高一教学计划(通用15篇)
时光在流逝,从不停歇,迎接我们的将是新的生活,新的挑战,来为以后的工作做一份计划吧。相信大家又在为写计划犯愁了?下面是小编收集整理的高一教学计划,欢迎大家分享。
高一教学计划1
根据教育部颁布的《普通高中课程方案(实验)》、《普通高中物理课程标准(实验)》的要求,改进教师的教育观念和教学行为,改进学生的学习方式,倡导自主学习、合作学习和探究学习,减轻学生的学习负担,把握物理学科的基本特点,关注物理学科与科技、社会的密切联系和相互影响,促进知识与技能、过程与方法、情感态度与价值观三维目标的实现。
对高一学生来讲,物理课程无论从知识内容还是从研究方法方面相对于初中的学习要求都有明显的提高,因而在学习时会有一定的难度。学生要经过一个从初中阶段到高中阶段转变的适应过程,作为教师要耐心地帮助学生完成这个适应过程。首先要积极培养和保护学生学习物理的兴趣和积极性,加强物理实验教学,培养学生观察与实验的基本素养。其次要注意联系实际,以学生熟悉的实际的问题或情景为背景,为学生搭建物理思维的平台
一、指导思想
对于教学活动的安排,以教学内容为依据,应以学生为本,以提高学生的科学素养,促进每一位学生的健康成长为根本目的,以教师本人以及本班学生的实际情况和所在学校的现实条件为基础。在“知识与技能”维度,要根据知识的内在逻辑联系有度又有序地安排教学活动。在“过程与方法”维度,留有足够的时间和空间,让学生经历科学探究过程,尝试运用实验方法、模型方法和数学工具来研究物理间题、验证物理规律,尝试运用物理原理和方法解决一些实际间题,让学生有机会发表自己的见解、并与他人论、交流、合作,逐步形成一定的自主学习能力。在“情感态度与价值观”维度,要注意发展学生对科学的好奇心与求知欲,激发他们参与科技活动的热清,鼓励他们主动与他人合作,并通过合作学习来培养敢于坚持真理、勇于创新、实事求是的`科学态度和科学精神以及团队精神。
二、做好做足的几项工作
1、能努力促进每一位学生的发展。
促进每一位学生的发展是新课程的灵魂。教师不但要根据不同学生的志趣和专长,指导学生选择合适的选修模块,而且要根据不同学生的基础和认知能力,提出不同层次的要求,采用灵活多样的方法进行分层教学和分类推进。既要利用新课程选择性的特点为优秀学生的自主学习提供条件,又要关注学习不理想的学生的困难及其成因,采取切实有效的措施,增强学生学习物理的信心。
2、让学生充分经历科学探究过程,体验科学探究的价值,尝试应用科学探究的方法研究物理问题,验证物理规律,能计划并调控自己的学习过程,通过自己的努力能解决学习中遇到的一些物理问题,有一定的自主学习能力。
3、让学生多参加一些社会实践活动,尝试经过思考发表自己的见解,尝试运用物理原理和研究方法解决一些与生产和生活相关的实际问题
4、培养学生的质疑能力,信息收集和处理能力,分析、解决问题能力。
5、培养学生主动与他人合作的精神,有将自己的见解与他人交流的愿望,敢于坚持正确的观点,敢于修正错误,具有团队精神。
要着力改善学生的学习方式,让学生在自主学习中提升主动、独立的学习能力,在合作学习中养成协作、分享的团队精神,在探究学习中加深对科学研究过程与方法的认识,提高探究未知世界的能力。要处理好学生自主与教师主导之间的关系,小组合作与学生独立思考之间的关系,以及探究学习与接受式学习的关系,使不同的学习方式相互补充、相互促进。防止自主、合作以及探究学习方式的形式化、表面化、极端化倾向。
6、改变教学行为,实现教师角色的转变。
采用多种教学方式进行教学。物理新课程蕴含着许多新的教育理念,对每一位教师都提出了新的挑战。新课程的实施过程应该是教师教学行为不断优化的过程,是教师专业水平不断提高发展的过程。在新课程的实施中,教师应该从传统的只重视知识传授的教学方式中走出来,提倡尽可能的采用科学探究教学方法进行教学,根据不同的教学内容和教学对象采用不同的教学方法,提高教学效果,提高学生学习物理的兴趣。
努力改变教师的角色。教师应该从传统的只重视知识传授者的角色中走出来,使自己不但成为学生学习活动的组织者和促进者,而且也成为一个孜孜不倦的学习者和探究者。要努力创设有利于学生自主探究的问题情境,制造学生认知上的冲突,引导学生通过自主活动去构建并完善认知结构。要创设一个良好的有利于师生共创共生、合作交往和意义构建的外部学习环境,支持并帮助学生通过探究活动来促进新意义的生成,使整个教学过程自始至终都充满着主动探究的学习气氛。
7、加强学生良好学习习惯的培养。
教育家叶圣陶先生指出:"教育的本旨原来如此,养成能力,养成习惯"培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力,实现教学目标的重要保证、
(1)培养学生良好的学习习惯,首先是要培养学生独立思考的习惯与能力、独立思考是学好知识的前提、学习物理要重在理解,只是教师讲解,而学生没有经过独立思考,就不可能很好地消化所学知识,不可能真正想清其中的道理掌握它,独立思考是理解和掌握知识的必要条件、在高一阶段首先要求学生独立完成作业,独立钻研教材,课堂教学中要尽量多的给予学生自己思考,讨论,分析的时间与机会,使他们逐步学会思考、
(2)培养学生自学能力,使其具有终身学习的能力。
阅读是提高自学能力的重要途径,在高一阶段培养学生的自学能力应从指导阅读教材入手,使他们学会抓住课文中心,能提出问题并设法解决、阅读物理教材不能一扫而过,而应潜心研读,边读边思考,挖掘提炼,对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及通过阅读教材,查阅有关书籍和资料的习惯、
8、力求课堂教学改革与创新。
“学生主动式互动教学”,教学的过程不再是教师讲授,学生听讲的单一过程,而是学生主动获得学习经历的过程,教师以一个交流者(甚至不是指导者)的身份出现在课堂上。教师以话题的形式引入教学内容,与学生一起讨论,让学生主动发现问题,总结出结论。甚至可以像说相声一样,与一名或多名学生在讲台前探讨,也可以让学生自己来讲。但是问题是如何指导学生的考虑从正确地思路出发,不然时间有限,会浪费掉大量的时间。
9、搞好物理教学与信息技术的整合。
信息技术是工具,是平台。在物理教学中信息技术是很重要的。可以提供足够的教学资料,给我们提供了一条很好的信息获得途径。多媒体又是课堂教学的先进手段,通过视听,可以把很多生活中的物理现象即时的反映出来,一些重要的板书、表格和图片、例题很方便的就可以在教室里面展示。通过多媒体课件又可以把实验演示的活灵活现,物理模型也可以通过课件分析的透彻有余,展示多媒体课件和媒体资料。
高一教学计划2
一、教学内容
本学期将完成数学必修1和数学必修4 (人教A版)两本教材的的学习,教学辅助材料有《同步金太阳导学》。
二、教学目标与要求
认真深入地学习《新课程标准》,研读教材。明确教学目的,把握教学目标,把准教学标高。注意到新教材的特点亲和力问题性思想性联系性,注意对基本概念的理解、基本规律的掌握、基本方法的应用上多下功夫,转变教学观念,螺旋上升地安排核心数学概念和重要数学思想,加强数学思想方法的渗透与概括。在课堂教学中要以学生为主,注重师生互动,对基本的知识点要落实到位,新教材对教学中有疑问的地方要在备课组中多加讨论和研究,特别是有关概念课的教学,一定要讲清概念的发生、发展、内涵、外延,不要模棱两可。
1. 处理好初高中衔接问题。初中内容的不适当删减、降低要求,导致学生双基无法达到高中教学要求;高中不顾学生的基础,任意拔高教学要求,繁琐的、高难度的运算充斥课堂。对初中没学而高中又要求掌握的内容(具体内容见附录)。
2. 准确把握教学要求,循序渐进地教学。不搞一步到位删减的内容不要随意补充;不要擅自调整内容顺序;教辅材料不能作为教学的依据;把更多的注意力放在核心概念、基本数学思想方法上;追求通性通法,不追求特技。
3. 适当使用信息技术。新课程主张多媒体教学。在教材中很容易发现新课改对信息技术在数学教学上的应用,并在配备的`光盘中提供了相当数量的课件,有利于学生更全面的吸收知识,提高课堂注意力和学习的兴趣。但我还是认为,多媒体知识教学的辅助手段,选不选用多媒体要看教学内容。尤其是数学这门学科,有些直观的内容用多媒体还是不错的,但有的内容诸如让学生思考体会的问题不是很适合多媒体教学的。根据学习内容需要选择恰当的信息技术工具和使用科学型计算器;提倡适当使用各种数学软件。
4. 充分发挥集体备课的作用。利用每周一次的集体备课,认真讨论本周的教学得失,研究下周所教内容的重难点,安排周练的内容。要根据实际情况,有针对性地组编训练题,做到每周一次综合训练(同步或滚雪球式的保温训练),一次微型补差训练,要搞好单元过关训练。选题要注意基础,强化通法,针对性强,避免对资料上的训练题全套照搬使用。要重视对数学尖子生的培养,力争在数学竞赛中取得好成绩。
5. 在重视智力因素的同时必须关注非智力因素。应认识到非智力因素在学生全面发展和数学学习过程中所起的重要作用,并内化为自觉的行为,切实培养学生学习数学的兴趣和良好的个性品质。
高一教学计划3
平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形 。
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的'斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习曲线方程打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.
高一教学计划4
教学分析
课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.
值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与?的区别.
三维目标
1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.
2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.
重点难点
教学重点:理解集合间包含与相等的含义.
教学难点:理解空集的含义.
课时安排
1课时
教学过程
导入新课
思路1.实数有相等、大小关系,如5=5,5<7 5="">3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)
(2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.
(3)画出y=2x和y=0.5x图象,得到底数互为倒数的指数函数图象关于y轴对称.)
师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0
[阶段小结] 指数函数y=ax(a>0且a≠1)具有以下性质:
①定义域为R.
②值域为(0, +∞).
③图象过定点(0, 1).
④非奇非偶函数.
⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;
当0
⑥函数y=ax与y=()x (a>0且a≠1)图象关于y轴对称.
⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:
x∈(-∞, 0)时,y=ax图象在y=bx图象下方;
x=0时,两图象相交;
x∈(0,+∞)时,y=ax图象在y=bx图象上方.
[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.
3.新知运用巩固深化
(方案一)(分析函数性质的用途)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?
生:可以求最值,可以比较两个函数值的大小.
师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)
生:(举例并判断大小.)
师:你考察了哪个指数函数?怎么想到的?(规范表述)
师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)
(方案二)
师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?
师:(口述并板书)你能比较32与33的大小吗?
生:直接计算比较.
师:那比较30.2与30.3的大小呢?能不能不计算呢?
生:利用函数y=3x的单调性.
师:能具体说明吗?(引导学生规范表达)我们再试一试.
(出示例1)
【例1】比较下列各组数中两个值的大小:
①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.
[师生活动]学生板演,教师组织学生点评.
[教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.
师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?
师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)
生:它们都过点(0, 1).
师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?
生:比较1.50.3,0.81.2和1的大小.
师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.
【例2】
①已知3x≥30.5,求实数x的取值范围;
②已知0.2x<25,求实数x的取值范围.
[设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.
4.概括知识总结方法
〖问题4本节课我们学习了哪些知识?你还学会了哪些方法?
[设计意图] 回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.
[师生活动]学生发言总结,交流所得.
[教学预设]
通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:
①指数函数的定义与性质;
②研究函数的一般方法和步骤.
师:本节课我们学习了什么知识?
生:指数函数的定义和性质.
师:回顾我们的研究过程,我们是怎样研究指数函数的?
生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.
生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.
师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.
[意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.
5.分层作业,因材施教
(1)感受理解:课本第54页,习题2.2(2):1,2,3,4;
(2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?
[设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.
Ⅵ.教后反思回顾
一、对于指数函数概念的认识
指数函数是一种函数模型,其基本特征是自变量在指数位置.底数取值范围有规定,使得这一模型形式简单又不失本质.不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想.
二、对于培养学生思维习惯的考虑
在学生自主探索的过程中,教师应注意培养学生良好的思维习惯.实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯.对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明.学生不仅学到了数学知识,也初步体验了研究问题的基本方法.
三、关于设计定位的反思
本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略.如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程.、
【高一教学计划】相关文章:
高一教学计划02-09
高一学年教学计划02-20
数学高一教学计划03-10
高一历史教学计划03-06
高一美术教学计划02-05
英语高一教学计划03-17
高一教学计划14篇02-20
高一物理教学计划02-26
高一教学计划(15篇)02-13
高一体育教学计划03-04