- 圆柱圆锥整理复习教学反思 推荐度:
- 相关推荐
《圆柱与圆锥》教学反思
身为一名到岗不久的人民教师,我们的任务之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,教学反思我们应该怎么写呢?下面是小编收集整理的《圆柱与圆锥》教学反思,欢迎阅读与收藏。
《圆柱与圆锥》教学反思1
一、注意生活化抽象到数学化,让学生掌握知识的共同特点
1.对于圆柱物体的认识(教材P10),圆锥物体的认识(教材P23),不容忽视,这一环节是生活化的具体表现,再从生活化的物体抽象到数学化的图形,这又是数学化的具体运用,是知识从形象到抽象的过程。
(图略)
2.抽象出具体的图形后,再让学生观察并说说这些图形的共同特点,更好地认识圆柱(或圆锥)的特征。避免知识形成的片面化。
二、注意计算公式的直观推导,让学生掌握知识的形成过程
知识的形成比结果更重要。这也是课程标准的重要理念。
1.圆柱侧面积计算公式的推导
让学生用二张长方形纸和一张正方形纸分别围成一个圆柱体。将围成的圆柱体的其中二个沿着高剪开,另一具斜着剪开。然后展开,让学生知道圆柱的侧面展开,可能得到一个长方形(或正方形,或平行四边形)。
圆柱的侧面展开可以得到一个长方形,这个长方形的长就是圆柱的底面周长,宽就是圆柱的高。
圆柱的侧面展开可以得到一个平行四边形,这个平行四边形的底就是圆柱的底面周长,宽就是圆柱的高。
2.圆柱体积计算公式的推导
(1)圆柱等分可以拼成一个近似的长方形,这个长方体的底面积就是圆柱的底面积,这个长方体的高就是圆柱的高。
因为长方体的体积=底面积高
所以圆柱体的体积=底面积高
(2)圆柱等分可以拼成一个近似的长方形,这个长方体的长就是就是圆柱底面周长的一半(r),这个长方体的宽就是圆柱的底面半径(r),这个长方体的高就是圆柱的高。
因为长方体的体积=长 宽 高
所以圆柱的体积 =r r h=r h
3.圆锥体积计算公式的推导
同底等高的圆柱与圆锥,让学生用水量一量,观察,讨论与交流以下问题。
同底等高,圆柱的'体积是圆锥体积的()倍。圆锥体积是圆柱体积的( )。从而得到圆锥体积的计算公式:
因为圆柱体积=底面积高
所以圆锥体积=1/3底面积高
=1/3Sh=1/3r h
三、注意用字母表示已知条件,让学生养成良好的解题习惯
这一举动既是培养良好的解题习惯,也是为中学学习奠定良好的基础。教学实践证明,这一举动还可以提高学生的分析能力,也可以为学生选择恰当的计算公式服务,同时又可避免学生对条件丢三落四,真是一举多得。
例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?
已知h=28厘米,d=20厘米,r=10厘米,
S表=dh+r
V柱=r h
四、注意计算公式的书写要求,让学生更好的进行中小衔接
学生升上中学后,不论是数学、物理、化学匀需要书写计算公式。因此作为中、小学衔接,就应该这样做,要求学生带计算公式计算,养成良好习惯,为中学学习奠基。计算中并要求学生保留,既与中学衔接,又减轻学生计算的负担。
例:一个铁皮水桶,高是28厘米,底面直径是20厘米,做这个水桶需要多少铁皮?这个水桶的体积是多少?
人教版六年级下册数学《圆柱与圆锥》教学反思已知h=28厘米,d=20厘米,r=10厘米,S表=dh+r
=20xx+10
=560+100
=660(平方厘米)
五、注意由面到体的变化,提高学生平面到立体的认识
长方形的小旗是一个平面图形,它旋转后所得到的轨迹是一个圆柱体。三角形小旗也是一个平面图形,它旋转后所得轨迹是一个圆锥体。学生看平面图的数据后会求立体图的体积(或表面积),可以提高学生平面图形到立体图形的认识。
六、注意加强知识的联系转化,提高学生的空间思维能力
1.圆柱体侧面展开转化成长方形
(1)圆柱的侧面展开得到一个长方形,这个长方形的长是12.56厘米,宽是4厘米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?
(2)圆柱的侧面展开得到一个正方形,这个正方形的边长是6.28分米。原来圆柱的侧面积是多少?一个底面积是多少?表面积是多少?体积是多少?
2.圆柱体转化成长方体
(1)圆柱的半径是2分米,高是5分米,将圆柱等分后拼成一个近似的长方体。表面积增加多少?
(2)圆柱等分拼成近似的长方体,这个长方体的长是12.56厘米,高是4厘米,求原来圆柱的侧面积和体积
(3)圆柱等分拼成近似的长方体,这个长方体的宽是5厘米,高是4厘米,求原来圆柱的侧面积和体积
(4)圆柱等分拼成一个近似的长方体,表面积增加100平方厘米,求原来的侧面积。
3.圆柱体截面情况
(1)圆柱的半径是4分米,高是10分米,将圆柱横切成3段,表面积增加多少?
(2)一根圆柱长是8分米,将圆柱横切成4段,表面积增加30平方分米。求原来圆柱的体积。
(3)圆柱的直径是10厘米,高是6厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加多少?
(4)圆柱的直径是8厘米,沿着直径和高切开,把圆柱平均分成二半,表面积增加80平方厘米,原来圆柱的侧面积、表面积分别是多少?体积是多少?
4.圆柱体侧面增加(减少)
(1)一个圆柱的高是10厘米,如果高再增加3厘米。表面积增加18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?
(2)一个圆柱的高是10厘米,如果高减少3厘米。表面积减少18.84平方厘米,求原来圆柱的侧面积、表面积。体积是多少?
5.圆柱和圆锥体积知识变化与联系练习
(1)一个圆柱的体积是24立方厘米,把它削成一个最大的圆锥,要削去( )立方厘米。
(2)一个圆锥体和一个圆柱体底面积和高相等,它们的体积之和60立方厘米,这个圆锥的体积是( )
(3)圆柱和圆锥同底等高。圆柱的体积比圆锥的体积多1.8立方分米,原来圆柱的体积是( )。圆锥的体积是( )。
(4)一块底面半径为3分米,高5分米的圆锥体钢锭,熔铸成一个底面直径为4分米的圆柱形钢材,求这段钢材的长
(5)一个底面直径是24厘米的圆柱形玻璃杯装有水,水里浸没一具底面直径为12厘米,高8厘米的圆锥形钢块,当钢块从水中取出时,杯中的水会下降多少厘米?
(6)一个瓶子内直径8厘米,装入10厘米高的水后,盖好瓶子倒过来(如图),量得空余部分的高是2.5厘米,求这个瓶子的容积是多少毫升?
《圆柱与圆锥》教学反思2
对于圆柱和圆锥的教学,比较适合的教学方法是学生动手操作,独立探索获取新知,如1、学生自己动手测量圆锥的高,从而找出测量圆锥高的方法。2、动手剪开圆锥的侧面,验证圆锥侧面展开图是一个扇形。3、学生通过做实验,得出圆锥的体积=等底等高圆柱体体积/3,推导出圆锥的体积公式。4、测量学具有关数据,计算体积等。这样不但培养了学生的动手能力,同时在操作过程中学生的创新能力也得到发展。
本节课的`基本教学顺序是:激疑——猜想——验证——应用。如,教师先让学生猜想圆柱体和圆锥体体积的关系,然后实验验证。教给学生大胆猜想,并用科学方法验证的数学方法。如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。
又如:学习了圆锥体体积的计算方法后,教师设计了这样两个练习,1、计算学具的体积;2、在桌面上有一堆沙子,现在想知道它的体积,该怎样做?让学生运用所学知识解决实际问题,不但培养了学生的实践能力,同时使学生感到学有所用,提高了兴趣。
《圆柱与圆锥》教学反思3
在学习完第三单元《圆柱与圆锥》之后,很多学生容易把圆柱的表面积和体积的计算方法混淆、计算圆锥的体积时老忘乘三分之一、计算生活实际中的物体表面积和体积时,又不能正确判断该计算什么或者如何计算,一系列的问题困扰着全体师生,这些问题也反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对这种情况我设计了一节《圆柱和圆锥的整理与复习》课,本节课共设计了两个环节
第一环节:整理本单元学过的知识点。包括两部分:
1、同桌互说圆柱和圆锥的特征和相关的计算公式;
2、全班交流圆柱和圆锥的异同点,整理各种计算公式。
第二环节:课堂练习。本环节共设计了10道练习题,都是利用公式进行计算的题目,目的是强化学生运用公式解决实际问题的能力。
虽然课前做了充分的准备,但上完这节课,才发现课堂效果并不理想。静下心来反思,似乎自己有点高估了学生的能力,对学情的把握也不够好。本计划用7-8分钟的时间完成第一环节,然后就进入第二环节的学习。上课时才发现学生对圆柱和圆锥的`特征的掌握还基本可以,对于计算公式只会死记硬背,很多学生并不理解字母公式表达的意思,因此在汇报交流环节用了较长的时间给学生讲各个字母公式的意思,帮助学生记忆最基础的计算公式。比如,有的同学还没记住圆的面积公式,更不要说新公式了,完全是一塌糊涂。鉴于这种情况,我想在今后的教学中应注意以下三点:
1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的知识网络,就不能灵活运用知识工具解决问题。
2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。
3、复习时不要贪多,一节课只针对一个知识点进行复习,习题设计要由易到难,层层递进,训练学生举一反三的能力。
《圆柱与圆锥》教学反思4
“实践出真知”,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在教学圆锥的体积时,我感悟特深刻。 推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出“等底、等高”这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的'实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!
《圆柱与圆锥》教学反思5
本节课的教学重点要引导学生掌握本单元的知识结构,在充分利用教材的知识形成学生知识网络的基础上,提高学生分析、解决实际问题的能力。针对本课的教学设计,有以下几点思考:
1、加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容的`设计加强了与生活的联系,为教师组织教学提供了思路。在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。在实际教学中,学生认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品的活动情境,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。
2、重视探究归纳。教学中让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生,提高学生自主获取知识的能力。
《圆柱与圆锥》教学反思6
复习课在知识整理与查漏补缺的同时应该让学生有些新的收获,而不能让孩子们感觉到知识的重复。我始终在想通过这节课到底让孩子们收获些什么?所以在复习内容的选择上,针对历年毕业考试的数学试卷进行分析,有针对性地选择了三道错率很高的试题进行复习。而这些题所体现的知识点都是圆柱与圆锥的关系,所以这节课的教学设计以圆柱和圆锥体积的关系为教学重点,希望能达到举一反三的效果。
一、习题导入,产生学习需求。
一上课,出示了这样的练习题:一个圆柱和一个圆锥的底面积相等、高也相等,它们的体积之和是12.8立方厘米。那么,它们的体积之差是()立方厘米。通过我已有的经验,此类练习一定有部分学生不知如何入手解题。这时候学生就产生了学习求知的需求,再复习本单元的知识点就顺理成章了。
二、通过整理表格、整体把握知识。
首先让学生在已有知识的基础上,形成单元知识表格图。学生做的表格图内容很全面,注意到知识间联系,但本单元所包含的圆柱和圆锥之间既有联系,又有区别,只有把知识点进行对比、区别,才能更好得掌握知识。其次,学生想不到的就需要老师去点拨、引导。我抓住时机,引导学生形成了规范的表格图,既教给了学生学习的方法,又为以后的归类复习做了铺垫。
三、系统复习,突破重点。
复习本单元的概念主要是为了突破本节课的教学重点,即圆柱与圆锥的.体积关系。因此我在复习整理时利用多媒体课件演示圆柱与圆锥的实物,充分体现了在等底等高的情况下,如果圆锥的体积是单位“1”,那么圆柱和圆锥的体积之和就是4/3;如果圆柱的体积是单位“1”,那么圆柱和圆锥的体积之和就是4倍的关系。梳理知识点之间的联系,我在复习三道练习题时采用了“讲、扶、放”的方法逐步解决问题。针对学生层次不同,首先我采用了“讲”的方法。学生在读完题的情况下,我抽象出线段图体现圆柱和圆锥体积的关系,在通过学生之间的交流,正确率达到了90%左右。第二题采用“扶”的方法,先请好学生讲明题意,说出思考点,再做。第3题可以完全“放”,有了前面的基础,最后一题的正确率有了很大的提高。
四、在层层递进的练习中,培养学生运用知识解决实际问题得能力。
练习分为基本练习题、发展性练习题和拓展性练习题三个层次,基本练习题是应用圆柱和圆锥的关系比较直接计算得题目,因此,我让学生先交流再汇报。发展性练习就有了一定难度,在汇报时,让学生展示出所有的解法,体现解法多样化。拓展性题目是综合运用知识解决问题得题目,属于拔高题,主要是针对优生设计的。通过层层练习,培养学生运用所学知识解决实际问题的能力。
通过本课的教学,我认识到在教学中要注意教材编排的特点,要结合本班学生实际情况进行有机整合,有层次地发挥教师的主导作用,体现学生的主体作用。课堂中也留有一些小遗憾:对于学生当堂课生成的资源没有进行很好的利用,在今后的学习中,还要继续积累经验。培养灵活驾驭课堂的能力。
这节研讨课能够完整的呈现出来,要感谢校长的指导以及数学教研组老师们的帮助,更要感谢孙老师,给予我这样一个交流的机会和对这节课的精心指导,在以后的工作学习中,我会更加努力。
《圆柱与圆锥》教学反思7
最近对圆柱与圆锥知识进行系统的整理和复习,使学生更好的掌握圆柱、圆锥的特征,掌握圆柱侧面积、表面积的计算以及圆柱、圆锥体积的计算公式。会运用所学知识解决一些简单的实际问题。培养学生能够解决问题的能力。
课前,我让学生自己对学过的知识进行了整理,有几个同学整理得挺全面,有的同学把知识点都写上了,但没有条理。所以,课上我通过表格的形式引导学生回顾前面所学知识,总结图形的特征和计算方法,培养了学生有条理的`对所学知识进行整理归纳的能力。课上我出了两道具有代表性的题。通过巡视我发现同学们列算式基本没问题,只要同学们认真审题,这类题基本没什么问题。问题是计算速度慢,该记得数据没记住。
《圆柱与圆锥》教学反思8
1、背景分析:
(1)教材分析:
本节课内容是对圆柱圆锥的相关知识进行回顾、复习和应用,围绕圆柱圆锥的特征、圆柱的表面积、圆柱圆锥的体积计算公式进行梳理和复习,并结合知识点设计了判断、选择、解决问题、拓展延伸等练习题,使得学生进一步认识圆柱和圆锥,沟通知识间的联系和区别,在整理复习中形成知识网络,学会知识整理的方法。并能运用圆柱圆锥相关公式解决和圆柱圆锥有关的问题,感受数学与生活的联系。
(2)学生分析
作为六年级学生,孩子独立整理某一单元的知识,有一部分学生具备这种能力,但小组里面,有大多数学生这种能力尚未形成,因此,我们把单元知识的整理放在小组里面,放到课前,给学生提供了几种模式:列表法,大括号法,知识树等,放手让学生合作完成,集思广益,大家的智慧累加到一起,就是这节课的知识脉络。课上只是展示交流的过程,在提升的过程中,激起学生新的思维火花,生成新的资源,共同处理课上新出现的问题,解决问题的过程就是一个提高的过程。
2、教学反思:
从课堂实践来看,知识点与相关练习融合在一起,比与知识点完全割裂,边复习边练习,学以致用,学生的脚步更稳健,知识掌握更扎实。这节课上,学生真正成为课堂的主体,给学生充分的空间和时间来思考、交流、展示;我们的评价及时、客观,对学生有激励性;教学内容设计有层次性,重难点突出;课堂上学生活动量大。不足之处:因为复习课我们缺乏学法的指导,所以这节课上,孩子们没能把知识点紧密联系,没能找到那种游刃有余的.感觉,因此,以后的复习课,需要我们给孩子们更多的指导,让孩子们掌握一种知识梳理的方法。另外,课前预设,备学生这块,预设不够细致,判断题②圆柱的侧面展开一定是长方形。当学生意见没能达到统一时,不同意见方的辩论组织不够有效,觉得苍白的语言让学生游离于正确与错误之间,不可置否。试想,如果我们课前准备实物演示,直观的演示会代替万语千言。
《圆柱与圆锥》教学反思9
学习完《圆柱与圆锥》之后,我发现很多学生容易把圆柱的表面积和体积计算方法混淆;计算圆锥体积时忘乘三分之一;不能正确判断生活中的实际情况。这些问题反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对此情况,我设计了《圆柱和圆锥的整理与复习》一课。课前放手让学生自主的去收集、整理已学过的知识。课堂上,我力求在教师的引导下,让学生通过回忆、联想、整理、拓展等实践活动,通过表格、框图等形式帮助学生沟通知识间的联系,把学过的知识整合成一个有机的.整体,形成合理的知识体系。充分发挥学生学习的自主性,在交流、讨论、合作、练习中发展学生的空间观念,把课堂还给学生,提高学生运用知识解决实际问题的能力,培养他们自主获取知识与概括知识的能力。
反思本节课,我想在今后的教学中应注意以下三点:
1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的知识网络,就不能灵活运用知识工具解决问题。
2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。
3、练习设计是非常重要,要由易到难,层层递进,训练学生举一反三的能力。在练习的内容和要求上具有一定的开放性和挑战性,以激起学生学习的欲望,为每一个学生提供发展的空间。
《圆柱与圆锥》教学反思10
这星期上了圆柱圆锥这一单元,通过实践操作、小组合作,学生对公式的推导过程掌握的还不错。
在实际教学时,我先复习了长方体(正方体)的体积计算方法,再由课件演示配合圆柱体积的演示器,学生兴趣很浓厚,很容易就推到出了圆柱的体积公式。然后做了书上的课后习题。这个内容,我没有根据书本进行教学,依照课件的演示逐渐推导出公式的。
在等底等高的条件下,圆锥的体积正好是圆柱体积的.1/3?对于这一结论的得到。我在教学时准备好学具:一个圆锥和圆柱(等底等高的),水适量。通过老师的演示试验,我们很快得到了圆锥里的水要往圆柱里倒3次,才能把圆柱倒满,从而很轻松的记住了1/3。
从学生的练习看,单独求圆柱圆锥的体积,完成好;如果其中添加了要求圆柱的表面积,存在了几个问题。
1、单位,少部分学生老是忘记区分面积和体积单位,有的干脆一个也不写。
2、求圆柱表面积要计算圆柱的两个底面积,求完表面积之后再计算圆柱体积,有的学生就直接拿两个底面积之和去乘以高了。
3、虽然学生记住了圆锥是它等底等高圆柱体积的1/3,但再计算中仍有一部分学生忘记把1/3乘进去。
在学生练习时,我们老师一定要提醒学生答题细心,每一步想清楚了再动笔。
《圆柱与圆锥》教学反思11
本单元内容是在学生已经探索并掌握长方形、正方形和圆等一些常见的平面图形的特征以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。此前对圆面积公式的探索以及对长方体、正方体特征和表面积、体积计算方法的探索,既为进一步探索圆柱和圆锥的特征,探索圆柱表面积的计算方法以及圆柱和圆锥的体积公式奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。教学中我注意了以下几个方面:
一、对圆柱的认识进行有重点的引导
认识圆柱时,由于学生对圆柱已有了一些直观的认识,教学中我先让学生从情境图中找出圆柱,再让学生举例说说生活中还有哪些物体的形状是圆柱的。然后引导学生通过观察、比较与交流,进一步探索圆柱的特征。在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。这一过程,学生是在教师的引导下进行学习的,对圆柱的特征有了较完整的认识。
二、注意学习方法的`迁移和知识的对比,关注猜想和估计在探索学习中的作用
圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾:“圆柱有哪些特征?各部分的名称是什么?”通过交流学生明白了对于圆柱是从面、直观图等方面进行研究的。我及时设问:“我们能从哪些方面来研究圆锥?”通过交流,学生对学习的方法进行了有效地迁移,学习的积极性得到有效地激发。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织阅读课本,学生对于圆锥有了较好的认识。在认识了圆柱和圆锥的特征以后,我让学生对它们的特征进行了有效的对比。从而使学生对于圆柱和圆锥有了更深的认识,完善了学生的知识系统。
在探索圆柱的体积公式时,先让学生观察底面积和高分别相等的长方体、正方体和圆柱,猜想它们体积间的关系,再启发学生把以前探索圆面积公式的经验和方法迁移到探索圆柱的体积公式中来,进而推导出圆柱体积公式,验证猜想。
三、从学生的生活实际出发,结合具体事物,利用学生已有的经验开展教学活动
在教学圆柱的表面积的计算方法时,我先布置学生完成学具中等底等高的圆柱和圆锥的模型的制作,让学生对圆柱的表面积有个潜在的认识,并为教学体积公式奠定实物基础。教材先让学生围绕求圆柱形罐头侧面商标纸的面积是多少这一问题进行探索。在此基础上,我找来几个圆柱形并具有侧面商标纸的罐子,用剪刀剪开商标纸进行实物演示,再引导学生在方格纸上画出圆柱展开图,探索圆柱表面积的计算方法。学习圆锥的体积公式,重点是理解圆锥体积等于等底等高的圆柱体积的中的1/3“1/3”,学生没有动手操作,就没有亲身经历的体验,对1/3也就没有强烈的感受,所以我利用原有学生制作的模型,让学生在沙池中装、倒细沙,学生自己动手操作,亲身体验,推导出圆锥的体积公式,从而提升学生的数学思维水平,培养学生的学习能力。
通过本单元的教学,我认识到在我们的教学中要注意教材编排的特点,有层次地发挥教师的主导作用。教学中的“度”确实应该引起我们的重视。
《圆柱与圆锥》教学反思12
一、对圆柱的认识进行重点引导
认识圆柱时,由于学生对圆柱已有了一些直观的认识,教学中我先让学生从情境图中找出圆柱,让孩子明白生活中的圆柱和圆锥,在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。并对圆柱的侧面教学作了重点说明。
二、注意学习方法的迁移
圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾。通过交流学生对学习的方法进行了有效地迁移,学习的积极性得到有效地激发。兴趣盎然地投入到观察、研究之中。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织阅读课本,学生对于圆锥有了较好的认识。
三、注意对比
圆柱和圆锥认识以后,我让学生对于圆柱和圆锥的特征进行了有效的对比。从而使学生对于圆柱和圆锥的.面、高有了更深的认识,完善了学生的知识系统。
通过本课的教学,我认识到在我们的教学中要注意有层次地发挥教师的主导作用,体现学生的主体作用。虽然课前钻研教材,准备学具、教具花的时间多些,但看到孩子们那一张张可爱脸蛋,我心里和孩子一样乐滋滋的。
《圆柱与圆锥》教学反思13
经过三个星期的教学,第一单元(圆柱和圆锥)如期完成了教学任务。本单元的知识点包括面的旋转、圆柱的表面积、圆柱的体积、圆锥的.体积等。
在教学过程中,通过学生的课堂反映、作业质量、小测的反馈信息,本单元掌握较好的知识点有:面的旋转、圆柱的体积、圆锥的体积。这些知识,大多数学生都掌握了长方形、三角形旋转一周后得得到一个圆柱、圆锥,会利用公式底面积乘以高得出圆柱的体积,以及利用底面积乘以高再乘以三分之一得出圆锥的体积。在体积的教学中,我主要是通过类比法,先复习长方体和正方体的体积公式:底面积乘以高,然后让学生通过猜测、尝试验证等手段,让学生推导出圆柱和圆锥的公式,所以学生记得特别牢固,这一点在日后的教学继续发扬。
同时,本单元出错较多的地方是:计算圆柱的表面积,因为学生在求表面积时,没有很好地理解这个圆柱是求两个底面积加上一个侧面积,或者求一个底面积加上一个侧面积,或者只求侧面积,所以经常列式出错,以及计算准确率不高。
但总的来说,第一单元(圆柱和圆锥)的教学目标已达到,部分知识点学生没有完全掌握的,在期末复习中查漏补缺。
《圆柱与圆锥》教学反思14
本节课是一堂复习课,对学生应该是一个温故而知新的过程。
复习课是帮助学生整理知识、查漏补缺的重要课时。如何在复习课中提高学生的学习效率?是摆在老师面前的一个难题。如果把它仅仅看作是对知识的再现与补缺,简单地将各知识点罗列出来,这样无法使学生系统理解知识,弄清各知识之间的联系和知识的发生过程,而且还会使学生觉得是"炒剩饭"。这样往往会因重复练习而缺少新意。为了避免这种现象,我想如果能够设计有效的教学环节,能切实有效地让学生投入到课堂中并积极参与课堂才会取得事半功倍的效果,教师积极利用各种教学资源,创造性的使用教材,设计适合学生发展的教学过程。因此,在复习基础知识这一教学中,教师应将各个知识点,根据其发生过程和内在联系,通过对知识的分类、整合,构建知识网络,形成知识体系,让学生通过知识网络形成高视角的思维结构建立整体意识和统一观点。为此,我进行了这样几个环节的设计:
通过师生谈话,引入课题。活跃教学气氛,营造轻松愉悦平等的学习氛围。 ?
在本环节我首先提出问题:“你知道圆柱与圆锥有哪些特征?”这是一个简单问题,每个学生都有说的,但又说不完整,其他学生会进行补充,学生的参与度高,积极性高。同时,在互动交往中师生相互启发,相互补充,从而使知识结构不断完善,强化了复习的功能。
整理复习的目的不仅仅在于对知识的整理,还需要通过对知识的整理达到复习与提高的效果。所以最后我安排了一个问题:一个圆柱长10厘米,接上4厘米的一段后,表面积增加了25.12平方厘米,求原来圆柱的体积是多少立方厘米?本环节是对本节课所学知识的拔高,不仅要让学生回顾本节课所学的主要数学知识和思想方法,还要给学生表达和发展思维的机会,进而提高学生的`能力,也使学生认识到整理和复习的重要性。
反思这节课的教学设计与实际教学过程,还有一些问题需要思考与改进。如:
这节课的设计已改动了多次,通过谈话对圆柱和圆锥从表面到内部的特征进行再认识,对圆柱的表面积,圆柱、圆锥的体积进行再回顾,有学生对这部分知识进行再整理的过程花费了很多的精力。这样的“再认识”是不是有“新授”的痕迹?
在复习中必要的练习是不可缺少的。我们可以以练习代替复习,可以边整理知识点边穿插练习,也可以在练习中引导学生通过对练习题的分类,整理出知识网络,还可以先梳理沟通知识间的联系,再针对性地进行练习,有时用一节课对某部分知识进行整理和复习后,后面要跟着三四节的练习课复习与练习的关系如何协调才能提高复习的效率也是一个值得研究的问题。
由于教学经验欠缺,这节课还存在很多的问题,如:教学环节连接不够自然,新的教学方法运用不够熟练等等,以后还需要努力学习,提高自己的教学水平。
《圆柱与圆锥》教学反思15
今天,进入第二单元《圆柱与圆锥》的学习,也是学生在小学最后一次学习空间图形。操作、思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材也安排了操作活动的,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如圆柱的表面积的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形?让学生进行圆柱实物测量算表面积,制作笔筒,深化知识的理解。
我跟去年一样,布置课前前置作业:明天我们学习《圆柱的认识》,回家找一个大一点的圆柱形的物体,用最少的彩纸把这个圆柱包起来。
课一开始,让学生回顾学过的长方体与正方体的特征,你心目中长方体与正方体是怎样的呢?学生从面、顶点、边来交流,交流中其实对圆柱的认识做了很好引导。接着,让学生交流你心目中的圆柱是怎样的?由于学生自己操作过,因此回答非常积极。从底面、高和侧面来交流,很快学生在交流中明确:圆柱的上下两个面是完全相同的`圆;侧面是一个弯曲的面,并且粗细均匀;两个底面之间的距离叫做高,有无数条高。我追问着:你怎样证明两个底面大小相等呢?
生1:我在包这个圆柱时,只测量了一个底面直径,剪了两个,正好,因此两个底面大小相等。生2:圆柱可以看成有无数个大小相等的圆片叠起来的,那么两个底面大小一定相等。
生3:在包圆柱时,我测量过两个底面的直径,大小相等。你怎样证明圆柱的高有无数条?生1:我觉得两个底面间有很多的垂直线段。生2:底面有无数的点,两个底面对应的点连接的线段都是圆柱的高了。引导学生通过实验和推理的方法来证明,让学生结合实验操作进行辩析明理,加深学生对圆柱特征的理解。
你怎么知道圆柱的侧面展开是长方形呢?学生通过滚、包圆柱、围圆柱发现了展开的侧面与圆柱的联系。你能用这张长30厘米,宽20厘米的纸围成怎样的圆柱呢?
生1:我围成的圆柱,圆柱的底面周长是长方形的宽,圆柱的高是长方形的长。
生2:我围成的圆柱,圆柱的底面周长是长方形的长,圆柱的高是长方形的宽。我课件演示,观察一下,你有什么新的发现?学生发现了长方形的面积就是圆柱的侧面积,发现了两个圆柱的侧面积相等,都是这张长方形纸的面积。得出了结论侧面积相等,但它们的底面积不相等,高也不相等。通过这样的练习学生很自然的感悟到圆柱的侧面积就用长方形的长乘宽,也就是圆柱的底面周长乘高。
学生对圆柱认识到位与否直接关系到圆柱表面积和体积的教学,因此从某种意义上说认识圆柱是圆柱单元的重点中的重点。通过包圆柱,一张白纸围圆柱,把传统的剪改成现在的围,使学生对圆柱侧面研究自然过渡到对长方形与围成圆柱 关系的研究上,更加深入,努力实现探究效果的最大化。
【《圆柱与圆锥》教学反思】相关文章:
圆柱圆锥整理复习教学反思08-03
圆柱和圆锥教案03-08
圆锥的认识教学反思02-25
圆锥的体积教学反思03-23
圆锥的体积教学反思07-02
《圆锥的认识》教学反思08-19
《圆锥的体积》教学反思02-20
《圆锥的体积》教学反思05-16
圆柱和圆锥教案15篇03-08