成知识的迁移。

  第二步根据信息,提出问题。

  提问:根据这些信息,你能提出什么问题?学生可能提出:0.25千克中的0.25表示什么意思?0.365千克中的0.365表示什么意思?本环节的设计意图是创设问题情境,激发学生提出问题的兴趣。

  二、分析素材,理解概念

  这一环节分 两步,第一步认识两位小数的意义。

  这一步分四个小环节,第1个小环节,首先引导学生选择需要解决的问题;要解决0.25表示什么意思,首先要弄清0.01表示什么?(板书0.25 0.01)

  第2个小环节,出示一张正方形纸片【提问】:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?

  先请同学回答,学生应该知道0.1与1/10的关系,再让学生慢慢过渡到0.01与1/100的关系。

  (师板书:0.1——1/10 0.01——1/100)

  在正方形纸片上表示出0.25。

  提问:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

  先让学生小组讨论,然后小组合作完成,全班交流。

  教师引导学生明确0.25就是25/100,也就是25个1/100。

  板书:0.25 25/100

  第3个小环节,多媒体出示0.05、0.10的方格图,阴影部分表示什么? 板书:0.05 5/100 0.10 10/100

  第4个小环节,小组讨论:这些小数有什么共同特点?

  让学生先小组交流,请不同的同学说出自己想法,再进行全班交流。

  引导学生概括出两位小数表示的意义。

  【设计意图】学生已经知道一个小数的意义,我们通过对一位小数意义的复习,过渡到对两位小数意义的学习,让学生在探索新知识的时候将数学知识串联起来。 第二步,认识三位小数的意义。

  这一步分四个小步,第一个小步【提问】:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?

  直接让学生口答,学生在两位小数的启发下,可以自然迁移到三位小数。

  第二小步,教师多媒体出示大正方体塑料块动态平均分产生0.365的过程,引导学生理解0.365就是365个1/1000,也就是365/1000。

  第三小步,多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么? 请同学们看着多媒体的方块图数一数。

  第四小步,引导学生概括出三位小数表示的意义。

  【设计意图】学生在复习一位小数意义,学习二位小数意义之后,可以通过自学,自己探索发现三位小数的意义,这利于学生归纳,探究能力的发展。

  三、借助素材,总结概念

  【提问】:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

  学生寻找生活中的小数,并结合实际说出它们的意义。集体交流,师引导学生总结出小数的意义。从而知道:像0.1 、0.25 0.365这样表示十分之几、百分之几、千分之几的数,叫做小数。(并出示课题:小数的意义。)

  【设计意图】通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的`寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。 第四个环节,巩固拓展,应用概念

  我设计两个层次的练习,第一个“自主练习1”,这是练习十进分数与小数的关系,进一步理解小数的意义,通过完成练习,了解学生对小数意义的理解情况。

  第二个是“自主练习2”,借助学具巩固小数的意义,学生用不同的方法表示出每个小数的意义,关注学生对小数意义的掌握情况。

  【设计意图】自主练习题的设计,是为了让学生巩固今天所学的内容,将新学习的知识点都适当的安排习题,可以检测学生当堂学习的效果。

  四、课堂总结

  谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  [设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

  为直观,简单,适合全班同学完成。

  自主练习12题

  这是思考题,对今天学习知识的实际应用,可以让感兴趣的同学进行练习。

小数的意义教案9

  教学目标

  1.使学生理解小数降法的意义,理解小数除以整数的算理,并能够正确计算.

  2.提高学生迁移的能力.

  3.培养学生合作探究的意识.

  教学重点

  理解小数除法的意义、掌握小数除以整数的计算方法.

  教学难点

  理解小数除以整数中“商与被除数小数点对齐”的道理.

  教学过程

  复习铺垫

  (一)填空

  1.0.32里面含有32个( )

  2.1.2里面含有12个( )

  3.0.25里面含有( )个百分之一

  4.2.4里面含有( )十分之一

  5.8里面含有( )十分之一

  (二)列竖式计算2145÷15

  二、指导探究

  (一)理解小数除法的意义.

  1.(课件演示:小数除法的意义)

  板书课题:小数除法的意义

  2.练习:(继续演示课件:小数除法的意义)

  (二)除数是整数的'小数除法.

  1.(课件演示:除数是整数的小数除法)

  2.练习

  68.8÷4 85.44÷16

  三、质疑小结

  (一)教师提问

  1.商的小数点与被除数的小数点为什么要对齐?

  2.今天学习的除法与过去学习的除法有什么不同?它与整数除法有什么联系?

  将课题补充完整:除数是整数的小数除法

  (二)组织学生对今天所学的知识质题答疑.

  四、反馈练习

  (一)列竖式计算(分组完成)

  42.84÷7 67.5÷15 289.8÷18 79.2÷6

  (二)列式计算.

  1.两个数的积是201.6,一个因数是72,另一个因数是多少?

  2.把86.4平均分成24份,每份是多少?

  3.64.6是17的多少倍?

  (三)应用题

  一台拖拉机5小时耕3.55公顷地,平均每小时耕多少公顷?

  五、课后作业

  计算下面各题

  42.21÷18 6.6÷4 37.5÷6 15.36÷12

小数的意义教案10

  设计说明

  本节课是第一单元的起始课,是在学生学习了分数的基础上进行教学的,所以要特别重视学生在新知的学习中运用已有知识经验,使学生经历独立思考、自主探究的过程,并将已有知识经验迁移到新知的学习中。因此,本节课在教学设计上有以下特点:

  1.注重学生已有的知识经验。

  在本节课的教学过程中,教师利用元、角、分和米、分米、厘米的.现实情境,启发学生从多个角度通过解释1.11元、1.11米是什么意思,认识到0.1与,0.01与是同一个数的不同形式,为探究小数的意义奠定了基础。

  2.给学生创设自主探究的空间。

  本节课创设了让学生借助米尺探究小数意义的活动,并让学生通过独立思考、合作交流,认识一位小数表示十分之几,两位小数表示百分之几……充分调动学生学习的积极性。课堂上,学生通过观察、思考,认识一位小数表示十分之几;通过猜测、验证,认识两位小数表示百分之几;通过思考、交流,发现三位小数表示千分之几……直至总结概括出小数的意义,学生在自主探究与合作中经历了知识的形成过程,同时在这个过程中锻炼和提高了各方面的能力。

  课前准备

  教师准备 PPT课件 正方形纸

  学生准备 正方形纸 水彩笔 直尺

  注:本书“上课解决方案”中的“备教学目标”“备重点难点”见前面的“备课解决方案”。

  教学过程

  ⊙创设情境,导入新课

  1.出示一些商品价格标签,让学生说说商品的单价。(课件出示商品的价格标签)

  2.谈话引入。

  同学们都能正确地读出这些商品的标价,这是因为我们在三年级时学习了“元、角、分和小数”,一些商品的标价用元作单位时,要用小数表示。那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  预设 生1:测量身高时,我的身高是1.42米。

  生2:跳远比赛时,我的成绩是2.1米。

  ……

  3.过渡:生活中有很多小数,教材中也举了一些例子,请同学们翻到教材2页,自己读一读。这些小数到底表示什么呢?我们一起来学习一下。

  设计意图:从学生熟悉的商品的价格引入小数,既激发了学生的学习兴趣,又调动了学生学习的积极性,同时也为学习新知做好铺垫。

  ⊙动手操作,自主探究

  活动:探究小数的意义。

  1.做一做,说一说。

  (1)课件出示教材附页1中的图片,根据所给的图片做一做,说一说,1.11元和1.11米分别是什么意思?(学生以小组为单位,合作学习)

  (2)全班交流:1.11元是1元1角1分,1角是1元的,也可以写成0.1元,1分是1元的,也可以写成0.01元。

  1.11米是1米1分米1厘米,1分米是1米的,也可以写成0.1米,1厘米是1米的,也可以写成0.01米。

  2.画一画,涂一涂。

  (1)(出示一张正方形纸)引导学生操作:用一张正方形纸表示“1”,把这张正方形纸平均分成10份,将其中的1份涂色,并想一想涂色部分用分数怎样表示。

  (学生展示操作成果并汇报)

  师:我们把这张正方形纸看成“1”,平均分成10份,涂色部分用分数表示是,用小数表示是0.1。0.1表示把“1”平均分成10份,取其中的1份。比较一下“1”和“0.1”的大小,“1”里面有几个“0.1”?

  预设 生:1比0.1大,1里面有10个0.1。

  (2)引导学生讨论:如果把其中的3份涂上颜色,用分数怎样表示?小数呢?

  ①学生先独立思考,然后独立完成。

  ②汇报交流。

小数的意义教案11

  教学目标:

  1.通过练习体会小数所表示的意思,理解小数的意义。

  2.通过练习理解和掌握小数意义。

  教学重点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学难点:

  通过练习,体会小数的意义,知道小数所表示的含义。

  教学准备:

  学生、老师准备计数器、小黑板

  教法学法:

  小组合作交流学习法、练习法

  教学过程:

  一、复习导入新课。(小黑板出示)

  2角5分 = ( )元

  9分米 =( )米

  7分 =( )元

  135克 =( )千克

  3元4角 =( )元

  3分米2厘米 =( )分米

  二、自学后完成下面问题

  1.一个小数整数部分的最低位是( )位,计数单位是( ),小数部分最高位是( ),计数单位是( ),这两个单位间的进率是( )。

  2.0.78的'计数单位是( ),它含有( )个这样的计数单位。

  3.由2个十、7个0.1和5个0.001组成的数写作:( ),

  读作:( )

  4.连线题: 0.008 0.8 0.08

  零点八 零点零八 零点零零八

  5.判断

  (1)8.76读作:八点七十六。( )

  (2)4.32是三位小数。( )

  (3)5.961中的6在百分位上,表示6个0.01。( )

  6.一个小数,它的百位和百分位上都是2,其余各位都是零,这个小数写作( )

  7.0.0302用分数表示是( )

  8.下面几个数字中的9分别表示什么意义?

  9.26 ( )

  0.926( )

  0.296( )

  0.269( )

  三、作业布置。

  1、作业本做练一练2、3题

  2、完成相应配套练习。

  板书设计:

  小数的意义(二)

小数的意义教案12

  教学目标

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义.

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  (三)培养学生的观察、分析、推理能力.

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点.

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(——)元=( )元

  (2)3角=(——)元=( )元

  (3)9分=(——)元=( )元

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数.(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外,在量屋子的高度时,它不够整米时,以米作单位也常用小数表示.

  2.教学小数的意义.

  (1)利用旧知识继续研究.

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1

  是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示.

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺.提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是

  3分米是多少米?用分数、小数怎样表示?

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示.

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把1米平均分成100份,1份是1厘米,写

  怎样把7厘米写成以米作单位的分数和小数?

  启发学生想:15厘米怎样写成以米作单位的分数和小数? 经小组

  第一位写1.所以15厘米是0.15米.

  明确把1米平均分成100份,一份或几份都可以用两位小数表示.

  ③把1米平均分成1000份,1份在尺子上是多少?(1毫米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001.

  9毫米、63毫米以米作单位写成小数分别是多少米?

  63毫米是0.063米.

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数.

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成IO00份,1份或几份可以用三位小数表示……)

  (3)启发学生概括小数的意义.

  启发性提问:

  ①上面例子都是把1米平均分成多少份?(10份,100份,1000份)

  ②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之几,千分之几)

  所以相邻两个单位间的进率也是10.

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的'数,叫做小数.

  小数的计数单位是十分之一、百分之一、千分之—……,分别写作0.1,0.01,0.001…等.

  阅读课本:95页结论.

  反馈:95页“做一做”.

  订正时说明意义,计数单位.

  (4)强化概念.

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题.

  2.填空(投影).

  3.判断下面各题是否正确?为什么?

  (四)作业

  练习二十第1~3题.

  课堂教学设计说明

  学生在第七册中已初步学习了小数,本节课使学生进一步明确了小数的产生,理解小数的意义,小数与分数的联系,小数的计数单位,从而对小数概念有更清楚的认识.

  教学小数的意义分两段进行.

  第一段,理解小数的意义,分两个层次.第一层利用日常生活实例和学生已有的知识经验,引导学生认识小数;第二层引导学生观察米尺的刻度,把1米平均分成10份、100份、1000份……,其中的1份或几份用一位小数,两位小数、三位小数……表示,使学生对小数的认识深入一步.

  第二段:抽象概括、明确小数的意义.

  通过一系列的启发提问,引导学生概括出小数的本质特征,使学生进一步掌握分数、小数的联系及其所表示的意义,掌握小数的计数单位及相邻单位间的进率.

  练习设计围绕重点,巩固概念,并针对易错、易混题,让学生在正误对比中加深对知识的理解,同时达到提高学生思维能力的目的.

  板书设计

  小数的意义

  1米=10分米

  =100厘米

  =1000毫米

  把1米平均分成10份,每份长1分米.

  把1米平均分成100份,每份长1厘米.

  把1米平均分成1000份,每份长1毫米.

  一位小数表示十分之几,计数单位是0.1

  两位小数表示百分之几,计数单位是0.01

  三位小数表示千分之几,计数单位是0.001

  相邻两个计数单位间的进率都是10.

小数的意义教案13

  (一)教学目标

  1.能体会分米、厘米、毫米的含义,建立相应的长度观念 。

  2.记住这些单位之间的进率。

  3.能估计一 些较短物体的长度。

  4.会量较短物体的长度。

  (二)教学重点与难点

  1.教学重点:理解1分米、1厘米、1毫米的实际含义。

  2.教学难点:建立分米、厘米、毫米的具体观念。

  (三)教学准备

  1.教具准备:实物投影仪、米尺、透明塑料尺、壹分硬币 、两支铅笔。

  2.学具准备:每人学生尺一把、壹分硬币一枚、线一根、长铁钉一枚。

  (四)教学过程

  1.搭好桥梁。

  (1)小朋友,想知道一个人有多高,黑板有多长,数学书本 又有多宽,可采用什么方法?(用尺量)

  (2)你怎么想到要用尺量呢?(尺上有刻度)

  (3)出示米尺:小朋友比划一下一米大约有多长?

  (4)估计:黑板大约有多长?教师实际量一量,得黑板长3米多。

  多的部分不到1米,究竟是多少?我们需要用比米小的.单位来帮忙。

  2.实践操作。

  (1)认识厘米。

  ①实物投影仪上放上塑料尺,请学生观察,从“0”刻度线 到标有“1”刻度线之间的长度就是1厘米。(板书:厘米cm)

  ②学生在自己的尺上找1厘米的长度(手指宽,橡皮厚,1分 硬币的最大宽……),并用尺比量一量。

  ③量一量:铁钉有多长?(3cm)

  ④出示两支铅笔,一支10厘米,一支1厘米多一些,估计这两支铅笔大约有几个厘米长。

  (2)认识分米。

  ①这支铅笔长10厘米,还可以叫做1分米长(板书:分米dm) ,所以1分米=()厘米。

  ②同上,学生在尺上找1分米的长度,找身边的物品长(宽) 大约是1分米的物品,可实际去量一量。(衬衣两纽扣之间、手掌宽……)

  ③在米尺上数一数,1米有几分米?也就是几个10厘米。1分米=10厘米,那么1米=()厘米。

  ④想一想:1米、1分米、1厘米有多长?

  小游戏:伯;说我比划,即同桌1人说1米(或1分米、1厘米) ,另一人马上用手比划出来。

  (3)认识毫米。

  ①还有一支铅笔为1厘米多一些,究竟是多少长呢?我们需要认识更小的长度单位——毫米(板书:毫米一)

  ②1毫米用手难以比划·了,我们就用铅笔芯来点吧。

  ③长度是1毫米的物品很难找吧?(1分硬币的厚度,数学练习簿的厚度……)

  ④猜一猜,再在尺子-上数一数()毫米=1厘米,

  3.归纳运用。

  (1)今天我们学习了什么单位?(长度单位)(完成课题 )

  你会给这些单位从大到小排排队吗?

  你知道它们之间有什么关系吗?(进率)

  (2)看看课本上是这样说的吗?(课本第85-86页)

  (3)练一练:课本第87页“练一练”1、2、3。(先观察,估计一下各物品的长度,再测量)

  (4)练一练:课本第87页“练一练”4、5、6。(其中6为同桌 合作题)

  (5)拿出线,同桌合作量一量是多少长?(1米2分米,4厘米6 毫米)

小数的意义教案14

  一、设疑激趣

  师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?

  生:小数,从大屏幕上。

  师:小数的意义就是小数表示什么?那你知道吗?

  生:不知道。

  师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?

  生:遇见过。

  师:在哪遇见过?

  生1:在计算器上计算有余数的除法时出现了小数。

  生2:去超市买东西时会遇见小数。(师跟进说标价是小数)

  生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)

  【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】

  二、探究新知

  1、小数的产生

  师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?

  生:(异口同声地回答)60厘米。

  师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?

  生:一百分之六十。

  师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?

  生:0.60。

  师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?

  生:9.58秒。

  师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。

  出示口算:

  10÷10= 1÷10=

  100÷10= 1÷100=

  1000÷10= 1÷1000=

  【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】

  生: 0,赶紧改成1。

  师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。

  师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?

  生:1里面有多少个十。

  师:还可以用那句话来说?

  生:把1平均分成10份,每份是几?都说是十分之一。

  师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)

  师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。

  【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】

  2、教学小数的意义

  师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?

  0.85 9.58 38.2 0.6 39.4 98.5

  生:0.85 9.58是一类,其余是一类。

  师:能不能说说你的分类理由?

  生:后面是两位、一位。

  师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?

  生:三位小数,四位小数,五位小数……

  师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。

  【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】

  【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】

  教师出示:把 1米平均分成10份。

  师:把1米平均分成10份,每一份是多长?

  生:10厘米。

  1分米。

  师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?

  生:一百分之一。

  生:十分之一。

  师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?

  师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)

  师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)

  擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。

  师:你发现分数与小数的联系了吗?

  分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。

  师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

  【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】

  (2)认识两位小数

  师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?

  生:是一百分之一米。

  师:还可以怎样表示呢?

  生:0.01米,1厘米。(补充板书)

  师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。

  【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】

  交流自己写的:

  师:你写的是多少?

  生1: 7厘米,是7/100米,0.07米。

  师:你能猜一猜两位小数与什么样的分数有关系吗?

  (指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)

  生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。

  引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。

  师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。

  (3)认识三位小数

  出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。

  两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道

  三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。

  四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。

  师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)

  1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )

  【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】

  (4)抽象、概括小数的意义

  师:小数是什么?

  补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的`分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。

  师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?

  生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。

  师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?

  生:个、十、百、千、万……

  师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。

  3、小数单位间的进率

  师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)

  师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。

  【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】

  三、巩固练习

  师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)

  1、下面括号里能填几。

  0.1米里有( )个0.01米,0.01米里面有( )个0.001米。

  得出:相邻两个计数单位之间的进率是10。

  师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。

  【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】

  2、(1)用合适的数表示图中的涂色部分。

  (2)用合适的数表示图中的空白部分。

  3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)

  4、找朋友。

  四、课堂总结

  师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?

  生:每相邻的计数单位之间的进率都是十。

  生:小数就是分数。

  生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。

  五、你知道吗

  了解小数的起源、发展史。

小数的意义教案15

  教学目标:

  1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

  2.经历探索小数意义的过程,培养归纳能力。

  3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

  教学重难点:理解小数的意义和小数的计数单位。

  教具准备:米尺、课件。

  教学过程:

  一、回顾导入

  1.读一读信息(课件出示)想一想,这样写符合实际吗?

  (1)老师的体重是565千克。

  (2)小明的身高是145米。

  (3)笑笑的数学测验成绩是935分。

  2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?

  3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。

  二、探索新知识

  1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?

  指名测量,其他同学观看。

  2.汇报测量结果。

  3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。

  4.出示米尺图。

  上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?

  5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?

  十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

  6.出示米尺。

  指着板书:有什么新发现?学生汇报。

  7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

  让学生说出两个用毫米作单位的.长度,并请自己的同桌把它用小数表示出来。

  学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。

  8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

  小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

  进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。

  三、巩固练习

  第一层练习:分数小数互化。

  第二层练习。

  1.填空

  (1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。

  (2)1里面有( )个0.1和( )个0.01。

  (3)0.52是由( )个0.1和( )个0.01组成的。

  2.判断:

  (1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )

  (2)1毫米写成小数是0.01米。 ( )

  第三层练习: 猜数游戏。

  小明和小红的数各是多少?

  四、总结

  师生共同回顾本节课内容。

  反思:

  “小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。

  小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。

  在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。

  引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。

  最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。

  反思这节课,也有一些地方预设的不够充分:

  1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。

  2.练习量较大,没有考虑学生实际。

  “课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

【小数的意义教案】相关文章:

《小数的意义》的教案02-17

小数的意义教案03-10

(推荐)小数的意义教案04-22

小数的意义教案优秀12-14

人教版小数的意义教案09-17

《小数的意义》教案(精选15篇)02-17

小数的意义教案 15篇01-05

小数的意义教案精选15篇02-15

小数的意义教案(精选15篇)02-09

小数的意义和性质教案04-13