《笔算乘法》教案(15篇)
作为一名优秀的教育工作者,总归要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么写教案需要注意哪些问题呢?以下是小编为大家收集的《笔算乘法》教案,欢迎大家分享。
《笔算乘法》教案1
设计说明
在学习两位数乘两位数(不进位)的过程中,学生已经理解了笔算的算理,知道了 乘的顺序及积的书写位置。因此,本节课主要利用几何图形理解算理和学生已有的认知经验进行迁移,让学生自主建构两位数乘两位数(进位)的计算方法。
教学目标:
知识与技能
1. 使学生经历探索和利用几何图形去理解两位数乘两位数(进位)的相关运算算理,并能正确地处理计算过程中的进位问题.
2、培养学生利用旧知迁移新知的能力。
3、使学生在经历参与活动的过程中,进一步体验学习成功带来的快乐,激发探索计算方法,解决问题的兴趣,并渗透德育教育和培养学生认真细心、书写规范的好习惯。
重点:
1、能够简单利用几何图形计算两位数乘两位数。
2、掌握计算中为什么进位。
难点:让学生总结乘数是两位数的乘法的计算法则。
教学过程:
学生课前准备:练习本和文具
教师准备: PPT课件、题卡、动物卡片、水果卡片。
教学过程
一.课前和学生互动,<游戏水果蹲>
学生分四组,每组选出一个组长并选一类水果.最后,选出一组水果获胜.
二.复习
利用课前水果蹲获胜水果小组,引出复习习题,并找一名学生到前面板演.(一边计算一边想你是怎么计算的)23×13= (一名学生板演,其他同学在本子上做)
师:通过复习出示(两位数成两位数笔算)板书
三.新知过程.
创设情境,激发兴趣
1. 创设情境。
师:刚刚同学们在做题时,老师看到一位学生的桌子上有一盒酸奶,老师很好奇,我想采访一下他。
师采访。Xx你喜欢喝酸奶吗?
(课前准备一生说:是的,老师,妈妈说每天喝一盒酸奶对我长身体有好处。)
师:妈妈做的真好。同学们,你们喜欢喝酸奶吗?--------每天喝一盒酸奶是可以增强我们的免疫力。同学们春风小学的孩子们每天也喝一盒酸奶,今天我们就去帮帮春风小学解决一个有关酸奶的问题.你们愿意帮忙吗?
生:愿意。
2.出示课件
请同学们仔细观察图片,你发现了什么?(让学生找数学信息和数学问题和简单说说几何图形)
生:说出数学信息和数学问题。
师:那么你们会列式吗?(找生列式)
生列式,师板书48×37=
3.引出估算
同学们,在课下,咱们班有两位同学在预习时遇到了点困难,请同学看。(观看视频)
视频中的两个同学起立寻求帮助。以此引出估算的多种方法。
预设
(1)生:因为48≈50,37≈40,50×40=20xx(盒),所以大约需要20xx盒酸奶
(2)因为48≈50 50×37=
(3)37≈40 48×40
师:那么实际需要酸奶的盒数比20xx多还是少?为什么?
生回答。
4.引出笔算
同学们现在春风小学,要给学生们配备营养餐中的酸奶,想知道具体需要酸奶的.盒数,你们能帮忙吗?(请同学们在题卡上完成 第一题,并同桌之间说一说。找一名学生到前面板演,并找2名同学结合几何图形说说你是怎么计算的)
计算后,师:同学们这么快就帮助春风小学解决了困难。老师替他们感谢你们。谢谢大家。
师:现在请同学们仔细观察白板,你发现了什么?
生找异同。
师总结:这种利用以学知识学习新知的过程就是迁移思想。
出示课题进位和迁移。
那么同学们通过对乘数是两位数的乘法的学习,并结合刚刚计算的过程,你能说说如何笔算吗?(小组合作完成题卡2题。小组讨论,最后由组长写出讨论结果)
小组汇报和补充完成此内容。(运用一些鼓励性的语言给予鼓励,例如数学家就是这样说的)
找2名同学说,再大家加重音齐读。重要的事说三遍。
小结:两位数乘两位数的笔算:1.先用一个乘数的个位的数去乘另一个乘数,得数末位与乘数的个位对齐。计算中哪位满几十就向前一位进几。2.再用这个乘数的十位的数去乘另一个乘数,得数末位与乘数的十位对齐3.然后把两次乘得的
5.巩固练习
同学们你们能独立计算了吗?有几只小动物迫不及待的和大家见面了,同学们请看 。老师选一位同学帮大家选择一种可爱的小动物。(选择后生做后面题)
在学习新知时错的生展示.
6.小结。
同学这节课的功劳可真不少。帮助春风小学解决了困难。那么同学们在大家帮忙的同时你有什么收获呢?
生说一说
7.拓展。同学们说的太好了。那么同学们在生活中你们会用到今天所学内容吗?在以后的数学课上咱们还会和它见面吗?
8.布置作业
教材51页6题
9.板书设计:
两位数乘两位数笔算(进位)
23×13=299 48×37=1776(盒)
答:一共需要1776盒酸奶。
《笔算乘法》教案2
在当前的计算教学中,借助情境以及直观的动手操作理解算理并不是计算教学中的难点。问题在于,教师们注意了算理的揭示,但往往轻描淡写地很快揭示所谓的简化算法。这样的教学往往导致了在揭示算理到抽象算法之间出现断层,由此造成学生对计算的技能掌握不牢,对知识的运用、迁移不够。最近,笔者结合两位数乘一位数一课的教学,对苏教版第一学段加法、乘法的笔算教材的编排进行了深入的思考。
思考一:学生为何不接受乘法的原始竖式?
两位数乘一位数的教材编排,首先是揭示两位数乘一位数的算理,随后呈现乘法的原始竖式,最后优化简单的竖式书写方法。编排原始竖式的意图,是为了加深学生对算理的理解,同时也为学生架设一条桥梁,帮助学生从直观算理过渡到抽象的算法。然而在实际的教学中,学生结合情境图能较好地理解算理,但是在尝试笔算时往往就跳过原始竖式直奔简化竖式。《江苏教育》20xx年第3期杨春燕老师《两位数乘一位数教学例谈》一文中对这种现象的解释是,学生对加法与乘法的关系、表内乘法、位值原则等的知识储备能够使他们自我跨越。事实真的如此吗?笔者在不少课堂上看到这样的现象:学生在自主尝试出简化的竖式计算形式后,教师为了强化算理,尊重教材的编排,又向学生呈现出乘法的原始竖式,而这个时候,学生往往一片哗然,并不认同这一原始竖式。可见,学生虽然能尝试出竖式的简化形式,但并没有实现对原始竖式的真正跨越。那么,学生为何不接受乘法的原始竖式呢?按理说,只要理解了算理,过渡到原始竖式是水到渠成的事情,而过渡到简化的竖式,思维的跳跃性反而很大。带着这个问题,笔者在组内两位年轻教师开设同课题校级公开课时进行了实验统计。(由于是临时将后面的内容抽调上来教学,因此基本不存在家长提前辅导的情况。)两个班96名学生在尝试竖式时,只有一名学生用了原始竖式,原因是该学生看了数学书,其他95名学生都直接采用简化的竖式进行计算,并且我预设的 将前面口算的结果直接写在竖式横线下的现象无一例发生,学生在书写计算结果时都是先写个位,再写十位。我顿时醒悟:学生有着丰富的加法笔算的经验,先算个位,再算十位的笔算过程,横线下面直接书写计算结果的外在形式,都促使了学生在探究乘法笔算过程中自主迁移了这些知识经验。这种情况下,学生自然就难以接受乘法的原始竖式了,而教师在学生自主探究后再来教学原始竖式的意义也就不大了。
思考二:加法原始竖式的教学意义何在?
教材在编写两位数乘一位数时引进了乘法的原始竖式,这引起了我一系列的思考:加法笔算的教材编写为何忽略了原始竖式?根据教材目前的编排,加法笔算的教学状况又是怎样的?如果在教学加法笔算时也引进原始竖式,这样的教学意义何在?
先摘录一个笔算加法的教学片段:
师:43+31等于多少呢?先用小棒摆一摆。
学生操作,得出43+31=74。
师:你是怎么想的?
生:40+30=70,3+1=4,70+4=74。
师:谁能在计数器上表示43+31?
生拨计数器:先在计数器上拨43,再拨上31,结果等于74。
结合拨珠,教师引导学生说出算理:43+30=73,73+1=74。(这个算理相对难一些)
师:43+31,我们还能用竖式帮助计算。
教师板书竖式的框架,让学生尝试接下去计算。
学生的尝试的情况可以分成三种:(1)直接在横线下书写刚才口算的结果74;(2)先算十位上4+3=7,再算个位上3+1=4;(3)先算个位再算十位。
师:在竖式计算时,我们一般从个位算起,谁来把计算的过程跟大家讲讲?
生1:先算个位上3+1=4,4写在个位上,再算十位上4+3=7,7写在十位上。
师:刚才这位同学的方法就是竖式计算的方法,大家掌握了吗?
同上面这个教学片段一样,很多教师在揭示算法时不自觉地将算法同算理剥离开来,诚然,站在成人的角度,笔算加法就是这么简单:个位同个位相加,十位同十位相加,几乎没有任何需要解释的理由。但殊不知这样教学,学生尽管能较快地掌握加法笔算的方法,但是这种机械、形式化地操作,让学生在计算时不自觉地脱离算理的有效支撑,学生的'计算仍然只是稀里糊涂地计算,甚至当学生学习乘法笔算时,尽管能娴熟地迁移加法笔算的方法,但同时导致了乘法笔算也只是停留在机械化操作的层面。因此,笔者认为,加法笔算教学,增加原始竖式的教学十分有必要。在教学一年级(下册)加法笔算时,学生交流完43+31的口算算理之后,我让学生尝试进行竖式计算。交流时,有不少学生是直接将答案74抄写在横线下面的,也有不少学生知道从个位算起,再算十位,列出了标准的竖式。这个时候我就将原始竖式呈现出来:
让学生思考:根据刚才口算的三个步骤,竖式计算过程中也应有这样的三个步骤,而你们在计算40+30=70时,怎么就直接把7写在十位上面去了呢?学生一开始愣住了,如实告诉我:家里爸爸妈妈就是这么教的,书上也是这么写的。我就继续让学生思考:爸爸妈妈教的竖式以及书上的竖式这样算有没有道理呢?我随即同学生做了几个实验:我让学生用爸爸妈妈教的方法做几道题,我用原始竖式计算,放到黑板上一比较,学生发现,计算结果都一样,而原始竖式看起来计算的步骤更清楚,但是写起来较麻烦。并且学生指出,原始竖式中一位数加上整十数,得数的个位上还是原来的一位数,十位上的数跟整十数十位上的数相同,所以就能省略计算的步骤,把竖式写的简单些。经历了对原始竖式的观察、比较、优化,我相信学生对笔算两位数加两位数的算法就不再是操作性理解了。
非常巧合的是,最近笔者在翻看以前的杂志时发现,上海小学数学教材编写组在20xx年第6期《小学青年教师》发表的《关于整数加减法竖式计算的处理思路》一文中也指出:根据新的学力观,我们不应该仅仅重视竖式一般的形式,也应该重视使用竖式表现思考过程。而这种表现了思维过程的竖式形式其实就是原始竖式。加法笔算时引进原始竖式,不但有效沟通了直观算理到简化算法的过渡,更让学生对数和数位结合的位值原则有了初步的体验,这为学生以后的乘除法的笔算学习打下了坚实的基础。
思考三:笔算乘法在沟通算理和算法时以什么为突破口?
学生有了将加法的原始竖式过渡到简化竖式的经验后,教学两位数乘一位数时,怎样由原始竖式过渡到简化竖式已经不再是本节课的难点了,因为加法同乘法的简化过程、方法都是相通的,再加上学生在丰富的加法笔算经验的引领下,完全可以自主探究出乘法竖式的简化写法,因此,教学乘法的笔算时,我们不妨重新改编教材,将原始竖式这块内容割舍掉。而割舍这一内容,需要寻找到一种比原始竖式更能有效沟通算理和算法的突破口。
二年级(下册)第四单元中教学三位数连加,练习里有这样一道题(42页):三角形花坛的三条边一样长(每条边长268厘米 ),花坛栏杆的长一共多少厘米?解决这道题时,不少学生列了乘法算式2683,可是乘法竖式不会计算,当时我就引导学生借助加法竖式进行计算,并且在加的过程中让学生思考怎样算能算的更快,学生在计算每一位上三个数相加时自然运用口诀进行简便计算。这道题给了我很大的启发,学生尽管是在用加法竖式进行计算,可是运用乘法口诀帮助计算的方法不就是乘法笔算的方法吗?因此,在学生初步具备数和数位位值知识的基础上,在充分理解算理的前提下,笔算几个相同加数连加的简便算法就是提炼乘法笔算方法的最佳突破口。当然,我们在重组教材时,还需要考虑到,如何促使学生在加法笔算时自觉采取简便算法,以促使这一算法有效迁移到乘法的笔算中。
在使用现行教材例题进行教学两位数乘一位数,交流142的算理时,学生能很快说出:14+14=28。但当教师问及还能怎样想时,很少有学生能想到先算102=20.再算42=8,再算20+8=28。细细分析发现:学生在解决142时,往往把14看做一个整体,两个14相加,学生能很快口算出结果。但是教学142的笔算,需要支撑的是第二种算理,因此教学时,老师往往根据教材的编排想方设法引导学生再用局部分解的眼光来思考问题,(把14分成10和4,142就是把2个10和2个4合起来),这显然不太符合学生的思维常态,因此课堂进行到这一环节时常常会冷场。同时,由于计算2个14比较简单,在尝试乘法笔算时不排除会有部分学生的计算仅仅停留在加法计算的层面上,而没有内化到乘法上。这就导致这部分学生在后面的练习中出现计算步骤混乱、计算方法混淆等情况。
于是,我们尝试调整例题中的数量,促使学生在口算时用先分解再综合的策略解决问题。如可以改成每只小猴采32只桃,3只小猴一共采多少个桃?这样,学生在口算3个32相加时难度相对大些,学生必然会采用分解的策略:先算303=90,23=6,再采用综合的策略:90+6=96。在明确算理后,让学生用连加的笔算验证刚才的口算过程,并且让学生思考怎样算能算的更快。在运用口诀进行加法竖式的简便计算后,让学生带着问题思考:如果让你自己尝试用乘法竖式计算323,你会从这个连加竖式中得到哪些启发呢?学生边思考边进行乘法竖式的探究。在此基础上,沟通加法笔算与乘法笔算的相通之处,进一步明确算理、巩固算法。在交流乘法笔算的计算过程时,教师让学生说说每一步计算的算理,并引导学生及时同加法竖式联系起来,使学生明确,乘法中的每个计算步骤都能在加法竖式中找到,并且用到的口诀也是一致的。
3.改编重组教材的可行性再思考:结合几个相同加数连加的笔算,学生在探究笔算两位数乘一位数(不进位)时,对算理的理解更深入,对算法的掌握更清晰。这一突破口对后继学习的两位数乘一位数(进位)产生的优势更明显。现行进位乘的教材从原始竖式过渡到有进位的简化竖式,这个过程有相当大的跳跃性,既有中间计算步骤的简化,又有进位方法的提炼,仅仅从原始竖式中获得启发,让学生自主提炼出简化的进位乘,难度比较大。相比而言,将连加竖式的简便算法迁移到简化的进位乘,更能促进学生自主迁移、运用已有的计算经验,从而有效拓宽探究的空间,增强探究的欲望,发展学生的思维。以243的竖式为例:
师:这两种竖式在计算时有什么联系?
生1:都是先算3个4相加,再算3个20相加,再把它们合起来,因此,计算的结果相同。
生2:计算过程中用到的口诀都相同。
生3:进位的方法也相同:都是个位満十,向十位进1。
上面的教学片段证实:以笔算加法的简便计算作为教学笔算乘法的突破口,更能有效沟通算理与算法,促进学生的知识迁移。这样组织教学,拓展了学生后继学习新知的探究空间,促进了学生对知识结构的疏理、重建,提升了数学思维、能力的发展,让学生明明白白地学会计算。
《笔算乘法》教案3
教学内容:教科书第74页例1,练习十六第1~4题。
教学目标:使学生经历多位数乘一位数(不进位)的计算过程,初步学会乘法竖式的书写格式,了解竖式每一步计算的含义。培养学生独立思考和合作交流的学习方法和积极的学习态度,体验计算方法的多样化。
教具、学具准备:有关的多媒体课件,整捆和单根的小棒。
教学过程:
一、提出问题
课件演示例1的情境图。画外音:元旦到了。小明、小华和小英正在用彩笔画画,准备布置“迎接元旦”专刊。他们要用美丽鲜艳的彩色图画歌颂伟大的祖国,迎接新年的到来。从这幅图画中,你能提出哪些用乘法计算的数学问题呢?引导学生提出:他们每人都有一盒彩笔,每盒12枝。他们一共有多少枝彩笔呢?
先请同学们估算一下,3盒大约有多少枝彩笔?
教师提问:如果我们要知道准确的枝数,该怎么办呢?
小精灵问了:怎样算一共有多少枝彩笔?
二、探讨交流
请同学们说一说:
(1)用什么方法计算?怎么列式?
(2)12×3表示什么意思?
(3)这道题与我们以前学过的乘法计算有什么不同?
教师提问:这道题该怎样算呢?
让小组内每个同学先思考3分钟,在纸上算算看,能不能算出来。也可以摆出小棒(或其他学具)或画画图等。如果能想出几种算法的,就把几种算法都写出来。
算完以后,在小组里交流,把自己的算法说给同组的其他同学听。
小组长归纳一下本小组一共想出了哪几种算法。这时教师巡回了解各组的情况,尤其要鼓励学习有困难的学生积极参与小组的活动。
全班汇报。由各小组的`代表向全班同学汇报自己小组的各种算法,教师将其板演在黑板上。
三、分类评价
教师提出要求:现在同学们想出了这么多种算法,我们能不能把这些算法分分类,看看一共有几种思路。
估计学生的算法可能有如下几类:
1.摆学具求得数。
引导学生摆。因为一个因数是12,所以一行摆1捆零2根;因为另一个因数是3,所以摆3行,一共摆了3捆零6根,也就是得36。
2.画图求出得数。
3.连加法。
12+12+12=36
4.数的分解组成。
10×3=302×3=630+6=36
5.拆数法。(转化成表内乘法)
8×3=24或7×3=21或6×3=18
4×3=125×3=1518+18=36
24+12=3621+15=36
评价各种算法,组织学生议论,每一种算法是怎么算的,各有什么适用范围。
1.摆学具和画图也是一种很好的方法,但我们学了数学以后就应尽量使用计算的方法来算。
2.根据乘法的含义用连加的方法也是可以的,但是如果因数的个数比较多,算起来就比较麻烦。
3.把一个因数分解成几个十和几个一,分别与另一个因数相乘,再把几个乘积加起来。这种方法不管因数是几都能算。
4.把一个因数拆成几个一位数,再分别和另一个因数相乘,然后把几个乘积相加,这种方法不管因数是几也都能算,但有时也比较麻烦。如25×6=9×6+8×6+5×6+3×6等。
四、介绍竖式
从刚才议论的结果来看,用数的分解组成方法来算比较简便。那么我们能不能把这三个算式像加法竖式那样合并成一个竖式呢?下面就请大家打开课本第74页看看小英是怎样列出乘法竖式的?
课件一步一步展示竖式的书写过程,突出书写的步骤和书写的位置,边演示边说明。如果没有电脑设备,也可板书。
先出示有部分积相加的竖式,再出示简便竖式,并说明为什么可以写成简便竖式。
学生在练习本上完成“做一做”的三题,教师巡视了解情况。如有发现错误,指导订正。
五、巩固练习。
学生完成练习十六的作业。每道题先让学生估算,然后再用竖式计算。
第1题让学生独立完成后,说说为什么是用乘法计算。
第2题让学生独立完成后,同桌互相检查并说说自己是怎么算的。
第3题让学生独立完成后,再交流这道题有哪几种算法。
六、小结(略)
《笔算乘法》教案4
一、教学目标:
1、经历探索两位数乘两位数(不进位)口算和笔算方法的过程,理解算理,掌握方法。
2、通过自主探究、讨论交流等方式借助点子图,初步培养学生数形结合的思想,体验解决问题方法的多样性,渗透“转化”的数学思想。
3、培养学生运用转化方法主动学习新知识的能力,发展学生的问题意识和应用意识,体验学数学,用数学的乐趣。
二、教学重难点
重点:掌握两位数乘两位数竖式的算理和算法
难点:理解两位数乘两位数的算理。
三、教学准备:
课件、点子图
四、教学过程
(一)、情境导入
师:看,老师今天给大家带来了什么?
生:神奇的点子。
师:神奇在哪儿呢?请看点一下(变成苹果),再点一下(变成小熊),继续点(变成了书)。
师:看来,在数学当中,可以用点子图(板书:点子图)来代表任何东西。使我们要解决的问题更简便。
二、学习新知
师:昨天,我到书店买书,遇到这样一个问题,谁来读一读?
生:每套书有14本,钟老师买了2套,一共买了多少本?
师:我们知道点子可以代表书,那这里的1套书14本,就可以用一行14个点子来表示。2套就几行点子来表示呢?
生:2行点子(课件出示2行)
师:它表示几个几?
生:2个14。
师:怎么列式?
生:14×2。
师:你会用口算的方法计算出结果吗?
生:先算4×2=8,再算10×2=20,最后算20+8=28。
师:对,除了口算,我们还可以。
生:笔算。
师:列竖式计算时,我们要注意什么?(生;相同数位要对齐)
师:怎么算呢?
生:先用2去乘个位上的4等于8,再用2乘十位上的1等于2个十,所以2写在十位上。
师:刚才我们用口算和笔算的方法计算出14×2=28,哪种方法算起来更快?
生:笔算。
师:这是几位数乘几位数。
生:两位数乘一位数。
师:(指着口算):计算时,我们先把14怎么样?
生:分成10和4。
师:对,就是先把数分小了再进行计算,然后再把两步的积怎么样?
生:加起来。
师:对,这就是(板书:先分后合)的方法,把新知识(板书:转化)成旧知识来帮助我们解决问题。
师:现在每套书有14本,钟老师买了10套,用点子图该怎么表示?谁来说一说?
生:每行14个点子,一共有10行。
师:那这1 0行就表示几套?
生:10套。
师:怎么列式?
生:14×10=140。
师:这是两位数乘两位数中的什么数?
生:两位数乘整十数。
师:那要是钟老师现在买了12套,点子图又该画几行?
生:12行。
师:它表示求几个几?
生:12个14。
师:怎么列式?
生:14×12。
师:这是几位数乘几位数。
生:两位数乘两位数。
师:怎样计算呢?这就是我们今天研究的内容(板书:两位数乘两位数)
师:现在你们能不能估一估14×12大约等于多少?
生:大约等于140。
师:它到底等于多少呢?我们能不能通过点子图利用先分后合的方法把14×12转化成以前学过的知识计算出来呢。
师:好,我们来看一下活动要求,把12套书用先分后合的方法在点子图上分一分、圈一圈,然后列算式算一算。请大家4人为一小组,开始吧。
师:同学们分好了吗?分好的小组请用行动来告诉老师你们分好了。
师:谁来代表你们小组把你们的想法,展示给大家看看。
生汇报:① 14×10=140 14×2=28 140+28=168。
把12套书分成两部分,先算10套,14×10=140再算2套,14×2=28最后算140+28=168就是把两部分的积合起来。
师:哪些小组和他们的想法一样?哪些小组还有不同的想法?
②14×4=56 56×3=168。
把12套分成3个4套,先算4套,14×4=56,再算3组这样的4套56×3=168。
师:还有没有不一样的分法?
③14×6=84 84×2=168 。
师:(小结)这些作品虽然分的方式各有不同,但他们都有一个共同的特点是什么?
生:先把其中一个因数分小了,然后再合起来,(或者:用到了先分后合的方法)
师:对,就是通过点子图利用先分后合的方法把12套书先分成几部分,转化成两位数乘一位数或两位数乘整十数来计算,然后都是把几部分合起来。
师:我们再来看看这几种分法,你认为哪种分法计算起来比较简单?
生:先算10套,再算2套那种。
师:对,就是这种,因为这样分后更容易口算。
师:那请你和同桌的同学互相说一说这种分法是怎么分的?
师:好,说完的同学请快速的坐好。
师:刚才结合点子图,我们可以口算出14×12=168以外,还能列竖式计算吗?
生:能。
师:那现在我们一起来探究怎样列竖式计算吧。(板书:笔算乘法)
师:好,请大家结合这种分法先独立思考,再在草稿本上试着列竖式算一算,计算之后再和同桌的同学互相说一说你是怎么算的。
师:谁来说说你是怎么算的?
生:先算2乘4等于8。
师:8表示?(生:8个一)写在(生:个位上)
师:再算?
生:2乘十位上的1等于2个十。
师:2写在(十位上)。
师:也就是先用第二个因数个位上的2去乘第一个因数的每一位。
师:再怎么算?
生:先用十位上的1去乘个位上的4等于4
师:4表示?
生:4个十。
师:4就写在(生:写在十位上)。
师:那这里个位上的0还写不写呢?
生:可以不写(师板书:个位上的0不写)
师:接下来再怎么算?
生:十位的1去乘十位上的1。
师:等于?(生:100)表示?
(生:1个百)1写在(生:百位上)
师:对,也就是再用第二个因数十位上的1去乘第一个因数的每一位。
师:那接下来又该怎么算?
生:把二步的积加起来。
师:个位相加等于(8),十位相加等于(6),百位相加等于(1)。
师:这一步的28是怎么得到的?
生:28是14×2得到的,(师板书:14×2的`积)。
师:(指着第二步)这一个数又是怎么得来的?
生:它是14×10的积。
师:最后怎么算的?
生:把二步的积加起来。
师:其实就买书这件事来说,28表示求几套书的本数?(2套)
师:140又表示几套书的本数?(10套)
师:看来,我们的竖式也是采用先分后合的方法,把14×12先转化成两位数成一位数和两位数乘整十数,再合起来得到最后得数。
师:在竖式计算过程中,我们第一步先用个位上的2去乘第一个因数个位上的几?(4)等于(8)
师:再用2去乘十位上的1,也就是用2乘的几?
生:2×10=20。
师:也就是什么乘什么?(10×4=40)
师:再用十位上的1乘十位上的1也就是什么乘什么?
生:10×10=100。
师:现在你们能不能在点子图上找一找每个乘法算式对应的位置呢?
生:能。
师:第一个2×4=8在点子图上表示求的哪个部分?
生:右上角。
师:2×10=20在图上又表示求的哪个部分?
生:左上角那个部分。
师:10×4=40,又表示哪个部分?
生:右下角那个部分。
师:最后10×10=100呢?
生:左下角那个部分。
师:最后我们再来看一下竖式计算的过程,我们第一步先算的什么?第二步再算的什么?最后又是怎么算的?
生:先用第二个因数的个位去乘第一个因数的每一位,再用第二个因数的十位去乘第一个因数的每一位,最后把两步的积加起来。
师:现在你们知道怎么算了吗?
生:知道了。
练习巩固:
师:那如果不是14×12,而是其他的两位数乘两位数,你们还能计算吗?
生:能。
师:好,现在大家练习一下答题单上的做一做这几道题吧。
师:请大家一大组算一道题,看哪个组的同学算的又快又准确。
师:哪些同学愿意上来算一算?
师生集体评价,选一题让孩子说说你是怎么算的?其余3题集体评价。
师:第一组做对的同学请举手。
师(小结):今天我们学会了什么?
生:两位数乘两位数的笔算乘法。
师:还用到了一个很重要的学习方法是什么?
生:先分后合转化的方法。
师:对,通过点子图利用先分后合的方法把新知识转化成旧知识来解决,这是一个很好的学习方法,希望大家下来以后能学以致用。
师:在竖式计算的过程中,你觉得有没有什么地方是我们最该注意的?
生:用第二个因数十位上的数去乘第一个因数的每一位时,结果的末位一定要与十位对齐。
师:咱们再来帮啄木鸟治一治病吧!请大家在答题单上判断一下下面的计算正确吗?把错误的改正过来。
师:敢不敢接受今天的终极挑战?
师:猜一猜水果下面藏着几?
《笔算乘法》教案5
教学目标:
1、使学生能根据两位数乘两位数的笔算方法,推出并掌握三位数乘两位数的笔算方法。
2、进一步培养学生的计算能力。
教学过程:
一、自主探索笔算方法。
1、出示例1:李叔叔从某城市乘火车去北京用了12小时,火车1小时约行145千米。该城市到北京大约有多少千米?
2、独立列式:145×12=
3、请学生估一估145×12的'大致范围。
4、尝试算出145×12的结果,并对照估算的情况,算一算估算值与准确值的误差是否合乎实际。
5、让学生说一说计算过程。应说以下几点:(1)先算什么;(2)再算什么,积的书写位置怎样;(3)最后算什么。
6、师生共同归纳三位数乘两位数笔算一般方法的过程。
7、引导学生用不同的方法检验自己运算的结果。
二、巩固练习
1、课本49页“做一做”
学生独立用竖式计算,完成后,可能计算器自行检验。
2、练习七第3题。
164×32= 54×145= 254×36=
217×83= 43×139= 328×25=
提示学生:怎样列竖式可使计算方便些?让学生在自主探索、对比的基础上反思,明白在列竖式时,上面一行写三位数,下面一行写两位数,这样计算比较方便。同时提醒学生书写要工整,数位要对齐,计算要仔细。
3、练习七第2、4题。
这两题的知识背景具有很强的教育意义,学生练习后,让学生根据每题的知识背景简单说一说自己的感受。
三、课堂小结。(略)
四、教学反思:
《笔算乘法》教案6
教学内容:
教科书第10~11页上的例4、例5及“做一做”中的题目,练习三中的第1~2题。
教学目的:
l.使学生初步掌握一位数乘二、三位数的笔算方法。
2.初步培养学生的抽象、概括能力。
教具、学具准备:
师生各准备小棒6捆(每捆10根)零12根。
教学过程:
一、复习
1.口算:教科书第10页的复习题。
2.学生板演(与口算同时进行):
共同订正,指名学生说说算式的意义及计算过程。
提问:笔算一位数乘多位数,乘的顺序是怎样的?
二、新课
1.教学例4。
出示例4:3乘24该怎样计算?先用小棒摆摆看。
师生一起摆小棒。第一行摆24根(2捆又4根),再摆同样的两行小棒,每行都是24根。
提问:(1)每行有多少根小棒?有几行?
(2)要求一共有多少根小棒怎样列式?
(3)要求3个24根是多少根,怎样算?
让学生说出不同的算法后提问:
这几种算法哪一种比较好?
然后教师边演示边说明,要算3个24根一共是多少根,先算3个4根是12根(把其中的.10根捆成一捆,另外2根放一边),再算3个2捆是6捆,加上前面的1捆合起来是7捆,一共是7捆零2根,即72根。所以3乘24等于72。
教师列出竖式。
提问:根据摆小棍的过程,这道题应该先算什么,再算什么?
学生说计算过程,教师板书成如下形式:
说明:竖式的写法可以简化。教师边写出简化的竖式,边引导学生口述计算过程:先用3乘被乘数个位上的4得12,向十位进1,在积的个位上写2;再用3乘被乘数十位上的2得6个十,再加上进上来的1个十是7个十,在积的十位上写7。
2.做例4下面“做一做”中的题目。
让全班学生做例4下面“做一做”中的题目,同时指名四人板演。教师巡视,注意发现问题,然后集体订正。
集体订正时,教师结合试算题提问:
(1)用乘数乘被乘数个位上的数,积满十,向十位进一;积满二十,应向十位进几?积满三十呢?
……
(2)用乘数乘被乘数十位上的数,积满十,向哪一位进?为什么?
在学生回答后,教师引导学生进行概括:
计算乘法时,哪一位上乘得的积满几十,就向前一位进几。
3.教学例5。
由示例5:192×4。教师列出竖式,然后边将1遮住边提问:这道题应按怎样的顺序乘?先乘什么?(教师在积的个位写8)再乘什么?教师板书。乘到第二步时,提问:
4×90得多少?该怎样写?
教师指出:4乘90得360,在积的十位上写6,向百位进3。同时将遮住的l露出来。因乘数4还要乘被乘数百位上的1,所以进到百位的3应记在横线上。
下面的部分让学生自己接着算完,并说出计算过程,教师板书。
4.做例5下面“做一做”中的题目。
指名四人板演,集体订正。学生练习时,教师要注意学生做的情况,可将有代表性的错误写在黑板上,让学生讨论。
三、小结
引导学生小结乘数是一位数的乘法的计算方法,说明乘的顺序及进位法则。
四、课堂练习
1.让学生做练习三的第1题。学生独立做完后。集体订正,指名说出乘的顺序及过程。
2.让学生做练习三的第2题。学生独立做完后,指名说一说,哪道题的计算有错。
《笔算乘法》教案7
教学内容
笔算乘法(教材第49页例2及第50页练习十一第1~2题)。
教学目标
1。让学生通过两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。
2。在学习活动中感受数学与生活的密切联系,培养学生良好的思维品质和应用数学的能力。
3。培养认真细心等良好的学习习惯。
重点难点
学会计算两位数乘两位数进位的乘法。
教学准备
多媒体课件
复习导入
78×11= 33×21= 24×12= 14×12=(组织学生独立计算,并让学生说说计算过程。)
师:上面这几道计算题都是两位数乘两位数不进位的乘法,今天我们继续来探讨较复杂的两位数乘两位数的笔算乘法。
揭示课题:笔算乘法(进位)
新课讲授
1。导入:仔细观察图片,你获得了哪些信息?大家可以提出什么问题呢?
2。例2:课件出示例2情景图。
春风小学有37个班,平均每班有48人,一顿午餐要为每人配备一盒酸奶,一共需要多少盒酸奶?
师:你从题目中获得了什么信息?应该怎样列式计算呢?
引导学生列式:48×37=
3.各组讨论:怎样计算48×37。
师:请把想出的计算方法写在纸上。
4.组织交流。
师:各组展示本组的算法。不容易说清楚的,就写在黑板上。
(1)48≈50 37≈40
50×40=20xx
大约20xx盒。
(2)40×37=1450
8×37=296 1450+296=1776
一共需要1776盒酸奶。
(3)48×30=1440 48×7=336
336+1440=1776
一共需要1776盒酸奶。
(4)48×37=1776(盒)
一共需要1776盒酸奶。
5。师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见给以肯定或补充。使学生了解每一种算法的特点和适用范围。
师:先用个位的7去乘48,乘得的结果的末位同个位对齐,计算中满几十就向前一位进几,再用十位上的3去乘48,乘得的'结果的末位同十位对齐,然后把两次乘得的结果加起来。
(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!
6。引导学生归纳小结计算方法:
乘数是两位数的乘法,先用一个乘数个位上的数去乘另一个乘数,得数的末位与乘数的个位对齐,再用这个乘数的十位上的数去另一个乘数,得数的末位与乘数的十位对齐,然后把两次乘得的结果加起来。
课堂作业
1。完成教材第50页练习十一第1题。
完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。
23×34=782
54×29=1566
47×62=2914
78×82=6396
2。完成教材第50页练习十一第2题。
独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。
课堂小结
1。请学生讨论笔算乘法时要注意什么问题,并交流。
2。教师强调:用竖式计算时,要注意每次乘得的数的末位应该和哪一位对齐。还要注意记住进位数,正确处理进位问题。
课后作业
完成数学书第51页练习十一第6—7—8—9题。
板书设计:
笔算乘法(进位)
例2:48×37=1776(盒)
一共需要1776盒酸奶。
《笔算乘法》教案8
教学内容:
教材第47-48页练习十
教学目标:
1、巩固复习两位数乘两位数的笔算方法(不进位),并能正确、熟练地进行笔算。
2、运用所学知识正确、熟练地解决问题。
教学重点:
正确、熟练地进行笔算和会解决实际问题。
教学难点:
正确、熟练地进行笔算和会解决实际问题。
教学准备:
多媒体课件 计算题卡片
教学过程:
一、复习整理
1、复习两位数乘整十数的口算。
3420
17 10
1330
2130
4320
3240
51 70
6330
7210
巩固复习两位数乘整十数的口算,为复习笔算打好基础。
2、复习两位数乘两位数的'笔算。
1244
3213
4211
2123
指名四位同学到黑板上完成,其他同学在 练习本上完成,完成后每个同学说一说计算过程,指名学生任选一题说出计算过程。
3、教师小结:笔算两位数乘两位数(不进位)乘法时,用第二个因数的每一位上的数分别去乘第一个因数,再把两次乘得的结果加起来。
二、巩固练习
1、笔算。
1244
3213
4211
2123
2332
4121
2223
3412
全体同学在练习本上完成,集体订正结果。
2、3911
3131
2333
2224
1241
让同学们任选两题在练习本上完成(竖式计算),老师巡视,把完成既正确书写又好的同学的练习本进行展示,让其他同学向他学习,并把这道题的卡片送给这位同学,以示鼓励和表扬。
3、让学生独立完成教材第47页的第4、第5题,然后指名学生回答,列式计算,写出计算过程和结果。
这两道题是图文结合题,所以要引导学生认真观察题和图,正确找出解决问题的信息数据。
三、课堂作业新设计
1、列竖式计算。
3421
3113
1212
2211
1125
2、每个胶卷售价21元,买14个交卷要用多少元?
3、每箱苹果重13千克,32箱苹果共重多少千克?
4、每个工人每天挖树坑11个,15个工人一天挖树坑多少个?
四、思维训练
1、连一连。
1810 860
3112 605
20xx 180
5511 372
2、小华每天坚持写13个毛笔字,他在7月和9月共写了多少个毛笔字?
3、李老师买了2个足球,张老师买了4个篮球,王老师买了1个足球、1个篮球、3个网球,他们每人所用的钱正好相等,1个足球的价钱相当于几个网球的价钱?
教学反思:
通过本节课的练习,使学生进一步巩固复习了两位数乘两位数的笔算方法(不进位),并能正确、熟练地进行笔算。在实际练习中,学生能正确、熟练地进行笔算和会解决实际问题,提高了学生列竖式计算的能力。
《笔算乘法》教案9
教学目标
1.使学生学会一位数乘二、三位数连续进位乘法的计算方法,通过加大做题的难度,提高学生的计算能力.
2.培养学生及时验算的好习惯,以及认真书写的好习惯,来提高学生的一次正确率.
教学重点
指导学生准确地进行连续进位的一位数乘法计算.
教学难点
某一位上的乘积加上进上来的`数又要进位的情况是一位数乘法计算中的一个难点.
教学过程
一、复习旧知:
1.口算:
2.笔算.请三位同学板演,其他同学动笔练习.
二、教师谈话:前几节课我们学习了一位数乘二、三位数的乘法,这节课我们要在此基础上学习难度更大一些的笔算乘法.
三、指导探索、学习新知:
1.出示例5
2.学生看图编题:
有4盒奶粉,每盒545克,求这些奶粉共多少克?
3.由学生来列式,老师板书:
4.师:这道题同学们自已动笔试着做一做,在做题的过程中体会一下与前一节课讲的有什么不同,你在做题时遇到什么困难了,一会可以互相交流.
学生试做,教师巡视.
5.汇报自学情况:
学生1:我发现今天做的竖式题是连续进位的,每乘一位都需要向前进位.而昨天的题不是连续进位.
师:你说的真对,你找到了今天的题与昨天的题的不同点,这个不同点就是我们今天要学习的地方.
老师板书课题:连续进位乘法.
学生2:我在做题中遇到的困难是:每乘一位都向前进位,每乘一位都要加上进上来的数,一共用了3次乘法和2次加法,等于做了5道口算题,特别复杂.
师:你观察得真仔细,别看一道小小的一位数乘法,这里面包含的步骤可多啦,更需要你们用耐心和细心去算.
老师板书竖式:
师:进位数字一定要写,还要写清楚(用红笔描一描)
6.师:那同学们说一说与昨天学的例题有什么相同?(学生讨论)
交流汇报:
生1:我觉得不论数字多大,数字多高,计算法则是一样的.
生2补充:都是从个位乘起,并且哪一位乘得的积满几十就向前进几.
7.巩固练习,反馈调节:
老师在订正时要强调竖式书写时要把字写清楚,进位数字一定要写对位置,向十位进几要写在十位上,向百位进几,要写在百位上.
四、多层次练习
1.对比练习
(1) (2)
教师提出要求(1)(2)(3)组做第(1)组题,(2)(4)(6)组同学做第(2)组题.
学生做完后讨论两组题的相同点和不同点.
(相同点:2组题都是连续进位的.
不同点:两组题中第1小题是一般的连续进位乘法,而第二小题则是乘得的积加上进来的数又要进位的乘法.)
2.改错练习.
3.在○内填上“>”、“<”或“=”.
○402 ○1325
○600 ○1122
五、课堂
师:今天你学会了什么?有什么收获.
生1:今天我学会了连续进位的笔算乘法.
生2:乘的方法与前面学的一样,每乘一步都要进位,每乘一位都要加进来的数,比较复杂.
生3:今天虽然做的是笔算,可我觉得每一步都用到了口算,今后我要加强练习口算,提高计算能力.
板书设计
连续进位乘法
例5 题目
教案点评:
教学中采用自学的方法,让学生带着问题去思考、讨论、试做,教师在此基础上精讲点拨,最后方法,再配以多种形式的练习,使学生在巩固所学知识的基础上,培养学生的计算能力。
《笔算乘法》教案10
教学目标
1、让学生经历尝试、学习两位数乘两位数的笔算过程,理解算理,掌握笔算的方法。
2、通过合作学习的方式,相互评价,培养创新意识和实践能力,增强合作意识。
3、在探索算法与解决问题的过程中,体验成功的喜悦,体会数学在生活中的应用家价值。
教学重点
理解两位数乘两位数的笔算算理。
教学难点
在交流合作中,探索解决问题的多种方法。理解用第二个因数十位上的数乘第一个因数所得的积表示多少个“十”,因此乘得的数的末位要和因数的十位对齐。
教学过程:
一、触摸旧知,引入新课。
1、老师要买2套书,一共有多少本?
提问:怎样列式?
2、老师要买10套书,一共有多少本?
怎样列式?
提问:在解决这两个问题时,我们用到了什么旧知识?
3、如果老师要买12套书,一共有多少本?
生列式并说意义。
提问:这是一道什么样的算式?这就是我们今天要一块来解决的新问题。揭示并板书课题。
二、自主探究,理解算理。
1、探究14×12的笔算。
(1)、回忆2×14的'计算过程,并说出意义
(2)、小组探究10套书在竖式中怎样表示
(3)、汇报展示。
2、错例辨析,突出重点。
师把在巡查过程中错的竖式板书到黑板上。
着重讲解竖式,学习笔算的算理。
当生指出错误的竖式出错点后,请一名基础较好的同学复述乘的顺序及第二个因数十位上的1去乘第一个因数的对位知识:先用第二个因数个位上的2分别去乘14,8写了对着个位,再用第二个因数十位上的1分别去乘14,10乘4得4个十,所以应把4写了对着十位,10乘1个十得1个百,所以1写在百位上。第二次乘其实是算10个14是140,140末尾的“0”在和8相加时写不写都不会影响个位上相加的结果,所以这里的“0”可不写。
引导学生把题目补充完整。
3、同学们自由说说笔算两位数乘两位数的计算过程
三、巩固练习
1、寻找位置(把相乘的结果放在正确的位置里)
2、火眼金睛
3、列竖式计算
23×13 33×31 43×12 11×22 12×44 32×13
四、总结学法。
这节课我们学了什么知识?我们是怎样学会这些知识的?
五、课堂作业
练习十(第5、6题)
六、板书设计。
《笔算乘法》教案11
教学内容:
教材74-75页例1、“做一做”,练习十六的1-4题.
教学目标:
1、让学生积极参与到课堂学习中,经历笔算乘法的整个过程,运用知识的迁移,最终掌握笔算乘法的计算方法。
2、培养学生良好的学习习惯,熟练计算不进位的多位数乘一位数。
3、能运用所学知识解决简单的日常生活中的数学问题。
教学重难点:
理解列竖式计算多位数乘一位数的算理,掌握列竖式计算多位数乘一位数的计算方法。
教学过程:
1、复习旧知识
口算:10×4 20×3 40×7 2×70
2、导入新课
教师:新年很快要到了,小新、小红、小雪都想亲手画一张画送给他尊敬的老师,大家请看图:(学生观察课本中的插图,说说都看到了什么。)
3、学习新课
①教师提问:图中3个小朋友共准备了几包彩笔?每包彩笔是几枝?(让学生观察后,指名回答,教师板书)
教师提示:图中小精灵有一个问题——怎么样算一共有多少枝彩笔呢?同学们能不能帮上忙?试着列式。(让学生充分思考后列式,教师可到各组检查,并汇报列式情况,同时要求说说自己的想法,可能出现情况:12+12+12;(理由:3个12共多少就列加法)
教师板书:12×3
(引导学生说理由:几个几的简便算法,可以列乘法算式)
②教师:让我们来探究12×3的结果是多少?也许有些同学们有了自己的.想法,请同学分组交流下自己的想法好吗?(让学生讨论、交流,教师可到各组了解同学们的想法,最后汇报)
第一、12×3就是3个12啊,加起来就知道结果是多少了;
第二、12×3可以看做10×3与2×3的和。
③教师:经过讨论、交流后,让我们来列竖式看看如何计算出12×3的积:(教师板书示范)
1 2
× 3
—————
3 6
教师强调列竖式时要注意以的问题:
1、相同数位的数一定要写对齐;
2、,用一条分隔线把两个因数与积分开;
引导学生小结计算方法:
多位数乘一位数的竖式的计算方法:用第二个因数与第一个因数各个数位上的数分别相乘;一般从个位开始。
我们先算2×3;再算1×3;
教师提示:根据上面的分析,应该是10×3,而这里怎么变成了1×3了?其实,只要大家认真观察下现在的1的位置大家就明白了。(十位上的1就是10)在横线下面该如何写下计算的结果呢?
让同学们练着写写,并说说算式。
多位数乘一位数的竖式的计算方法:用第二个因数与第一个因数各个数位上的数分别相乘;一般从个位开始。
4、巩固练习:
①比一比谁做得又准又快:
12×4 21×3 14×4
②用所学知识解决生活问题:
学校买来3筒羽毛球,每筒有15个,一共有多少个?
5、总结:今天我们学习了多位数乘一位数的竖式计算方法,这是我们今后计算乘法算式很好的方法。希望大家回去好好练练,做到能熟练、规范的列竖式计算出多位数乘一位数的结果。
6、布置作业:
完成练习十六的第2—4题。
板书设计
1 2
× 3
—————
3 6 用第二个因数与第一个因数各个数位上的数
分别相乘;一般从个位开始。
《笔算乘法》教案12
【教学内容】
人教版《义务教育课程标准实验教科书·数学(三年级上册)》第74页。
【教学目标】
1.使学生在尝试写竖式、小组讨论交流算法的过程中掌握笔算乘法的书写格式和算理。
2.培养学生的问题意识和多策略解决问题的能力,体现联系生活学数学的思想。
【重点难点】
重点:多位数乘一位数(不进位)乘法的计算方法难
点:竖式计算算理
【教学过程】
一、出示口算题
同学们请看口算,看谁速度快
1.请同学们把书翻到七十四页,这是我们今天要学习的内容,请你认真的读一读、看一看,哪些地方是你看懂的,那些地方是你不懂的地方,把不懂的用笔做上记号。
2.小组讨论互相学习。然后把书合上。
二、提出问题。课件出示情景图。
师:图上的小朋友在干什么?(画画)一副画画的情景含有那些数学信息呢?
生:3个小朋友。三张图画纸。三盒彩笔。师生共同处理数学信息。并让学生独立提出数学问题:
生1:一共有多少张图画纸?
生2:一共有多少枝彩笔?
师:同学们提出了这么多的问题,真了不起!我们先来解决其中的一个。要求一共有多少枝彩笔,会列算式吗?
生:3×1
2 12×3
三、猜想结果,方法验证:
师:估计一下,12×3大约等于几?解说一下,你是怎样估计的?师:用什么方法就得到12×3准确的结果呢?同学们先商量一下,找出自己喜欢的方法。
请几名代表汇报交流,师板书有代表性的思路:学生讲解各自的思路。
四、提供空间,探索竖式
师:数学讲究简炼,除了以上方法,你还能创造出一种更简单,计算得更快的一种书写形式吗?请你们发挥自己的聪明才智,试一试。(师巡回指导)
教师指定几个人到黑板上板书:师:同学们自己想出了这么多的.方法,真了不起,现在同学们来评价一下,你来说一说我的思路,我来说一说你的思路,猜一下,他们在做的时候是怎么想的,先在小组
内说一说。生自由谈: ??生评价得出最简练的方法。列竖式乘时应注意:先从个位乘起,用多位数每一位上的数分别乘这个一位数,再把所得相加。
五、规范格式,归纳方法。
师:(课件演示)师强调竖式的书写格式和计算方法。揭示课题:这就是我们这一节研究的内容:笔算乘法。
师:乘法算式中,各部分都有自己的名称,我们把这两个相乘的数都叫做因数,最后的得数叫做积。乘法竖式时应注意什么?先从个位乘起,用多位数每一位上的数分别乘这个一位数,再把所得相加。师:现在请同学们,闭上眼睛回想一下,12×3笔算竖式的过程和方法。
六、解决问题,拓展应用。
1.解决问题,巩固应用。师:我们刚才解决了一个问题,还有两个问题没有解决。请同学们列式并用竖式解答。学生独立解答,相互交流算法2.一步一步往上爬3.解决问题4.竖式计算,比比谁厉害5.解决问题
七、知识梳理,师生小结。(略)
《笔算乘法》教案13
教学内容:
教材第24、25页练习五第4--7题。
教学目标:
1、使学生进一步掌握笔算乘法的规则,能正确地、比较熟练地笔算一个数乘一位数的乘法中需要连续进位的计算。
2、使学生结合连续进位的笔算乘法的计算,进一步熟悉连续两问应用题的数量关系,能正确解答有关的连续两问应用题。
教学准备:
口算卡片
教学过程:
一、口算
1、表内乘法练习
4×5=
3×8=
6×7=
9×9=
6×5=
4×8=
9×3=
5×5=
8×3=
指名一人板演,其余做在书上。
学生计算后,集体订正。
二、笔算练习
1、笔算下面两题
436×67×185
(1)指名2人板演,其余学生分两组练习。
(2)集体订正时,让学生口述计算过程。
(3)笔算乘法的时候,要注意些什么?
2、改错题
出示一些学生的`错题。
学生仔细观察,找一找错在哪里?并分析错误原因。
学生独立改正。
3、笔算比赛
小组进行笔算比赛:
比赛规则:每个小组的同学,每人做一题,从第一个同学开始做,依次往后传,速度最快并且全对的小组获胜。
三、应用题练习
1、出示练习五第7题。
(1)读题。理解题意。
(2)要求上午一共去了多少人?你准备怎样列式计算?要求一天一共去了多少人呢?
(3)学生独立计算。
(4)集体订正。
2、小结:解答连续两问的应用题,要注意些什么?
四、课堂作业
练习五第6题。
《笔算乘法》教案14
第1课时
教学内容:
教学目标:
让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。
教学重点:学会计算两位数乘两位数进位的乘法(不进位)。
教学过程:
一、提出问题。
呈现例1的画面,让学生观察
用完整的话把这幅图的内容、问题说一说。
请学生说一说用什么方法解决这个问题,从而列出算式24times;12。
二、探讨计算方法
1、各组讨论:怎样计算24times;12。
请把想出的计算方法写在纸上。
2、组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
方法一:
24times;10=240
24times;2=48
240+48=288
方法二:24
times;12
48……24times;2的积
24……24times;10的积(个位的0不写)
288
3、师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。
(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。
三、练习
1、尝试练习。
用竖式计算63页“做一做”的8道题。请几名学生上黑板板演,讲评。
2、独立完成练习十六第1题。
四、总结
1、请学生讨论笔算乘法时要注意什么问题,并交流。
2、教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
第2课时
教学内容:
教学目标:
1、通过练习,使学生进一步熟练掌握两位数乘两位数的笔算方法。
2、能解决用乘法计算的实际问题。
教学过程:
一、基本练习:
1、学生回顾上节课学习的内容。
2、口算练习:
3、笔算:
4、正误辩析:
二、解决问题:
1、完成练习十五第3题:
(1)引导学生看图,获取信息。
(2)同桌互相说:把图上的意思完整的说一说。
(3)独立列出算式,并用竖式笔算。
(4)集体讲评。
2、学生独立完成练习十五第4题:
三、综合练习:
完成《学案》相应的练习。
四、学习总结:
第3课时
教学目标:
让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。
教学重点:学会计算两位数乘两位数进位的乘法。
教学过程:
一、提出问题。
呈现下围棋的画面,介绍有关围棋赛的事例或战绩。
放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的'棋盘面由纵横19道线交叉组成。
接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”
请学生说一说用什么方法解决这个问题,从而列出算式19times;19。
二、探讨计算方法。
1、各组讨论:
请把想出的计算方法写在纸上。
2、组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
3、师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如,估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。
(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。
三、练习
1、尝试练习。
用竖式计算65页“做一做”中的4道题。
2、完成练习十六第1、2题。
四、总结
1、请学生讨论笔算乘法时要注意什么问题,并交流。
2、教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
第4课时
教学内容:
教学目标:
1、通过练习,使学生进一步熟练掌握两位数乘两位数(进位)的笔算方法。
2、能解决用乘法计算的实际问题。
教学过程:
一、基本练习:
1、学生回顾上节课学习的内容。
2、开火车进行口算练习:
3、笔算练习(进位与不进位的对比):
(1)学生笔算。
(2)请学生观察比较:上行的题目和下行的题目有什么异同?
(3)学生讨论交流:它们的计算方法是一样的,不同的是上行的题目计算时没有进位,而下一行的题目需要进位。
(4)说说笔算乘法要注意什么?
4、正误辩析:
教师用小黑板出示6道计算出现错误的笔算式题,让学生判断正误,并进行改正。
二、解决问题:
1、完成练习十六第3题:
(1)引导学生看图,获取信息。
(2)同桌互相说:把图上的意思完整的说一说。
(3)独立列出算式,并用竖式笔算。
(4)集体讲评。
2、学生独立完成练习十五第4题、第8题。
第8题:在解决这道题时,是不是所有的信息都用上?为什么“每套12张”用不上?这样的题目给了你什么启示?
三、综合练习:
独立完成练习十六第5、6、7题。
四、学习总结:
说说这节课有什么收获?笔算乘法要注意什么?
《笔算乘法》教案15
教学目标:
1、使学生经历多位数乘一位数(不进位)的计算过程,初步学会乘法竖式的书写格式,了解竖式每一步计算的含义。
2、培养学生独立思考和合作交流的学习方法,体验计算方法的多样化。
3、培养学生初步的逻辑思维能力。
教学重点:掌握两、三位数乘一位数的笔算方法。
教学难点:理解两、三位数乘一位数的笔算算理。
教具准备:课件或挂图、小棒、口算看片。
教学过程:
一、创设情境,激趣导入
出示口算卡片。
6×24×220×340×2
300×220×450+76+40
看谁做得又对又快。
二、探究体验,经历过程。
1、出示教学例1
师:观察图片,请同学们说出图意,并且提出一个用乘法解决的数学问题,(课件出示第60页例1情境图)
生:图中小红、小丽和小明在一起画画儿,他们三人用的是同样的彩笔,已知每盒装12支彩笔,求3盒一共有多少支。
师:怎样列式呢?为什么要这样列式呢?
生:12×3,也就是求3个12是多少。
请同学们先估计一下3盒大约共有多少支?
生:把12看成10,用10×3=30,3盒大约共30支。
师:要计算出精确的结果该怎样算呢?先在小组里交流。
组织学生以小组为单位讨论,可以摆小棒,也可以画图等。
独立思考后与小组内同学交流,教师巡视了解情况。
师:现在我们一起来听听同学的解题策略,说说你的想法吧。
学生可能会说:
方法一:摆小棒,因为一个因数是12。所以一行摆1捆零2根,因为另一个因数是3,所以摆3行,一共摆了3捆零6根,
也就是得36。
方法二:画图
3个长条共30个方格,再加上单个的6个共36个。
方法三:连加。12+12+12=36。
方法四:分解组合,先算10×3=30,再算2×3=6,然后算30+6=36。
方法五:拆数。①9×3=27,3×3=9,27+9=36
②8×3=24,4×3=12,24+12=36
③7×3=21,5×3=15,21+15=36
④6×3=18,6×3=18,18+18=36
师:组织学生讨论这几种方法的适用范围。
方法一和方法二都好理解,但我们学了数学以后就应使用计算的方法来算,方法三如果因数的个数多了,算起来就比较麻烦。方法四不管因数是几都能算。方法五虽然因数不管是几都能算,但是把一个因数拆成几个一位数,再相乘,乘后再加,比较麻烦。
师:引导学生用竖式计算。
从刚才讨论的结果来看,用数的分解组合来算比较简便,那么我们就可以将这三个算式组合起来写成一个竖式。
教师板书并讲解:
第二个因数要与第一个因数的个位对齐,从个位乘起,先用3乘2得6,表示6个一,写在个位上;再用3去乘十位上的`1得3,表示3个十,把3写在十位上(用虚线在个位上写一个0),再把两次乘得的积加起来就得36。
进一步说明:因为积的十位上的3表示3个10,所以这个0可以省略不写,可以把3直接写在积的十位上。
教师再次板书:
12……因数
×3……因数
36……积
可以请学生再说一说乘的过程。
三、总结提升
师:在今天的学习中,你有什么收获?
学生自由交流今天的收获。
四、课堂作业
把一根长10米的木料锯成2米一段的短木料。每锯一段需要3分钟,全部锯完需要多少分钟?
【《笔算乘法》教案】相关文章:
“笔算乘法”教案04-26
《笔算乘法》教案11-27
笔算乘法教案11-08
笔算乘法教案04-07
《笔算乘法》教案04-05
关于笔算乘法教案04-07
笔算乘法(进位)教案03-30
《笔算乘法》教案15篇03-04
笔算乘法教案15篇04-06
《笔算乘法》教案(15篇)04-07