近似数教学反思
身为一名刚到岗的教师,课堂教学是我们的工作之一,借助教学反思我们可以快速提升自己的教学能力,那么应当如何写教学反思呢?以下是小编帮大家整理的近似数教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
近似数教学反思1
教学从生活出发,让学生感受数学与实际的联系。在引入环节,在菜市场买菜时,总价是8.53元,而售货员只收8元5角钱,这就是在求8.53这个小数的近似数。在创设情境环节,也结合生活实际,创设了邻居家的孩子“小豆豆”测身高的'生活情境,自然的引入新课,让学生感受数学与实际的联系。这样很自然地引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,再出题让学生说出把7.85元精确到元、精确到角分别是多少钱,这样把学习求一个小数的近似数的知识还原与生活,应用与生活。在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.664≈0.66后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.974≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
近似数教学反思2
本节课的教学目标是:使学生掌握用“四舍五入”求商的近似值的方法,它的知识基础是求一个数的近似值,以及小数除法。在这个基础上,学生只要明确在求商的近似值时,除到比需要保留的小数位数多一位,再四舍五入即可,因此新授时只要通过例题着重强调这个新点,然后再围绕新点进行练习就能使学生掌握本节课的目标,也就是所说的“以旧带新”。
我将例题讲练的`时间进行了压缩,这样节省了大量的时间进行后面的巩固练习,同时增加了一道利用数量关系解决实际问题的应用题,在学生进行解答时,其实也是在巩固所学知识。
通过本节课,我发现,要上好一节课并非易事,教师的每一句话,所出示的每一道例题都应该让学生有所体会、有所得,这就需要教师在课前细心的研读书中的每一个例题和练习,保证读懂它们的意图为止。同时,只是读懂还不够,教师还要善于组织课堂的结构,能够使学生按照思维的过程进行学习,而不是“胡子眉毛一把抓”。这些话,说起来容易,但真正要实行起来,还是需要平时的点滴积累,这也正好提示我自己要做一个教学上的“有新人”。
近似数教学反思3
四年级上册数学《用“四舍五入”法求近似数》一课的教学内容是在学习将整万数改写成以“万”作单位的数的基础上进行教学,教学难点是能用“四舍五入”法求一个数的近似数,这课的内容的学习将为今后学习省略亿位后面尾数求近似数奠定基础。
(一)让学生充分体验到数学与生活的紧密联系,以激发学习兴趣在新课的开始我提出这样一个问题:“同学们,你们知道我们学校共有多少人口吗?先估计一下吧。”激发学生探究问题的兴趣,让学生利用生活经验认识近似数,再通过班级人数这样一个准确的数字与近似数对比,进一步增进学生对近似数的理解,认识到生活中常用近似数表示数的必要性,从而激发学生的学习兴趣。
(二)利用迁移、类推方法获取新知,沟通新旧知识联系。
在学生已有知识经验中,学生对于四舍五入法并不感到陌生,已经知道小于5就舍去,大于5或等于5就向前一位进1,但是不能完整给予表述,而这节课的内容实际上就是让学生明确四舍五入法的具体含义,并根据具体的要求利用四舍五入法来求近似数。在这节课中四舍五入法并不是教学的难点,难点在于理解“省略万后面的尾数”这个具体要求上,这是因为以往经验没有涉及“尾数”的概念,所以学生会产生理解上的不足。因此我在教学中,我通过复习求万以内的近似数引入,让学生回忆“四舍五入”的意义,
三年级时已经学习过省略百(或十)位后面的数或者是估算整百(或十)数,所以我就先让学生试着完成以下几个复习题:
574(省略十位后的尾数求近似数)782(省略百位后的尾数求近似数)2659(省略千位后的尾数求近似数)让学生复习万以内的数的求近似数的方法:省略到哪一位就看它的下一位,然后用四舍五入法,如果下一位不满5就舍去,改写成0,如果下一位满5就要向前一位进“1”,再把尾数舍去,改写成0,求出近似数。为接下来的求亿以内数的近似数打好基础。
接着让学生观察例7,指名读题,理解“大约是多少万千米”,让学生理解:其实就是省略这个数万位后面的尾数求近似数,再让学生试着独立解答并板演。在学生板演过程中,让学生说说自已是怎么想的`?说出:省略万位后的尾数,只要看千位上的数,然后根据“四舍五入”法求出近似数。又引导学生结合上一课所学知识将求出的整万近似数改写成以“万”作单位的数,并让学生思考理解为何前面是“≈”而后面是用“=”:因为第一步求出的是近似数,要用“≈”,而后面是直接把这个近似数改写成用“万’作单位,没有改就变它的大小,所以要用“=”。
最后通过13页的“做一做”的练习加强巩固,在这题中分别是省略百位、千位和万位后的尾数求近似数,共把学生平均分成三组,让学生进一步理解:省略到哪一位就看它的下一位,然后用四舍五入法,如果下一位不满5就舍去,改写成0,如果下一位满5就要向前一位进“1”,再把尾数舍去,改写成0,求出近似数。
这节课,因为利用了新旧知识的迁移,类推,学生对省略万位后的尾数这个方法掌握起来还是很轻松的,不足之处是让学生说得太少了,要让学生多说说为什么是这样求的,根据是什么,这样对于学生理解四舍五入法会更有帮助,今后还要加以改进。
近似数教学反思4
《积的近似数》这一新课是在学生四年级已掌握了求小数的近似数的知识和前面几课时学习了小数乘法之后进行的,因此这节课的重点不是如何用四舍五入求一个数的近似数,而是让学生在求出积之后,能够根据题目要求或者现实需要,把积保留若干位小数,所以这节课我想应该体现数学“源于生活,用于生活”的思想,让学生结合数学情景,明白“求积的近似数”是生活实际的需要,在生活中有着广泛地应用。教学中我先复习了求一个小数的近似数,帮助学生回忆求小数的近似数的方法,然后创设了购物的情境,让学生计算应付的钱数,学生顺利地计算出了得数,这时我让学生用生活中的`话告诉我两个人各应付多少钱,学生说到分的时候再往后就不知道怎么说了,此时我问学生你们见过比分还小的人民币吗,学生都说没见过,到此已水到渠成,我因势利导,引出这就需要求积的近似数。同时强调求积的近似数要根据题目要求或者现实需要,把积保留若干位小数,并且要求学生做到有关钱数的题目要自觉保留两位小数。
近似数教学反思5
《商的近似数》是堂新授课。但是我们已经学过积的近似数,于是我尝试让学生自己完成例题,并由学生来完成讲解,尝试效果如何。
1、问题的生成是学生亲身经历的,而不是教师提供的。
当学生在计算150÷44的时候,碰到了一种现象“除不尽”。这在以前的小数除法中没有出现过,与学生原有的认知产生了冲突,形成了问题。这是其自己发现的,很自然便会产生一种自己尝试解决的迫切欲望。这无疑为引导学生自主探究解决问题奠定了良好的心理基础。
2、解决问题策略的多样性,体现了学生自主探究的成果。
当问题产生以后,解决问题便成为了学生学习的目标。但由于教师没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了比较大的自由度。学生既可以结合已有的知识经验去解决这一问题,也可以“创造”出一种新方法来解决。当然,也出现了一些思路是正确的,结果却是错误的情况。但无论怎样,这是学生经过了一番思考后产生的一些想法,也是真正意义上的“解决问题策略的多样性”的典型表现。
3、问题解决的过程也是一个学生评价与反思的过程。
学生在展示自己独特的解决问题的方法和策略的'同时,他们同样也关注别人解决问题的方法或策略。当别人的方法与自己不同时,学生自然会产生“为什么他的方法与我的不一样”、“我的方法到底有没有问题”等想法,从而促使其反思自己的做法。
总的看来,我在本节课的教学中,引导学生充分经历了问题的生成和解决过程,突出了学生在问题生成和解决过程中的主体作用,收到了良好的效果。
近似数教学反思6
《商的近似数》教学反思“商的近似数”这一内容主要让学生经历用“四舍五入”的方法求商的近似数的过程,体验迁移应用的学习方法,激发学生的学习兴趣,培养学生学数学、用数学的良好习惯。本节课我从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识,收到了良好的教学效果。
一、学生自主探究,策略多样。在教学时,对教材进行处理,我有意识地开发生活资源。首先我讲述生活中的实例,当我刚想提出要求时,发现有的学生已经做了起来。我并没有阻止,而是继续让学生在计算中发现问题。算了一会后,发现有的学生抓耳挠腮,有的学生小声的嘀咕,还有的干脆停下了笔看同桌的。当问题产生以后,解决问题便成为了学生学习的目标。但由于我没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了较大的自由度。学生既可以结合已经有的知识经验解决这一问题,也可以“创造”出一种新的`方法来解决,在解决问题中体现了策略的多样性。
二、创设了轻松,自由探索的课堂氛围。举出生活实例后,我出示例6:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以自学的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。学生自学完毕,我问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。在这一环节中,学生自主探索,发现问题,合作学习,让学生经历求商的近似数的过程,培养学生的自学能力,发现问题,解决问题的能力,同时也让他们尝到自学的成果。
三、设计贴近生活,学以致用的练习。教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值,学习数学知识,是为了更好地去服务生活,应用于生活,学以致用。因此,在设计练习时,我设计了一系列与生活相关的题目,使学生体会点到“求商的近似值”在生活中的用处,增强学习数学的兴趣,解决问题的策略也就因真实的生活变得丰富多样,让学生拓展思维得到发展。回顾这一节课,也存在一些不足:本以为求近似数是教学难点,所以在新授前安排了大量相关知识的复习.但在实际教学中才发现计算才是真正的教学难点,因此,在以后的教学中,多加强计算能力的训练,充分调动学生对计算的兴趣,做到“细心精准”。
近似数教学反思7
您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思《近似数》是义务教育课程标准实验教科书数学二年级下册第77页的内容,学生在学校本内容之前,已经学校过简单数的估数,以及100以内加减法的估算,学生基本能理解大约、左右、大概等词的意思,并且已经学习了万以内数的读写法,数的组成。这些知识构成了本节课的学习基础。
我的教学处理是这样的:首先提示我口袋上的钱大约是100元、我们学校学生总数约是310人,让学生猜钱的数量和学生的总数,在猜出结果基础上,告诉学生像102元、313人这些数,它们准确地反映了事物的真实情况,可以把它们叫准确数,而100、310接近真实情况的数,称为近似数。再让学生思考,我们生活中,你还遇到哪些数,它们是准确数,还是近似数?在学生说一些准确数和近似数之后。让生思考近似数有什么特点,又有什么作用?
课堂设计的板书如下:
近似数
准确数: 近似数:
102元100元
313人310人
41人 40人
9992人 10000人
近似数接近准确数,近似数一般是整十、
整百、整千、整万的数,所以较容易记忆。
在练习过程中,我发现学生存在几个问题:
1、学生没有真真切切地体会到近似数的特点与作用。比如说对于603米,有的学生的`答案是约为601、602米。
您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思2、学生没有很好地理解近似数可以有多个。
3、学生没有能正确地进行估数,比如练习洗衣机售价为1198元,约是多少元?这题,很多学生就回答约是20xx元。
4、对于较大的数,学生比较难理解接近的程度,比如说:9019人,学生一般估成3020人,或9010人;学生根本没有想到9000人。教师讲解后,我模糊地听到有学生说9000与9019相差了19,不能算接近了吧
为什么会出现如此多的问题呢?回顾我的教学过程,我发现对于近似数的特点,教授得并不透彻,而且好像没有正式地提到近似数可以有多个。所以如果上课时,我有意识地注意到这些细节,也许就可以避免出现第一和第二个问题。
第三和第四个问题出现的原因,我觉得可能是一样的,那就是学生还没有体验到较大的数在生活中的应用、无法准确地把握大数之间差距的程度究竟有多大,如:学生可能知道9019与9000相差19,却无法体会到19对于这两个数而言,这个差距是很小的。
如果重新教授本课,我该如何处理,才能很好地解决这些问题呢?也许通过学生交流、讨论,教师小结,可以很好地解决第一和第二个问题;而第三个问题,可以通过一百一百地从1200数到20xx,发现之间的差距有800之多,并顺势提醒,近似数跟准确数是接近的。但第四个问题,目前,我真想不出很好的办法来解决。
记得吴正宪老师教授三年级《估算》一课,吴老师的课堂设计很好地贴切了生活的需要,如生活中什么时候需要估数、估算?什么时候需要估大,什么时候需要估小等等。在吴老师的精心设计下,学生的学习效果是很好的。《近似数》一课的设计,是否也应该体现从生活中来,到生活中去的原则呢?设计的教学内容与环节,应该贴切生活中的需要呢?从而让学生在将知识应用于生活问题过程中,很好地理解数差距的程度是大,还是小呢?
路漫漫其修远兮,吾将上下而求索。
近似数教学反思8
数学源于生活,本节课从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识。收到了良好的教学效果。
我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。首先教师出示例7:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以谈话的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。再要求学生根据提出的信息列式计算.当学生除到商为两位小数时,还除不尽。教师巡视中发现,有的学生一直往下除根本没有停下来的意思。这时教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。
本以为求近似数是教学难点,所以在新授前安排了大量相关知识的复习.但在实际教学中才发现计算才是真正的教学难点,由于例题及做一做中所有习题全是小数除以整数,所以当作业中出现小数除以小数计算时,许多学生装都忘记了"一看,二移"的步骤.所以在设计巩固练习时应增加小数除以小数的练习.
其次我根据学情补充介绍了一种求商近似数的简便方法.即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的'同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
其实在上课的时候,不能因为需要保留两位小数或保留一位小数而强调学生说只能除到小数部分的第三位或第二位,遇到学生除到了比实际需要更多的数位,应加以鼓励表扬,并及时提示学生根据实际需要去除,决不能“一味扼杀,一棒子打死”。这也许是学生创新的灵感之花,是一种钻研精神的表现,新课程改革需要的是这样的教学,也需要这样的老师,更需要作为教师的我们要培养有创新精神的学生。新教材为我们提供了广阔的思维空间,我们要结合课改,挖掘教材,合理、科学的利用教材,全面贯彻课改精神,实现学生在学习活动上的“知识与技能、过程与方法、情感态度与价值观”三维目标而努力教学,这样才无愧于学生,才能称得上是一名新课改下的老师。
近似数教学反思9
星期四上午,侨中礼堂再一次听到罗老师的数学课很是欣赏和赞叹。
近似数是我们数学老师最不好把握的课。因为太活了,很多答案都对。罗老师一节课紧扣主题,突破重难点上有很多值得我借鉴的地方。先由华西村引入,孩子们通过数据知道72层是准确数,近5000个座位是近似数。当问到建筑面积是()万平方米,让学生猜一猜:21□□□□,可能是多少万呢?这个题目很新颖很有趣。因为不论孩子们说什么都有可能。老师问:是21万还是22万?学生说看后面的数。老师这时翻开最后面个位上的数是8,学生紧接着说不对,前面的。老师又紧接着翻开十位的数是3。学生说还不对。到底是哪一位呢?最后确定是千位。老师问:为什么是千位呢?学生说:因为千位是0.1.2.3.4.就是21万,如果是5.6.7.8.9.就是22万。这是顺势引出四舍五入法。孩子们自然而然的记住了要学习的知识。
罗老师的课很灵活。比如学校有3179人,用近似数表示约是()。孩子们说:3180,3000,3200.多好的答案啊。这些都是对的,而我们在教学时往往把握不好,禁锢孩子的思维太多,结果适得其反。最有意思的一道题是:爸爸的工作单位地址是福州市五四路217号。学生说:五四路200号。呵呵,这回可掉进老师的圈套里了。老师反问:去五四路200号能找到爸爸吗?看来这是不能用近似数表示的'。
在解决难点问题上,老师用一锤定价的方式出示宝马汽车的价格约是130万元。谁给的价格最高,但是必须约是130万就得到老师的宝马汽车的礼物。孩子们说出:1304999.真是设计的很巧秒。
整节课时间过得很快。老师的每一个环节,每一句话都是围绕着教学目标,都是在突破和解决教学重点难点。没有一丁点浪费。每一个环节设计都很有趣,孩子们喜欢。最重要的是老师善于启发孩子们自己发现,自己解决实际问题。
近似数教学反思10
《求商的近似数》是第三单元小数除法的内容,本课是学习小数除以整数,小数除以小数的知识后学习的,它是一节计算课。
本课是由“小数除法”和“求近似值”两个知识点组成。学生对于这两个知识点并不陌生,因此,一般都能较快地理解并掌握这节课的知识。但是,“求商的`近似值”这节课的内容虽然简单,但比较枯燥,学生不容易提起兴趣。而且学生刚初步学习小数除法,计算还不熟练,计算常出错。这节课我从实际生活中寻找素材,丰富课堂,使数学课充满生活气息。通过教给学生计算技巧,利用现代化工具减轻学生的计算压力,帮助学生在数学课中既能学到知识,又能感受到学习的快乐。
课一开始,我从爸爸给王鹏买羽毛球的谈话中自然引出数学问题,营造一种有利于学生学习的氛围,缩短了师生之间的距离,使其积极主动地学习。同时体现了数学来源于生活。教师出示例7(爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?)要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)
师问:保留一位小数,应该等于多少?表示计算到“角”。
让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”求出商的近似数。)
学生总结出方法后,再进行加强联系。但在练习中我发现有一部分学生还是不能明白比要求多除一位的意思,比如要求商保留三位小数,学生做竖式时就只除到小数第三位,没有多除一位,导致结果出错。因此,只要不断强调方法中加强巩固,学生熟悉了自然错误就减少了。
近似数教学反思11
生活中我们经常会用到四舍五入法去求一个数的近似数,而在讲授这节课的新授知识前,我先组织学生在各种媒体上搜集一些数据,并说出这些数据的实际意义,体会使用这些近似数的意义,感受近似数与实际值之间的偏差
。本节课我着中强调了“四舍五入”取近似值的方法:“四舍五入法”就是指把要处理的数的某一位以后的数字舍去后,如果被舍去部分的首位数字小于五,保留部分不变,这就是我们所谓的“四舍”,如果被舍去的部分的首位数字大于或等于五,就在保留部分的`最后一位加上一,这就是我们所说的“五入”。讲这个部分时,我引导学生明确取近似值到某一位时,只要看它后一位的数字,再用“四舍五入”即可,换另一种说法,只要根据要省略的尾数的最高位来考虑就可以了,不要管尾数的后几位是多少。
在教学过程中也出现了不少生成性的问题是之前没有考虑到的,学生对于“四舍五入”仍然比较陌生,对于四舍五入到哪一位这种说法没有真正的理解,搞不清楚省略的尾数要从哪位开始,在进不进一的问题上也出现了混乱,在以后的练习课上要着重对这些问题进行强调和练习,让学生能够结合学习的知识,将一些数据先变成近似数,再改写成以万以亿为单位的数。
近似数教学反思12
在教学第七册数学课本“近似数”一课中,有一道带星号的题是这样的“9□8765000≈10亿,方框里可以填哪些数时,这个数的近似数于10亿?”教学这一练习题时,我先让学生独立练习,要求学生也可以进行进行合作讨论,然后交流。结果,学生经过交流后,展示了两种结果:一种是方框里可以填大于或等于5的数;另一种是方框里可以填5、6、7、8、9。我立即追问学生:“这两种填法一样吗?”话音刚落,学生顿时激烈争论起来。有的学生说一样,而有的学生坚决认为不一样,并且列举出比5大的数还有10、11、12……,我顺着学生的思路不断地往下板书,一直写到二十几,然后甩甩手臂,装出手很酸的样子,问:“写完了没有,我的手都写酸了。”学生马上说“写不完,写不完,比5大的数有许多个。”我马上接着说:“写也写不完的数在数学上有无数个”。这时我又问学生:“这两种填法一样吗?”学生坚决而果断地说:“不一样,填5、6、7、8、9是正确的”。
在完成第二道星号题9□8765000≈9亿时,就更有趣了。当我提出方框里可以填哪些数时,有的学生说:“填比5小的数,只能填4、3、2、1、0”。这时有位学生神气活现地说:“还有-1、-2、-3、2.1、3.7等比5小的数,所以方框里填比5小的数是不正确的”。这位同学的回答超过了当前我们所学的整数范围内的数。看着这些聪明而又可爱的学生,我不由自主地赞叹:“你们太棒了,真了不起,能找到哪么多比5小的数”。这时我问学生比5小的数究竟有多少个时,同学们顿时异口同声地说:“比5小的数也有无数个”。“方框里应该填哪些数,同学们现在知道吗?。学生自信地回答:”方框里应填比5小的自然数都是正确的“。
通过这堂练习课,使我深深地反思到:学生的.思维不再是一张白纸,新课程注重培养学生学习的兴趣与愿望,把学习的主动权交给学生,让学生更多地参与教学活动,在主动积极的心境下获取知识和发展能力。对学生思维方法的教学法,不能仅靠简单的告知。数学教学最本质也是最显著的特点在于,它所传输的信息不仅仅是数学活动忍气吞声结果----数学知识,还应包括数学思维活动的过程,在教学中教师应该让学生经历一次次数学思维的活动过程。对学生来说,无论是构建一种新的数学知识,还是掌握新的数学思维方法,必须让学生经历数学思维的活动过程,才能让学生的思维有感性认识上升到理性认识。
近似数教学反思13
结合学生上节课所存在的问题与典型错误,课前我引导同学先回顾了求一个小数的近似数的方法:
1、明确题意,精确到哪一位便看这一位的后面一位上的数。
2、用四舍五入的方法,舍或向前一位进一。在练习题中回顾并总结方法,同时引出四年级上册的改写题作为新知的铺垫。唤起学生对读数、分数级这些旧知的`记忆,以便用于本堂课的学习与探究之中。作好这些铺垫之后,新课的学习便是水到渠成了。
在新知学习环节,学生首先要做的就是通过分数级明确大数中有多少个万或是亿,从而能快速准确地将一个大数改写成以万或是亿为单位的数,并运用上节课所学的知识保留到指定数位的近似小数。
在练习中,学生主要存在这样几个问题:
1、改写后忘记写单位“万、亿”,导致将数字缩小了万或亿倍;
2、根据不同符号(约等号和等号)来确定是改写近似数还是准确数;
3、对基础题的变式练习,如3.003亿=()万,计数单位变小,数字要乘一万。
在接下来的练习讲评课中,要针对学生出现的错误加入有针对性的讲解与提升练习,使学生能熟练地将一个大数改写成以万或亿为单位的小数。
近似数教学反思14
《求小数的近似数》教学反思二这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解保留几位小数;精确到什么位;省略什么位后面的尾数这些要求的含义;表示近似数的时候,小数末尾的0必须保留,不能去掉;连续进位的问题。
教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子小豆豆测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.9840.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.9841.0后,让学生讨论0能不能舍去,使学生明确了0如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加0。最后引导学生总结出求小数近似数的方法。
虽然求小数的近似数的方法与整数的近似数相似。让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的'近似数的方法,体现了教师的主导作用和学生的主体地位。但是一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至连环进位,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。
但我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。
近似数教学反思15
《近似数》一课是教学的难点,原因是教材知识与学生生活实际脱离,学生不熟悉。我在导入时就抓住生活:从我班的人数这个准确数引入新课。我认为要创造性地运用教材就要努力从学生身边挖掘素材,让数学走近学生的生活。
通过本课的教学,我意识到以下几点:
1、让学生在生活中体验。这堂课通过提供生活中的一些数据,例如:班级人数、学校人数、我们身边的一些数据,让学生初步感受这些信息,判断哪些是准确数,哪些是近似数,并让学生说说自己是如何来判断近似数的。在此基础上引入近似数和≈,顺理成章,学生非常容易接受。
2、让学生在比较中体验。本课一开始在讲解准确数和近似数时,通过让学生比较一些数据,从而让学生明白这些数据意义的不同,加深认识准确数与近似数。
3、近似数在日常生活中有着重要的作用。本课的学习是让学生理解近似数在生活中的作用及意义,掌握求近似数的方法,能根据实际问题的需要求一个数的近似数,培养学生的估计意识,发展学生的数感。
4、教学如何求近似数是本课的.一个难点,我通过独立的看一看,自己试一试,小组讨论交流等活动,让学生做学习的主人,给他们提供一个广阔思维的空间,鼓励他们自己去发现数学中的一些规律和方法,让学生经历知识的形成与发展过程,从中体会探究与发现带来的乐趣。虽然在课堂上学生都参与到学习活动中了,但是在作业中,求近似数还是出现了不少问题,如何让学生能比较熟练的求近似数,有何有效的教学方法,是我还在思考的问题。
【近似数教学反思】相关文章:
《近似数》教学反思06-25
小数的近似数教学反思08-24
求近似数教学反思03-03
求商近似数教学反思07-05
《小数的近似数》教学反思06-19
《商的近似数》教学反思07-26
积的近似数教学反思09-10
商的近似数教学反思05-12
《商的近似数》教学反思07-16
求商的近似数教学反思02-19