高中数学教案合集15篇
作为一名老师,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。来参考自己需要的教案吧!以下是小编帮大家整理的高中数学教案,希望能够帮助到大家。
高中数学教案1
教学目标:
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.
2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.
教学重点:
复数的几何意义,复数加减法的几何意义.
教学难点:
复数加减法的几何意义.
教学过程:
一 、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
6.复数加减法的'几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.
四、数学应用
例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.
练习 课本P123练习第3,4题(口答).
思考
1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?
2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?
3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.
4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.
例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.
例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.
思考 任意两个复数都可以比较大小吗?
例4 设z∈C,满足下列条件的点Z的集合是什么图形?
(1)│z│=2;(2)2<│z│<3.
变式:课本P124习题3.3第6题.
五、要点归纳与方法小结
本节课学习了以下内容:
1.复数的几何意义.
2.复数加减法的几何意义.
3.数形结合的思想方法.
高中数学教案2
教学目的:掌握圆的标准方程,并能解决与之有关的问题
教学重点:圆的标准方程及有关运用
教学难点:标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:⒈说出下列圆的方程
⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3
⒉指出下列圆的'圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判断3x-4y-10=0和x2+y2=4的位置关系
⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高中数学教案3
一、自我介绍
我姓x,是你们的数学老师,因为是数学老师所以在自我介绍的时候喜欢给出自己的数字特征,也是希望通过这些方式能拓宽与大家交流的平台,希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者。
二、相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。
(一)为什么要学习数学
相信高一的第一节课是各位科任老师各显神通的时候,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字说明问题。大家知道北大最的院系是什么系吗?早在蔡元培先生任北大校长时,就列数学系为北大第一系,这种传统一直保持到现在。为什么数学系在高校中有如此重要的地位?课本主编寄语是这样描述的:数学是有用的,数学有助于提高能力。
数学家华罗庚在《人民日报》精彩描述了数学在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁"等方面无处不有重要贡献。
问题1:大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的?
海王星的发现是在数学计算过程中发现的,天文望远镜的观测只是验证了人们的推论。
1812年,法国人布瓦德在计算天王星的运动轨道时,发现理论计算值同观测资料发生了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一个未知的引力的存在相关。也就是说有一个未知的天体作用于天王星。1846年9月23日。柏林天文台收到来自法国巴黎的一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座8星东约5度的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新的8等星。又过了-天,再次找到了这颗8等星,它的位置比前一天后退了70角秒。这与勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建议,按天文学惯例,用神话里的名字把这颗星命名为"海王星"。
1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测和计算,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,"冥王星是大行星"早已被写入教科书,以后也就将错就错了。经过多年的争论,国际天文学联合会通过投票表决做出最终决定,取消冥王星的行星资格。8月24日据国际天文学联合会宣布,冥王星将被排除在行星行列之外,从而太阳系行星的数量将由九颗减为八颗。事实上,位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。
马克思说:"一种科学只有在成功运用数学时,才算达到了真正完善的地步。"正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问题。
其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。
问题2:徒认为上帝是万能的。你们认为呢?如何来证明你的结论呢?(让同学发言)
我的观点:上帝不是万能的。为什么呢?仔细听我讲来。
证明:(反证法)假如上帝是万能的
那么他能够制作出一块无论什么力量都搬不动的石头
根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头
这与"无论什么力量都搬不动的石头"相矛盾
所以假设不成立
所以上帝不是万能的。问题3:抓阄对个人来说公平吗?5张票中有一张奖票,那么先抽还是后抽对个人还说公平吗?
当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:"读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明…",也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。
故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,"我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。"国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。
人们通常凭借自己掌握的数学知识耍些小聪明,使问题妙不可言。
数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。
数学思想:退到最简单、最特殊的地方。
故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展-圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就德育不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?
渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。
学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造……
(二)如何学好数学
高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。同时要注意以下几点:
第一:对数学学科特点有清楚的认识
主编寄语里是这样描述数学的特征的:数学是自然的。数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是"想当然"的话,那就学不下去了。
第二:要改变一个观念。
有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的`基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。过去的几年里我分别带过五十一中和一中的学生,两边学生的课堂感觉差不多,应该说接受能力不相上下,有的时候我会选择在五十一中开公开课,因为课堂气氛活跃、轻松,但是成绩差异却是很大,原因在于我们同学外课自主时间的投入太少,学习习惯不太好。
第三:学数学要摸索自己的学习方法
学习、掌握并能灵活应用数学的途径有千万条,每个人都可以有与众不同的数学学习方法。做习题、用数学解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。此外,还要发挥问题的作用,学会提问,热心帮助别人解决问题,用自己的问题和别人的问题带动自己的学习。同时,注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。
第四:养成良好的学习习惯(与一中学生相比较)
㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。
㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。
㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。我的办公室在二楼二号,欢迎大家前来交流
㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。
好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。
高中数学教案4
教学目标:
1、使学生了解角的形成,理解角的概念掌握角的各种表示法;
2、通过观察、操作培养学生的观察能力和动手操作能力。
3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化
4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。
教学重点:
理解角的概念,掌握角的三种表示方法
教学难点:
掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化
教学手段:
教具:电脑课件、实物投影、量角器
学具:量角器需测量的角
教学过程:
一、建立角的概念
(一)引入角(利用课件演示)
1、从生活中引入
提问:
A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?
B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的'物品中找出角?
2、从射线引入
提问:
A、昨天我们认识了射线,想从一点可以引出多少条射线?
B、如果从一点出发任意取两条射线,那出现的是什么图形?
C、哪两条射线可以组成一个角?谁来指一指。
(二)认识角,总结角的定义
3、 过渡:角是怎么形成的呢?一起看
(1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。
提问:观察从这点引出了几条射线?此时所组成的图形是什么图形?
(2)、判断下列哪些图形是角。
(√) (×) (√) (×) (√)
为何第二幅和第四幅图形不是角?(学生回答)
谁能用自己的话来概括一下怎样组成的图形叫做角?
总结:有公共端点的两条射线所组成的图形叫做角(angle)
角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.
B
0 A
4、认识角的各部分名称,明确顶点、边的作用
(1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)
(2)角可以画在本上、黑板上,那角的位置是由谁决定的?
(3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。
5、学会用符号表示角
提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)
(1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.
(2)观察这两种方法,有什么特点?(字母B都在中间)
(3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B
(4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1
(5)注:区别 “∠”和“<”的不同。请同学们指着用学具折出的一个角,训练一下这三种读法。
6、强调角的大小与两边张开的程度有关,与两条边的长短无关。
二、 角的度量
1、学习角的度量
(1)教学生认识量角器
(2) 认识了量角器,那怎样使用它去测量角的度数呢?这部分知识请同学们合作学习。
提出要求:小组合作边学习测量方法边尝试测量
第一个角,想想有几种方法?
1、要求合作学习探究、测量。
2、反馈汇报:学生边演示边复述过程
3、教师利用课件演示正确的操作过程,纠正学生中存在的问题。
4、归纳概括测量方法(两重合一对)
(1)用量角器的中心点与角的顶点重合
(2)零刻度线与角的一边重合(可与内零度刻度线重合;也可与外零度刻度线重合)
(3)另一条边所对的角的度数,就是这个角的度数。
5、小结:同一个角无论是用内刻度量角,还是用外刻度量角,结果都一样。
6、独立练习测量角的度数(书做一做中第一题1,3与第二题)
(1) 独立测量,师注意查看学生中存在的问题。
(2) 课件演示纠正问题
三、度、分、秒的进位制及这些单位间的互化
为了更精细地度量角,我们引入更小的角度单位:分、秒.把1°的角等分成60份,每份叫做1分记作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒记作1″.
1°=60′,1′=60″;
1′=( )°,1″=( )′.
例1 将57.32°用度、分、秒表示.
解:先把0.32°化为分,
0.32°=60′×0.32=19.2′.
再把0.2′化为秒,
0.2′=60″×0.2=12″.
所以 57.32″=57°19′12″.
例2 把10°6′36″用度表示.
解:先把36″化为分,
36″=( )′×36=0.6′
6′+0.6′=6.6′.
再把6.6′化为度,
6.6′=( )°×6.6=0.11°.
所以 10°6′36″=10.11°.
四、巩固练习
课本P122练习
五、总结:请大家回忆一下,今天都学了那些知识,通过学习你想说些什么?
六、作业:课本P123 3、4.(1)(3)、5.(2)(4)
高中数学教案5
高中数学趣味竞赛题(共10题)
1 、撒谎的有几人
5个高中生有,她们面对学校的新闻采访说了如下的话:
爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”
玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”
千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?
2、她们到底是谁
有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?
3、半只小猫
听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。
“一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的`老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?
4、被虫子吃掉的算式
一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。
那么,请问原来的算式是什么样子的呢?
5、巧动火柴
用16根火柴摆成5个正方形。请移动2根火柴,
使
正形变成4。
6、折过来的角
把正三角形的纸如图那样折过来时,角?的度数是多少度?
7、星形角之和
求星形尖端的角度之和。
8、啊!双胞胎?
丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。
结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?
9、赠送和降价哪个更好?
1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?
10、折成15度
用折纸做成45度很简单是吧。那么,请折成15度,你会吗?
高中数学教案6
教学目的:
掌握圆的标准方程,并能解决与之有关的问题
教学重点:
圆的标准方程及有关运用
教学难点:
标准方程的'灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:
1、说出下列圆的方程
⑴圆心(3,—2)半径为5
⑵圆心(0,3)半径为3
2、指出下列圆的圆心和半径
⑴(x—2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2—6x+4y+12=0
3、判断3x—4y—10=0和x2+y2=4的位置关系
4、圆心为(1,3),并与3x—4y—7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=—2x上,过p(2,—1)且与x—y=1相切求圆的方程(突出待定系数的数学方法)
练习:1、某圆过(—2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(—10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高中数学教案7
=
=425a0b0=425.
点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数。
(3)5-26+7-43-6-42
=(3-2)2+(2-3)2-(2-2)2
=3-2+2-3-2+2=0.
点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用。
例3已知,n∈正整数集,求(x+1+x2)n的值。
活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,与具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示。
= 。
这时应看到1+x2=,
这样先算出1+x2,再算出1+x2,代入即可。
解:将代入1+x2,得1+x2=,
所以(x+1+x2)n=
=
= =5.
点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法。
知能训练
课本习题2.1A组3.
利用投影仪投射下列补充练习:
1、化简:的结果是()
A. B.
C. D.
解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形。
因为,所以原式的分子分母同乘以。
依次类推,所以。
答案:A
2、计算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.
解:原式=
=53+100+916-3+13+716=100.
3、计算a+2a-1+a-2a-1(a≥1)。
解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1)。
本题可以继续向下做,去掉绝对值,作为思考留作课下练习。
4、设a>0,,则(x+1+x2)n的值为__________.
解析:1+x2= 。
这样先算出1+x2,再算出1+x2,
将代入1+x2,得1+x2= 。
所以(x+1+x2)n=
= =a.
答案:a
拓展提升
参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂的意义。
活动:教师引导学生回顾无理数指数幂的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算的过剩近似值和不足近似值,利用逼近思想,“逼出”的意义,学生合作交流,在投影仪上展示自己的探究结果。
解:3=1.732 050 80…,取它的过剩近似值和不足近似值如下表。
3的过剩近似值
的过剩近似值
3的不足近似值
的`不足近似值
1.8 3.482 202 253 1.7 3.249 009 585
1.74 3.340 351 678 1.73 3.317 278 183
1.733 3.324 183 446 1.731 3.319 578 342
1.732 1 3.322 110 36 1.731 9 3.321 649 849
1.732 06 3.322 018 252 1.732 04 3.321 972 2
1.732 051 3.321 997 529 1.732 049 3.321 992 923
1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838
1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045
… … … …
我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数
21.7,21.72,21.731,21.731 9,…,
同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数:
21.8,21.74,21.733,21.732 1,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为,
即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8.
也就是说是一个实数,=3.321 997 …也可以这样解释:
当3的过剩近似值从大于3的方向逼近3时,23的近似值从大于的方向逼近;
当3的不足近似值从小于3的方向逼近3时,23的近似值从小于的方向逼近。
所以就是一串有理指数幂21.7,21.73,21.731,21.731 9,…,和另一串有理指数幂21.8,21.74,21.733,21.732 1,…,按上述规律变化的结果,即≈3.321 997.
课堂小结
(1)无理指数幂的意义。
一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数。
(2)实数指数幂的运算性质:
对任意的实数r,s,均有下面的运算性质:
①ar?as=ar+s(a>0,r,s∈R)。
②(ar)s=ars(a>0,r,s∈R)。
③(a?b)r=arbr(a>0,b>0,r∈R)。
(3)逼近的思想,体会无限接近的含义。
作业
课本习题2.1 B组2.
设计感想
无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力。
备课资料
【备用习题】
1、以下各式中成立且结果为最简根式的是()
A.a?5a3a?10a7=10a4
B.3xy2(xy)2=y?3x2
C.a2bb3aab3=8a7b15
D.(35-125)3=5+125125-235?125
答案:B
2、对于a>0,r,s∈Q,以下运算中正确的是()
A.ar?as=ars B.(ar)s=ars
C.abr=ar?bs D.arbs=(ab)r+s
答案:B
3、式子x-2x-1=x-2x-1成立当且仅当()
A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2
解析:方法一:
要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.
若x≥2,则式子x-2x-1=x-2x-1成立。
故选D.
方法二:
对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-1<0时式子不成立。
对B,x-1<0时式子不成立。
对C,x<1时x-1无意义。
对D正确。
答案:D
4、化简b-(2b-1)(1
解:b-(2b-1)=(b-1)2=b-1(1
5、计算32+5+32-5.
解:令x=32+5+32-5,
两边立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.
∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.
∴32+5+32-5=1.
高中数学教案8
1.1.1 任意角
教学目标
(一) 知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
(二) 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
(三) 情感与态度目标
1. 提高学生的推理能力;
2.培养学生应用意识. 教学重点
任意角概念的理解;区间角的集合的书写. 教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类: A
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度?
2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +
k·360° ,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z
⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.
例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
4.课堂小结
①角的定义;
②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5;
②教材P5练习第1-5题;
③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,
解:??角属于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<
各是第几象限角?
<k·180°+135°(k∈Z) .
<n·360°+135°(n∈Z) ,
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,
属于第二象限角
<n·360°+315°(n∈Z) ,
当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,
属于第四象限角
因此
属于第二或第四象限角.
1.1.2弧度制
(一)
教学目标
(二) 知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
(三) 过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
(四) 情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的`? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引 入:
由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定 义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳: 弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝对值|α|= .
4.角度与弧度之间的转换:
①将角度化为弧度:
②将弧度化为角度:
5.常规写法:
① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.
② 弧度与角度不能混用.
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.计算:
(1)sin4
(2)tan1.5.
8.课后作业:
①阅读教材P6 –P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
高中数学教案9
教学目标
(1)了解算法的含义,体会算法思想。
(2)会用自然语言和数学语言描述简单具体问题的算法;
(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。
教学重难点
重点:算法的含义、解二元一次方程组的算法设计。
难点:把自然语言转化为算法语言。
情境导入
电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:
第一步:观察、等待目标出现(用望远镜或瞄准镜);
第二步:瞄准目标;
第三步:计算(或估测)风速、距离、空气湿度、空气密度;
第四步:根据第三步的结果修正弹着点;
第五步:开枪;
第六步:迅速转移(或隐蔽)
以上这种完成狙击任务的方法、步骤在数学上我们叫算法。
课堂探究
预习提升
1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。
2、描述方式
自然语言、数学语言、形式语言(算法语言)、框图。
3、算法的要求
(1)写出的算法,必须能解决一类问题,且能重复使用;
(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。
4、算法的特征
(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。
(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。
(3)可行性:算法中的`每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。
(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。
(5)不唯一性:解决同一问题的算法可以是不唯一的
课堂典例讲练
命题方向1对算法意义的理解
例1、下列叙述中,
①植树需要运苗、挖坑、栽苗、浇水这些步骤;
②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;
③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;
④3x>x+1;
⑤求所有能被3整除的正数,即3,6,9,12。
能称为算法的个数为( )
A、2
B、3
C、4
D、5
【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。
【答案】B
[规律总结]
1、正确理解算法的概念及其特点是解决问题的关键、
2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、
【变式训练】下列对算法的理解不正确的是________
①一个算法应包含有限的步骤,而不能是无限的
②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤
③算法中的每一步都应当有效地执行,并得到确定的结果
④一个问题只能设计出一个算法
【解析】由算法的有限性指包含的步骤是有限的故①正确;
由算法的明确性是指每一步都是确定的故②正确;
由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;
由对于同一个问题可以有不同的算法故④不正确。
【答案】④
命题方向2解方程(组)的算法
例2、给出求解方程组的一个算法。
[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、
[规范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程组可化为
第二步,解方程③,可得y=-1,④
第三步,将④代入①,可得2x-1=7,x=4
第四步,输出4,-1
方法二:算法如下:
第一步,由①式可以得到y=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,输出4,-1
[规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。
2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。
【变式训练】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命题方向3筛选问题的算法设计
例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、
[思路分析]比较a,b比较m与c―→最小数
[规范解答]算法步骤如下:
1、比较a与b的大小,若a
2、比较m与c的大小,若m
[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。
【变式训练】在下列数字序列中,写出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一个数m,m=21;
2、将m与89比较,是否相等,如果相等,则搜索到89;
3、如果m与89不相等,则往下执行;
4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。
命题方向4非数值性问题的算法
例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。
(1)设计安全渡河的算法;
(2)思考每一步算法所遵循的共同原则是什么?
高中数学教案10
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .
根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
作业参考答案
2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.
3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.
探究活动
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的`分配万式可有多少种?
解 设四人分别为甲、乙、丙、丁,可从多种角度来解.
解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:
甲拿乙制作的贺卡时,则贺卡有3种分配方法.
甲拿丙制作的贺卡时,则贺卡有3种分配方法.
甲拿丁制作的贺卡时,则贺卡有3种分配方法.
由加法原理得,贺卡分配方法有3+3+3=9种.
解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.
正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).
逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).
高中数学教案11
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析
三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)、本节是第一课时,教学内容为公式(二)、(三)、(四)、教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、 、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)、同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求、为此本节内容在三角函数中占有非常重要的地位、
三、学情分析
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容、
四、教学目标
(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观、
五、教学重点和难点
1、教学重点
理解并掌握诱导公式、
2、教学难点
正确运用诱导公式,求三角函数值,化简三角函数式、
六、教法学法以及预期效果分析
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究、下面我从教法、学法、预期效果等三个方面做如下分析、
1、教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质、
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦、
2、学法
“现代的文盲不是不识字的.人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情、如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题、
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习、
3、预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题、
七、教学流程设计
(一)创设情景
1、复习锐角300,450,600的三角函数值;
2、复习任意角的三角函数定义;
3、问题:由,你能否知道sin2100的值吗?引如新课、
高中数学教案12
一、教材分析
1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。
2、教学目标:
知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3、重点、难点:
重点:“二面角”和“二面角的平面角”的概念
难点:“二面角的平面角”概念的形成过程
二、教法分析
1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。
三、学法指导
1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。
2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。
3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。
四、教学过程
心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。
(一)、二面角
1、揭示概念产生背景。
问题情境1、在平面几何中“角”是怎样定义的?
问题情境2、在立体几何中我们还学习了哪些角?
问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。
通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。
问题情境4、那么,应该如何定义二面角呢?
创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。
问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面
与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。
问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。
2、展现概念形成过程
(1)、类比。教师启发,寻找类比联想的对象。
问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。
问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。
问题情境9、这个平面的角的顶点及两边是如何确定的?
(2)、提出猜想:二面角的大小也可通过平面的.角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。
问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。
(3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。
(4)、继续探索,得到定义。
问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。
(5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。
(三)、二面角及其平面角的画法
主要分为直立式和平卧式两种,用电脑《几何画板》作图。
(四)、范例分析
为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。
例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。
分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。
变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。
题后反思:(1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)
(五)、练习、小结与作业
练习:习题9.7的第3题
小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。
作业:习题9.7的第4题
思考题:见例题
五、板书设计(见课件)
以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢!
高中数学教案13
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:
求曲线的方程。
教学用具:
计算机。
教学方法:
启发引导法,讨论法。
教学过程:
【引入】
1、提问:什么是曲线的方程和方程的曲线。
学生思考并回答。教师强调。
2、坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。
【问题】
如何根据已知条件,求出曲线的方程。
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。
首先由学生分析:根据直线方程的知识,运用点斜式即可解决。
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。
证明:(1)曲线上的点的坐标都是这个方程的解。
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解。
(2)以这个方程的解为坐标的点都是曲线上的点。
设点的坐标是方程①的任意一解,则
到、的距离分别为
所以,即点在直线上。
综合(1)、(2),①是所求直线的方程。
至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设是线段的垂直平分线上任意一点,也就是点属于集合
由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。
这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。
让我们用这个方法试解如下问题:
例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。
分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。
求解过程略。
【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合
;
(3)用坐标表示条件,列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的.解为坐标的点都是曲线上的点。
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。
下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。
【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。
解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合
由距离公式,点适合的条件可表示为
①
将①式移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。
【练习巩固】
题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。
根据条件,代入坐标可得
化简得
①
由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?
【作业】课本第72页练习1,2,3;
高中数学教案14
一、单元教学内容
(1)算法的基本概念
(2)算法的基本结构:顺序、条件、循环结构
(3)算法的基本语句:输入、输出、赋值、条件、循环语句
二、单元教学内容分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力
三、单元教学课时安排:
1、算法的基本概念3课时
2、程序框图与算法的基本结构5课时
3、算法的基本语句2课时
四、单元教学目标分析
1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义
2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。
3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。
4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
五、单元教学重点与难点分析
1、重点
(1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题
2、难点
(1)程序框图(2)变量与赋值(3)循环结构(4)算法设计
六、单元总体教学方法
本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
七、单元展开方式与特点
1、展开方式
自然语言→程序框图→算法语句
2、特点
(1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合一横向贯通(4)弹性处理多样选择
八、单元教学过程分析
1.算法基本概念教学过程分析
对生活中的实际问题通过对解决具体问题过程与步骤的'分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。
2.算法的流程图教学过程分析
对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。
3.基本算法语句教学过程分析
经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,
4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
九、单元评价设想
1.重视对学生数学学习过程的评价
关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。
2.正确评价学生的数学基础知识和基本技能
关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法
高中数学教案15
教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各年级抽取的个体数依次是,,,即40,32,28.
三、建构数学
1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.
说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;
②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.
2.三种抽样方法对照表:
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率是相同的
从总体中逐个抽取
总体中的个体数较少
系统抽样
将总体均分成几个部分,按事先确定的规则在各部分抽取
在第一部分抽样时采用简单随机抽样
总体中的个体数较多
分层抽样
将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统
总体由差异明显的几部分组成
3.分层抽样的`步骤:
(1)分层:将总体按某种特征分成若干部分.
(2)确定比例:计算各层的个体数与总体的个体数的比.
(3)确定各层应抽取的样本容量.
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.
四、数学运用
1.例题.
例1(1)分层抽样中,在每一层进行抽样可用_________________.
(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;
②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;
③某班元旦聚会,要产生两名“幸运者”.
对这三件事,合适的抽样方法为()
A.分层抽样,分层抽样,简单随机抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:
很喜爱
喜爱
一般
不喜爱
2435
4567
3926
1072
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?
解:抽取人数与总的比是60∶12000=1∶200,
则各层抽取的人数依次是12.175,22.835,19.63,5.36,
取近似值得各层人数分别是12,23,20,5.
然后在各层用简单随机抽样方法抽取.
答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人
数分别为12,23,20,5.
说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.
(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.
分析:(1)总体容量较小,用抽签法或随机数表法都很方便.
(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.
(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.
五、要点归纳与方法小结
本节课学习了以下内容:
1.分层抽样的概念与特征;
2.三种抽样方法相互之间的区别与联系.
【高中数学教案】相关文章:
高中数学教案09-28
高中数学教案03-20
高中高二数学教案10-13
【热门】高中数学教案03-03
高中数学教案【热门】02-27
高中数学教案(15篇)07-11
高中数学教案(精选15篇)12-30
高中数学教案精选15篇01-10
高中数学教案15篇04-11
高中数学教案(通用15篇)07-20