高中数学说课稿15篇[优秀]
作为一位优秀的人民教师,就有可能用到说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。那要怎么写好说课稿呢?下面是小编精心整理的高中数学说课稿 ,仅供参考,欢迎大家阅读。
高中数学说课稿 1
一、说教材:
1、地位、作用和特点:
《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。
本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以
是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是;
特点之二是: 。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:A、B、C
(2)能力目标:A、B、C
(3)德育目标:A、B
教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
导入新课 新课教学
反馈发展
三、说学法:
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的`学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出 ,并依
据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。
2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过
演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
四、教学过程:
(一)、课题引入:
教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
五、板书设计:
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
六、说课综述:
以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对
的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
高中数学说课稿 2
一、教材分析
(一)地位与作用
《幂函数》选自高一数学新教材必修1第2章第3节。是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础.在初中曾经研究过y=x,y=x2,y=x—1三种幂函数。这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华.本节内容之后, 将把指数函数,对数函数,幂函数科学的组织起来,体现充满在整个数学中的组织化,系统化的精神。让学生了解系统研究一类函数的方法.这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究.
(二)学情分析
(1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。
(2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。
(3)学生层次参差不齐,个体差异比较明显。
二、目标分析
新课标指出“三维目标”是一个密切联系的有机整体。
(一)教学目标
(1)知识与技能
①使学生理解幂函数的概念,会画幂函数的图象。
②让学生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。
(2)过程与方法
①让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
②使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度与价值观
①通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的学习兴趣。
②利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。
③培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。
(二)重点难点
根据我对本节课的内容的理解,我将重难点定为:
重点:从五个具体的幂函数中认识概念和性质
难点:从幂函数的图象中概括其性质。
三、教法、学法分析
(一)教法
教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。
1、引导发现比较法
因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。
2、借助信息技术辅助教学
由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用《几何画板》画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。
3、练习巩固讨论学习法
这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。
(二)学法
本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。
由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的`知识结构。
四、教学过程分析
(一)教学过程设计
(1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。
问题1:下列问题中的函数各有什么共同特征?是否为指数函数?
由学生讨论,总结,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1
这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成:
都是自变量的若干次幂的形式。都是形如
的函数。
揭示课题:今天这节课,我们就来研究:幂函数
(一)课堂主要内容
(1)幂函数的概念
①幂函数的定义。
一般地,函数
叫做幂函数,其中x 是自变量,a是常数。
②幂函数与指数函数之间的区别。
幂函数——底数是自变量,指数是常数;
指数函数——指数是自变量,底数是常数。
(2)几个常见幂函数的图象和性质
由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格
根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。
以上问题的设计意图:数形结合是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。
教师讲评:幂函数的性质.
①所有的幂函数在(0,+∞)上都有定义,并且图像都过点(1,1).
②如果a>0,则幂函数的图像通过原点,并在区间〔0,+∞)上是增函数.
③如果a<0,则幂函数在(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+∞时,图像在x轴上方无限地趋近x轴.
④当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。
以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数函数和对数函数的图像更为复杂,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。在教学中,采用从具体到一般,再从一般到具体的安排。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
(3)当堂训练,巩固深化
例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。本节课选取主要选取了两道例题。
例1是课本上的例题:证明f(x)=x1/2在(0,+∞)上是增函数。这题先从“形”的角度判断函数的单调区间和单调性,再用到定义从“数”的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。
例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1。3是增函数与y=x—5/4的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路
(4)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:
(1)通过本节课的学习,你学到了哪些知识?
(2)通过本节课的学习,你最大的体验是什么?
(3)通过本节课的学习,你掌握了哪些技能?
(二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成. 我设计了以下作业:
(1)必做题
(2)选做题
(三)板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
高中数学说课稿 3
高中数学第三册(选修)Ⅱ第一章第2节第一课时
一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的`过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
五、教学的基本流程设计
高中数学第三册《离散型随机变量的期望》说课教案.rar
高中数学说课稿 4
尊敬的各位专家、评委:
上午好!
今天我说课的课题是人教a版必修1第二章第二节《对数函数》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
地位和作用
本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。
(一)、教学目标
根据《对数函数》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标:
1、知识与技能
(1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型;
(2)、理解对数函数的概念、掌握对数函数的图像和性质;
(3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。
2、过程与方法
引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。
3、情感态度与价值观
通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。
(二)教学重点、难点及关键
1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。
2、难点:底数a对对数函数的图像和性质的影响。
[关键]对数函数与指数函数的类比教学。
由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。
(一)、教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的.教学方法:
1、启发引导学生思考、分析、实验、探索、归纳;
2、采用“从特殊到一般”、“从具体到抽象”的方法;
3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法;
4、投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
(二)、学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
1、对照比较学习法:学习对数函数,处处与指数函数相对照;
2、探究式学习法:学生通过分析、探索,得出对数函数的定义;
3、自主性学习法:通过实验画出函数图像、观察图像自得其性质;
4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
(一)、教学过程设计
1、创设情境,提出问题。
在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。
问题一:这是一个怎样的函数模型类型呢?
设计意图
复习指数函数
问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?
设计意图
为了引出对数函数
问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?
设计意图
(1)、为了让学生更好地理解函数;
(2)、为了让学生更好地理解对数函数的概念。
2、引导探究,建构概念。
(1)、对数函数的概念:
同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。
设计意图
前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。
但是在习惯上,我们用x表示自变量,用y表示函数值。
问题一:你能把以上两个函数表示出来吗?
问题二:你能得到此类函数的一般式吗?
设计意图
体现出了由特殊到一般的数学思想
问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。
问题四:你能根据指数函数的定义给出对数函数的定义吗?
问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么?
设计意图
前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。
(2)、对数函数的图像与性质
问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?
设计意图
提示学生进行类比学习
合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。
y=2x;y=log2x y=()x,y=log x
合作探究2:当a>0,a≠ 1,函数y=ax与y=logax图像之间有什么关系?
设计意图
在这儿体现“从特殊到一般”、“从具体到抽象”的方法。
合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。
设计意图
学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax(a>0,a≠1,)是否具有奇偶性,为什么?
问题2:对数函数y=logax(a>0,a≠1,),当a>1时,x取何值,y>0,x取何值,y问题3:对数式logab的值的符号与a,b的取值之间有何关系?0>
知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。
3、自我尝试,初步应用。
例1:求下列函数的定义域
y=log0.2(4-x)(该题主要考查对函数y=logax的定义域(0,+∞)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。)
例2:利用对数函数的性质,比较下列各组数中两个数的大小:
(1)、㏒2 3.4,log2 3.8;
(2)、log0.5 1.8,log0.5 2.1;
(3)、log7 5,log6 7
(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)
合作探究4:已知logm 4
设计意图
该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。
4、当堂训练,巩固深化。
通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。
采用课后习题1,2,3.
5、小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。
(1)、小结:
①对数函数的概念
②对数函数的图像和性质
③利用对数函数的性质比较大小的一般方法和步骤,
(2)、反思
我设计了三个问题
①、通过本节课的学习,你学到了哪些知识?
②、通过本节课的学习,你最大的体验是什么?
③、通过本节课的学习,你掌握了哪些技能?
(二)、作业设计
作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课后习题a 1,2,3;
选做题:课后习题b 1,2,3;
(三)、板书设计
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
高中数学说课稿 5
一、教学目标
(1)知识与能力目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推
导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。
(2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探
索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。
(3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。
二、教学重点、难点
(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。
(2)教学难点:椭圆标准方程的建立和推导。
三、教学过程
(一)创设情境,引入概念
1、动画演示,描绘出椭圆轨迹图形。
2、实验演示。
思考:椭圆是满足什么条件的点的轨迹呢?
(二)实验探究,形成概念
1、动手实验:学生分组动手画出椭圆。
实验探究:
保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?
思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?
2、概括椭圆定义
引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。
教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。
思考:焦点为的椭圆上任一点M,有什么性质?
令椭圆上任一点M,则有
(三)研讨探究,推导方程
1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?
2、研讨探究
问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有
,尝试推导椭圆的方程。
思考:如何建立坐标系,使求出的方程更为简单?
将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。
方案一方案二
按方案一建立坐标系,师生研讨探究得到椭圆标准方程
=1(),其中b2=a2-c2(b>0);
选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b>0)。
教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。
(四)归纳概括,方程特征
1、观察椭圆图形及其标准方程,师生共同总结归纳
(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;
(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;
(3)椭圆标准方程中三个参数a,b,c关系:;
(4)椭圆焦点的位置由标准方程中分母的大小确定;
(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。
2、在归纳总结的基础上,填下表
标准方程
图形a,b,c关系焦点坐标焦点位置
在x轴上
在y轴上
(五)例题研讨,变式精析
例1、求适合下列条件的椭圆的标准方程
(1)两个焦点的坐标分别是,椭圆上一点P到两焦点距离和等于10。
(2)两焦点坐标分别是,并且椭圆经过点。
例2、(1)若椭圆标准方程为及焦点坐标。
(2)若椭圆经过两点求椭圆标准方程。
(3)若椭圆的一个焦点是,则k的值为。
(A)(B)8(C)(D)32
例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段,求线段中点M的轨迹。
(六)变式训练,探索创新
1、写出适合下列条件的椭圆标准方程
(1),焦点在x轴上;
(2)焦点在x轴上,焦距等于4,并且经过点P;
2、若方程表示焦点在y轴上的椭圆,则k的范围。
3、已知B,C是两个定点,周长为16,求顶点A的轨迹方程。
4、已知椭圆的焦距相等,求实数m的值。
5、在椭圆上上求一点,使它与两个焦点连线互相垂直。
6、已知P是椭圆上一点,其中为其焦点且,求三解形面积。
(七)小结归纳,提高认识
师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。
(八)作业训练,巩固提高
课本第96页习题§8。1第3题、第5题、第6题。
课后思考题:
1、知是椭圆的两个焦点,AB是过的弦,则周长是。
(A)2a(B)4a(C)8a(D)2a2b
2、的两个顶点A,B的坐标分别是边AC,BC所在直线的斜
率之积等于,求顶点C的轨迹方程。
2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?
教学设计说明
椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。
椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的.过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。
椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。
设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。
高中数学说课稿 6
各位专家、评委:大家好!
今天我说课的题目是×××。下面我将从教材分析、教法分析、学法分析、过程分析四个方面来汇报我对这节课的教学设想。
一、教材分析
(一)教材地位与作用
本节课是新人教A版必修×××的一节内容,它与×××有着密切联系,是在学生学习了×××的基础上的延伸(进一步)学习,是继续深入学习×××知识和解决×××问题的重要基础和有力工具。本节知识反映了观察、分析、归纳、猜想等多种数学思维方式,蕴涵着丰富的解题方法和策略,对培养学生的创新意识和提高学生的思维品质有着重要的作用。
(二)教学目标
1.知识与技能目标:掌握×××方法,能较熟练应用×××解决×××问题。
2.能力与方法目标:在对×××的探究和应用中,使学生体会数形结合的数学方法,体验从特殊到一般的研究方法,培养学生类比思维能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观目标:
通过×××,激发学生探究的兴趣和欲望,增强学生学习数学的自信心,培养学生严谨、科学的态度和勇于提出问题、分析问题的习惯。
(三)教学重点、难点:
1.教学重点:×××
2.教学难点:×××
二、教法分析
“数学是思维的体操”。培养学生的思维能力,一直都是数学教学的.基本要求。知识的传授固然重要,但学生掌握知识发生和深化的思维过程更加重要。所以在教学过程中,为了更有效地把握重点,更到位的突破难点,本人决心在教学中落实“生本教育”理念,以学生独立自主和合作交流为前提,恰到好处的利用多媒体,注重启迪学生思维,引导学生尝试,确保学生在求知中不但要学有所得,更要学有所悟。
特别的,为了让学生×××,我采用了设计了变式题组,通过×××来促进学生新的认知结构的形成。
三、学法分析
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。现在,新课改已形成由点到面,逐步铺开的良好态势。其中,新课改的重点之一就是转变学生的学习方式,具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。因此,一定要落实“生本教育”理念,在课堂上通过小组讨论、展示,促使学生真正做到了动手、动脑、动口,积极参与教学的全过程,充分发挥了他们的思维能力和创造能力,充分发挥了学生在学习过程中的主体作用,让学生真正成为学习的主人。
四、过程分析
(一)创设情景
设计意图:从学生的生活经验(鲜活、实际的知识背景)出发,运用多媒体创设情境,激发学生的学习兴趣,诱发学生的求知欲,点燃了学生思维的火花,形成良好的学习氛围,将有效地提高接下来的学习效率。
(二)回顾旧知
设计意图:为随后的学习清除障碍,促使旧知识向新知识顺畅、有效的过度。
(三)尝试学习。
问题1:×××
问题2:×××
问题3:×××
设计意图:通过问题的提出激发学生的思维,做到师生互动,生生互助,让他们用心去观察、讨论、尝试解决问题,培养学生的观察能力、逻辑思维能力、归纳分析能力等,同时也能使学生在积极的状态中接受了新的知识。
(四)应用提高
题型1例题:×××
设计意图:通过对例题的分析与研究,尤其是×××。让学生体会到×××规律(方法、思想),使学生深刻领悟到分析、解决此类问题的一般途径和常规方法。
题型2例题:×××
题型3例题:×××
设计意图:通过有层次性的、有针对性的题目设置,将所学内容有机的融合成一个整体,使所有学生均有收获,人人都能掌握最基本的内容,基础扎实、能力较强的学生也有了充分发展和进行创新思维的空间。
(五)课堂小结
(六)作业布置
高中数学说课稿 7
一、教材分析
本节内容是等差数列(第一课时)的内容,属于数与代数领域的知识。本节是数列课程的新授课,为后面等比数列以及数列求和的知识点作基础。数列是高中数学重要内容之一,它有着广泛的实际应用。等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。在数学思想的方面,数列在处理数与数之间的关系中,更多地培养了学生运用函数与函数关系的思想。
二、教学目标
根据课程标准的要求和学生的实际水平,确定了本次课的教学目标
(1)在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想。
(2)在能力上:培养学生观察、分析、归纳、推理的能力;以形象的实际例子作为学生理解与练习的模板,使学生在不断实践中巩固学习到的知识;通过阶梯性练习,提高学生分析问题和解决问题的能力。
(3)在情感上:通过对等差数列在实际问题中的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据课程标准的要求我确定本节课的教学重点为: ①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
三、教学方法分析:
对于高中学生,知识经验比较贫乏,虽然他们的智力发展已到了形式运演阶段,但并不具备教强的抽象思维能力和演绎推理能力,所以本堂课将从实际中的问题出发,以学生日常生活中较易接触的一些数学问题,籍此启发学生对于数列知识点的理解。本节课大多采用启发式、讨论式的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,并学会将数学知识运用到实际问题的解决中。
四、教学过程
通过复习上节课数列的定义来引入几个数列
1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通过这3个数列,初步认识等差数列的特征,为后面的概念学习建立基础。由学生观察第一个数列与第三个数列的`特点,并与第二个做对比,引出等差数列的概念。
(二)新课探究
1、由引入自然的给出等差数列的概念:
定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数;
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,引导学生讲本不是等差数列的第二组数列修改成等差数列。并由观察三组数列的不同特点,由此强调:公差可以是正数、负数,并再举出特例数列1,1,1,1,1,1,1......说明公差也可以是0。
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,运用求数列通项公式的办法------迭加法:整个过程通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,则据其定义可得:
a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d将这(n-1)个等式左右两边分别相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过运用迭加法这一数学思想,便于学生从概念理解的过程过渡到运用概念的过程。
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2,
即an=2n-1以此来巩固等差数列通项公式运用。
(三)应用举例
现实生活中,以学生较为熟悉的iphone手机的数据作为例子。观察Iphone手机的发布时间,iphone第一代发布于20xx年,第二代发布于20xx年,第三代发布于20xx年,第四代发布于20xx年。现在第六代发布于今年20xx年。首先,让学生观察从04年到10年每两代iphone发布的间隔时间,让学生自行寻找规律,并在此基础上让学生估测第五代iphone的发布时间,并验证第五代iphone发布于20xx年。同时,再让学生预测在未来,下一部iphone发布的时间,是学生体验到将数学知识运用到实际中的方法与步骤。为了加深联系,再给出了每代iphone的价格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在给出的数据上,将价格随时间的变化以坐标轴的形式作图表示出来,让学生观察到虽然这些数据非等差,但是可以大致变为等差的直线图像,让学生体会到“拟合数据”的思想。在此基础上,让学生进行练习,预测14年如今iphone6的上市价格为6888元,并与学生通过数列进行推理的价格进行对比,让学生对自己在实践中解决问题的过程中找到一定的认同感。
五、归纳小结
提问学生,总结这节课的收获
1、等差数列的概念及数学表达式,并强调关键字:从第二项开始,它的每一项与前一项之差都等于同一常数。
2、等差数列的通项公式an= a1+(n-1) d
3、将让学生在实践中了解,将数列知识点运用到实际中的方法。
4、在课末提出启发性问题,若是有人将每一部iphone都买入,那他一共花费了多少钱?借此引出了下一节,等差数列求和的知识点。让学生尝试自行去思考这样的问题。
5、布置作业
高中数学说课稿 8
各位专家:
您好!我叫陆威,来自江苏省宿迁中学,今天我说课的课题是“椭圆的标准方程”,下面我从教材分析、教法设计、学法设计、学情分析、教学程序、板书设计和评价设计等七个方面向各位阐述我对本节课的构思与设计。
一、教材分析
1、地位及作用
圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。
推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,为学习双曲线、抛物线内容提供了基本模式和理论基础。因此本节课具有承前启后的作用,是本章的重点内容。
2、教学内容与教材处理
椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我将以课堂教学的组织者、引导者、合作者的身份,组织学生动手实验、归纳猜想、推理验证,引导学生逐个突破难点,自主完成问题,使学生通过各种数学活动,掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。
3、教学目标
根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:
1、知识目标
①建立直角坐标系,根据椭圆的定义建立椭圆的标准方程,
②能根据已知条件求椭圆的标准方程,
③进一步感受曲线方程的概念,了解建立曲线方程的基本方法,体会数形结合的'数学思想。
2、能力目标
①让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力,
②培养学生的观察能力、归纳能力、探索发现能力,
③提高运用坐标法解决几何问题的能力及运算能力。
3、情感目标
①亲身经历椭圆标准方程的获得过程,感受数学美的熏陶,
②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,
③养成实事求是的科学态度和锲而不舍的钻研精神,形成学习数学知识的积极态度。
4、重点难点
基于以上分析,我将本课的教学重点、难点确定为:
①重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法,
②难点:椭圆的标准方程的推导。
二、教法设计
在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。
三、学法设计
通过创设情境,充分调动学生已有的学习经验,让学生经历“观察——猜想——证明——应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。
四、学情分析
1、能力分析
①学生已初步掌握用坐标法研究直线和圆的方程,
②对含有两个根式方程的化简能力薄弱。
2、认知分析
①学生已初步熟悉求曲线方程的基本步骤,
②学生已经掌握直线和圆的方程及圆锥曲线的概念,对曲线的方程的概念有一定的了解,
③学生已经初步掌握研究直线和圆的基本方法。
3、情感分析
学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。
五、教学程序
从建构主义的角度来看,数学学习是指学生自己建构数学知识的活动,在数学活动过程中,学生与教材及教师产生交互作用,形成了数学知识、技能和能力,发展了情感态度和思维品质。基于这一理论,我把这一节课的教学程序分成六个步骤来进行。
高中数学说课稿 9
一、教材分析
1、教学内容
本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2、教材的地位和作用
函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3、教材的重点﹑难点﹑关键
教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念。
教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程、
4、学情分析
高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强。
二、目标分析
(一)知识目标:
1、知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2、能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
3、情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。
(二)过程与方法
培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。
三、教法与学法
1、教学方法
在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。
2、学习方法
自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。
四、过程分析
本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。
(一)问题情景:
为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知欲望,为学习函数的单调性做好铺垫。(祥见课件)
新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
(二)函数单调性的定义引入
1、几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:
问题1、观察下列函数图象,从左向右看图象的变化趋势?
问题2:你能明确说出“图象呈上升趋势”的意思吗?
通过学生的交流、探讨、总结,得到单调性的“通俗定义”:
从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?
通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。
设计意图:
①通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。
②通过学生已学过的一次y=2x+4,,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。
③从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。
④从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。
(三)增函数、减函数的定义
在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。
定义中的“当x1x2时,都有f(x1)
注意:
(1)函数的单调性也叫函数的增减性;
(2)注意区间上所取两点x1,x2的任意性;
(3)函数的单调性是对某个区间而言的,它是一个局部概念。
让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的.概念。
设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处
理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。
(四)例题分析
在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。
2、例2、证明函数在区间(—∞,+∞)上是减函数。
在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。
变式一:函数f(x)=—3x+b在R上是减函数吗?为什么?
变式二:函数f(x)=kx+b(k
变式三:函数f(x)=kx+b(k
错误:实质上并没有证明,而是使用了所要证明的结论
例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。
(五)巩固与探究
1、教材p36练习2,3
2、探究:二次函数的单调性有什么规律?
(几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。
设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。
通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。
(六)回顾总结
通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。
设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。
(七)课外作业
1、教材p43习题1。3A组1(单调区间),2(证明单调性);
2、判断并证明函数在上的单调性。
3、数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。
设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。
(七)板书设计(见ppt)
五、评价分析
有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了:
第一、教要按照学的法子来教;
第二、在学生已有知识结构和新概念间寻找“最近发展区”;
第三、强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,激情引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。
高中数学说课稿 10
一、教学目标
1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义。
2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程。领悟直角坐标系的工具功能,丰富数形结合的经验。
3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观。
4.培养学生求真务实、实事求是的科学态度。
二、重点、难点、关键
重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法。
难点:把三角函数理解为以实数为自变量的函数。
关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).
三、教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学。
四、教学过程
执教线索:
回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业]
(一)复习引入、回想再认
开门见山,面对全体学生提问:
在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?
探索任意角的三角函数(板书课题),请同学们回想,再明确一下:
(情景1)什么叫函数?或者说函数是怎样定义的?
让学生回想后再点名回答,投影显示规范的。定义,教师根据回答情况进行修正、强调:
传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域。
现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域。
设计意图:
函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程。教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备。
(情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数。请回想:这三个三角函数分别是怎样规定的?
学生口述后再投影展示,教师再根据投影进行强调:
设计意图:
学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。
(二)引伸铺垫、创设情景
(情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。
能推广吗?怎样推广?针对刚才的问题点名让学生回答。用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。
设计意图:
从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程。
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值):
把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r.
根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:
设计意图:
此处做法简单,思想重要。为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形。由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数。初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义。这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).
(情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?
追问:锐角α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化。
引导学生观察图3,联系相似三角形知识,
探索发现:
对于锐角α的每一个确定值,六个比值都是
确定的,不会随P在终边上的移动而变化。
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。所以,六个比值分别是以角α为自变量、以比值为函数值的函数。
设计意图:
初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键。这样做能够使学生有效地增强函数观念。
(三)分析归纳、自主定义
(情境5)能将锐角的比值情形推广到任意角α吗?
水到渠成,师生共同进行探索和推广:
对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):
终边分别在四个象限的情形:终边分别在四个半轴上的情形:
;
(指出:不画出角的方向,表明角具有任意性)
怎样刻画任意角的三角函数呢?研究它的六个比值:
(板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值:
α=kππ/2时,x=0,比值y/x、r/x无意义;
α=kπ时,y=0,比值x/y、r/y无意义。
追问:α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化。
再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化。
综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析).
因此,六个比值分别是以角α为自变量、以比值为函数值的函数。
根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x).其它几个三角函数也如此
投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:
(图六)
指导学生识记六个比值及函数名称。
教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求).
引导学生进一步分析理解:
已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值。因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便。
设计意图:
把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握。明确比值存在与否的条件,为确定函数定义域作准备。动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵。引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务。由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对"三角函数可以看成是以实数为自变量的函数"的理解有半信半疑之感,有待通过后续的应用加深理解。
(四)探索定义域
(情景6)(1)函数概念的三要素是什么?
函数三要素:对应法则、定义域、值域。
正弦函数sinα的对应法则是什么?
正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα.
(2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:
三角函数
sinα
cosα
tanα
cotα
cscα
secα
定义域
引导学生自主探索:
如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围。
关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R.
对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}..........
教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。
(关于值域,到后面再学习).
设计意图:
定义域是函数三要素之一,研究函数必须明确定义域。指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。
(五)符号判断、形象识记
(情景7)能判断三角函数值的正、负吗?试试看!
引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:
(同好得正、异号得负)
sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负
设计意图:
判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求。要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键。
(六)练习巩固、理解记忆
1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值。
要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义。
课堂练习:
p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值。
要求心算,并提问中下学生检验,--------
点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义).
补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的'其它五个三角函数值。
师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?.根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略。
2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2.
提问,据反馈信息作点评、修正。
师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。
取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义。
强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值。
设计意图:
及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把"培养学生分析解决问题的能力"贯穿在每一节课的课堂教学始终。
(七)回顾小结、建构网络
要求全体学生根据教师所提问题进行总结识记,提问检查并强调:
1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---)
2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------)
3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----)
设计意图:
遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策。此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力。
(八)布置课外作业
1.书面作业:习题4.3第3、4、5题。
2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况。
教学设计说明
一、对本节教材的理解
三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。
星星之火,可以燎原。
直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排。定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。
二、教学法加工
数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力。
在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习。本课例属第一课时。
教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解。本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力。
将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了。
教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法。后者更能突出函数内涵,揭示三角函数本质。本课例采用后者组织教学。
三、教学过程分析(见穿插在教案中的设计意图).
高中数学说课稿 11
各位评委老师好:今天我说课的题目是
是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。
一、 教材分析
是在学习了基础上进一步研究 并为后面学习 做准备,在整个
高中数学中起着承上启下的作用,因此本节内容十分重要。
根据新课标要求和学生实际水平我制定以下教学目标
1、 知识能力目标:使学生理解掌握
2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力
3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于
观察勇于思考的学习习惯和严谨 的科学态度
根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是
二、教法学法
根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。
三、 教学过程
四、 教学程序及设想
1、由……引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的'知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:……
2、由实例得出本课新的知识点是:……
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习……
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
五、教学评价
学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应
当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。
高中数学说课稿 12
一、教材分析
1.教材所处的地位和作用
在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。
2.教学的重点和难点
重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。
难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。
二、教学目标分析
1、知识与技能:
(1)了解随机数的概念;
(2)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:
(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;
(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯
3、情感态度与价值观:
通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.
三、教学方法与手段分析
1、教学方法:本节课我主要采用启发探究式的教学模式。
2、教学手段:利用多媒体技术优化课堂教学
四、教学过程分析
㈠创设情境、引入新课
情境1:假设你作为一名食品卫生工作人员,要对某超市内的80袋小包装饼干中抽取10袋进行卫生达标检验,你打算如何操作?
预设学生回答:
⑴采用简单随机抽样方法(抽签法)
⑵采用简单随机抽样方法(随机数表法)
教师总结得出:随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样。(引入课题)
「设计意图」(1)回忆统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从具体试验中了解随机数的含义。
情境2:在抛硬币和掷骰子的试验中,是用频率估计概率。假如现在要作10000次试验,你打算怎么办?大家可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢?
「设计意图」当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,体现利用计算器或计算机产生随机数的必要性。
㈡操作实践、了解新知
教师:向学生介绍计算器的操作,让他们了解随机函数的原理。可事先编制几个小问题,在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍,让学生熟悉如何用计算器产生随机数。
「设计意图」通过操作熟悉计算器操作流程,在明白原理后,通过让学生自己按照规则操作,熟悉计算器产生随机数的操作流程,了解随机数。
问题1:抛一枚质地均匀的`硬币出现正面向上的概率是50,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?
思考:随着模拟次数的不同,结果是否有区别,为什么?
「设计意图」⑴设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步。⑵抛硬币是最熟悉、最简单的问题,很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替。(题目让学生通过熟悉50想到用随机数0,1来模拟,为后面问题4每天下雨的概率为40的概率建模作第一次小铺垫。)⑶熟悉利用计算器模拟试验的操作流程,为解决后面例题模拟下雨作好铺垫。
问题2:(1)刚才我们利用了计算器来产生随机数,我们知道计算机有许多软件有统计功能,你知道哪些软件具有随机函数这个功能?
(2)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗?
「设计意图」⑴了解有许多统计软件都有随机函数这个功能,并与前面第一章所学的用程序语言编写程序相联系;⑵Excel是学生比较熟悉的统计软件,也可让学生回顾初中用Excel画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法。
问题3:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗?
(2)当试验次数为1000,1500时,你能说说出现正面向上的频率有些什么变化?
「设计意图」⑴应用随机模拟方法估计古典概型中随机事件的概率值;
⑵体会频率的随机性与相对稳定性,经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性。
㈢讲练结合、巩固新知
问题4:天气预报说,在今后的三天中,每一天下雨的概率均为40,这三天中恰有两天下雨的概率是多少?
问1:能用古典概型的计算公式求解吗?
你能说明一下这为什么不是古典概型吗?
问2:你如何模拟每一天下雨的概率为40?
「设计意图」⑴问题分层提出,降低本题难度。如何模拟每一天下雨的概率40是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一。
⑵巩固用随机模拟方法估计未知量的基本思想,明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题。
归纳步骤:第一步,设计概率模型;
第二步,进行模拟试验;
方法一:(随机模拟方法--计算器模拟)利用计算器随机函数;
方法二:(随机模拟方法--计算机模拟)
第三步,统计试验的结果。
课堂检测将一枚质地均匀的硬币连掷三次,出现"2个正面朝上、1个反面朝上"和"1个正面朝上、2个反面朝上"的概率各是多少?并用随机模拟的方法做100次试验,计算各自的频数。
「设计意图」通过练习,进一步巩固学生对本节课知识的掌握。
㈣归纳小结
(1)你能归纳利用随机模拟方法估计概率的步骤吗?
(2)你能体会到随机模拟的优势吗?请举例说说。
「设计意图」⑴通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势;⑵是对知识的进一步理解与思考,又是对本节内容的回顾与总结。
㈤布置练习:
课本练习3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
[内容结束]
高中数学说课稿 13
各位评委老师,上午好,我是xx号考生叶新颖。今天我的说课题目是集合。首先我们来进行教材分析。
教材分析
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。
教学目标
1、学习目标
(1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
2、能力目标
(1)能够把一句话一个事件用集合的方式表示出来。
(2)准确理解集合与及集合内的元素之间的关系。
3、情感目标
通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了解到数学于生活中。
教学重点与难点
重点:集合的基本概念与表示方法;
难点:运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;
教学方法
(1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;
(2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。
学习方法
(1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,
教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象的综合能力。
(2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培
优扶差,满足不同。”
教学思路,具体的思路如下
一、引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。
二、正体部分
学生阅读教材,并思考下列问题:
(1)集合有那些概念?
(2)集合有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)集合的有关概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的'集合.
(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、元素通常用小写的
拉丁字母表示,如a、b、c、
1.思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)
集合A={2,3,4,6,9}a=2因此我们知道a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA
要注意“∈”的方向,不能把a∈A颠倒过来写.(举例)集合A={3,4,6,9}a=2因此我们知道aA
3、集合中元素的特性(1)确定性:(2)互异性:(3)无序性:
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集注:应区分,{},{0},0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N*或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R注:
(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},;例1.(课本例1)思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y=x2+3x+2}与{y|y=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)课堂练习(课本P6练习)
三、归纳小结与作业
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
书面作业:习题1.1,第1-4题。
高中数学说课稿 14
各位老师:
大家好!
我叫xxx,来自xx。我说课的题目是《用样本的数字特征估计总体的数字特征》,内容选自于高中教材新课程人教A版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。
2教学的重点和难点
重点:⑴能利用频率颁布直方图估计总体的众数,中位数,平均数。
⑵体会样本数字特征具有随机性
难点:能应用相关知识解决简单的实际问题。
二、教学目标分析
1、知识与技能目标
(1)能利用频率颁布直方图估计总体的众数,中位数,平均数。
(2)能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。
2、过程与方法目标:
通过对本节课知识的学习,初步体会、领悟"用数据说话"的统计思想方法。
3、情感态度与价值观目标:
通过对有关数据的搜集、整理、分析、判断培养学生"实事求是"的科学态度和严谨的工作作风。
三、教学方法与手段分析
1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用"问答探究"式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。
2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
1、复习回顾,问题引入
「屏幕显示」
〈问题1〉在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征。
提出问题:什么是平均数,众数,中位数?
(教师提问,铺垫复习,学生思考、积极回答。根据学生回答,给出补充总结,借助用多媒体分别给出他们的定义)
「设计意图」使学生对本节课的学习做好知识准备。
(进一步提出实例、导入新课。)
「屏幕显示」
〈问题2〉选择薪水高的职业是人之常情,假如你大学毕业有两个工作相当的单位可供选择,现各从甲乙两单位分别随机抽取了50名员工的月工资资料如下(单位:元)
分组计算这两组50名员工的月工资平均数,众数,中位数并估计这两个公司员工的平均工资。你选择哪一个公司,并说明你的理由。
(学生分组分别求两组数据的平均工资。
学生:甲、乙平均工资分别为:甲:1320元,乙:1530元。
所以我选乙公司。
学生乙:甲、乙两公司的众数分别为甲:1200,乙:1000,所以我选择甲公司。
学生丙:我要根据我的能力选择。)
「设计意图」学生按"常理"做出选择,教师指出只凭平均工资做出判断的依据并不可靠,从而引导学生进一步深入问题。
2讲授新课,深入认识
⑴「屏幕显示」
例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们画出了这组数据的频率分布直方图。现在,观察这组数据的频率分布直方图,能否得出这组数据的众数、中位数和平均数?
(把学生分成若干小组,分别计算平均数、中位数、众数,或估计平均数、中位数、众数。然后比较结果,会发现通过计算的结果和通过估计的结果出现了一定的误差。引导学生分析产生误差的原因。原因是由于样本数据的频率分布直方图把原始的一些数据给遗失了。让学生明白产生这样的误差对总体的估计没有大的'影响,因为样本本身也有随机性。)
「设计意图」让学生懂得如何根据频率分布直方图估计样本的平均数、中位数和众数。使学生明白从直方图中估计样本的数字特征虽然会有一些误差,但直观、快速、可避免繁琐的计算和阅读数据的过程。
⑵〈提出问题〉根据样本的众数、中位数、平均数估计总体平均数的基本数据,并对上一节的探究问题制定一个合理平价用水量的的标准。
(师生通过共同交流探讨得知仅以平均数或只使用中位数或众数制定出平价用水标准都是不合理的,必须综合考虑才能做出合理的选择)
「设计意图」使学生会依据众数、中位数、平均数对数据进行综合判断,并做出合理选择。也为接下来对他们优缺点的总结打下基础。
⑶总结出众数、中位数、平均数三种数字特征的优缺点。
(先由学生思考,然后再老师的引导下做出总结)
「设计意图」使学生能更准确更全面地依据样本的众数、中位数、平均数对数据进行综合判断,并做出合理选择,使实际问题得到正确的解决。
3、反思小结、培养能力
①学习利用频率直方图估计总体的众数、中位数和平均数的方法。
②介绍众数、中位数和平均数这三个特征数的优点和缺点。
③学习如何利用众数、中位数和平均数的特征去分析解决实际问题。
「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力
4、课后作业,自主学习
课本练习
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
5、板书设计
高中数学说课稿 15
一、教材分析:
1、教材的地位与作用:
线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
2、教学重点与难点:
重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。
难点:在可行域内,用图解法准确求得线性规划问题的最优解。
二、目标分析:
在新课标让学生经历"学数学、做数学、用数学"的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。
知识目标:
1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行
域和最优解等概念;
2、理解线性规划问题的图解法;
3、会利用图解法求线性目标函数的最优解.
能力目标:
1、在应用图解法解题的过程中培养学生的观察能力、理解能力。
2、在变式训练的过程中,培养学生的分析能力、探索能力。
3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。
情感目标:
1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。
2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;
3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。
三、过程分析:
数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。
1、创设情境,提出问题:
在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。
接着我设置了一个具体的"问题"情境,即世界杯冠军意大利足球队(插图片)营养师布拉加经常遇到的这样一类营养调配问题:
甲、乙、丙三种食物的维生素A、B的含量及成本如下表:
甲
乙
丙
维生素A(单位/千克)
400
600
400
维生素B(单位/千克)
800
200
400
成本(元/千克)
7
6
5
布拉加想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?
同学们,你能为布拉加解决这个棘手的问题吗?
首先将此实际问题转化为数学问题。我请学生完成这一过程如下:
解:设所购甲、乙两种食物分别为x、y千克,则丙食物为10-x-y千克.
由题意可知x、y应满足条件:
即①
又设成本为z元,则z=7x+6y+5(10-x-y)=2x+y+50.
于是问题转化为:当x、y满足条件
①,求成本z=2xy50的最小值问题。
【设计意图】数学是现实世界的反映。通过学生关注的热点问题引入,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力。
2、分析问题,形成概念
那么如何解决这个求最值的问题呢?这是本次课的难点。我让学生先自主探究,再分组讨论交流,在学生遇到困难时,我运用化归和数形结合的思想引导学生转化问题,突破难点:⑴学生基于上一课时的学习,讨论后一般都能意识到要将不等式组①表示成平面区域。(教师动画演示画不等式组①表示的平面区域。)于是问题转化为当点(x,y)在此平面区域内运动时,如何求z=2xy50的最小值的问题。⑵由于此问题难度较大,我试着这样引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2xy50作某种几何解释呢?学生很自然地想到要将等式z=2xy50视为关于x,y的一次方程,它在几何上表示直线。当z取不同的值时可得到一族平行直线。于是问题又转化为当这族直线与此平面区域有公共点时,如何求z的最小值。⑶这一问题相对于部分学生来说仍有一定的难度,于是我继续引导学生:如何更好地把握直线2xy50=z的几何特征呢?学生讨论交流后得出要将其改写成斜截式y=-2xz-50。至此,学生恍然大悟:原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小。于是问题又转化为当直线y=-2xz-50与平面区域有公共点时,在区域内找一个点P,使直线经过点P时在y轴上的截距最小。
(紧接着我让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元。)
【设计意图】数学教学的核心是学生的再创造。让学生自主探究,体验数学知识的发生、发展的过程,体验转化和数形结合的思想方法,从而使学生更好地理解数学概念和方法,突出了重点,化解了难点。
就在学生趣味盎然之际,我就此给出相关概念:
不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件。z=2xy50是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数。由于z=2xy50又是x、y的一次解析式,所以又叫做线性目标函数。
一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域。其中使目标函数取得最大值或最小值的可行解都叫做这个问题的最优解。象上述求解线性规划问题的方法叫图解法。
由前面实际问题的解决自然地过渡到新概念的讲解,使得知识的衔接较为顺畅,概念的形成水到渠成。
3、反思过程,提炼方法
解题回顾是解题过程中重要又常被学生忽略的一个环节。我借用多媒体辅助教学,动态演示解题过程,引导学生归纳、提炼求解步骤:
(1)画可行域--画出线性约束条件所确定的平面区域;
(2)过原点作目标函数直线的平行直线l0;
(3)平移直线l0,观察确定可行域内最优解的位置;
(4)求最值--解有关方程组求出最优解,将最优解代入目标函数求最值。
简记为画--作--移--求四步。
4、变式演练,深入探究
为了让学生更好地理解图解法求线性规划问题的内在规律,我在例1的基础上设计了例2和两个变式:
例2.设z=2x-3y,式中变量x、y满足下列条件,求z的最大值和最小值。
【设计意图】进一步强调目标函数直线的纵截距与z的最值之间的关系,有时并不是截距越大,z值越大。
变式1.设z=axy,式中变量x、y满足下列条件,若目标函数z仅在点(5,2)处取到最大值,求a的取值范围。
变式2.设z=axy,式中变量x、y满足下列条件,若使目标函数z取得最大值的最优解有无数个,求a的值。
【设计意图】用已知有唯一(或无数)最优解时反过来确定目标函数某些字母系数的取值范围来训练学生从各个不同的侧面去理解图解法求最优解的实质,培养学生思维的发散性。
(以上两个变式均让学生用几何画板进行实验,探求解决方法。并引导学生总结出:最优解一定位于多边形可行域的顶点或边界直线处。)
5、运用新知,解决问题
"学数学而不练,犹如入宝山而空返"。为了及时巩固知识,反馈教学信息,我安排了如下练习:
练习1:教材p64练习第1题
【设计意图】及时检验学生利用图解法解线性规划问题的情况。
练习2:设z=2xy,式中变量x、y满足下
列条件①,求z的最大值和最小值。
(学生独立完成巩固性练习,老师投影有代表性的学生解答过程,给予积极性的评价,并强调注意点。同座同学间相互交流、批改和更正。)
【设计意图】除了帮助学生巩固新学的知识,还能引导学生运用新知识,迅速清楚地发现以前用解不等式的知识错解此类题的原因。让学生再一次深刻体会到数形结合的妙处,同时又巩固了旧知识,完善了知识结构体系。
6、归纳总结,巩固提高
(1)归纳总结
为使学生对所学的'知识有一个完整而深刻的印象,我请学生从以下两方面自己小结。
(1)这节课学习了哪些知识?
(2)学到了哪些思考问题的方法?
(学生回答)
【设计意图】有利于学生养成及时总结的良好习惯,并将所学知识纳入已有的认知结构,同时也培养了学生数学交流和表达的能力。
(2)巩固提高
布置作业:
1.阅读本节内容,完成课本P65习题7.4第2题
2.思考题:设z=2x-y,式中变量x、y满足下列条件
且变量x、y为整数,求z的最大值和最小值。
【设计意图】让学生巩固所学内容并进行自我检测与评价,并为下一课时解决实际问题中的最优解是整数解的教学埋下伏笔。
四、教法分析:
鉴于我校高二学生已具有较好的数学基础知识和较强的分析问题、解决问题的能力,本节课我以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法。
(1)设置"问题"情境,激发学生解决问题的欲望;
(2)提供"观察、探索、交流"的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识。
(3)利用多媒体辅助教学,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,又提高了教学效率。
(4)指导学生做到"四会":会疑;会议;会思;会变。在教学过程中,重视学生的探索经历和发现新知的体验,使学生形成自己对数学知识的理解和有效的学习策略。
五、评价分析
本节课我的设计理念遵循以下四条原则:以问题为载体;以学生为主体;以合作交流为手段;以能力提高为目的。重视概念的提取过程;知识的形成过程;解题的探索过程;情感的体验过程。学生通过自主探究、合作交流,体会合作学习的默契和谐,体会冥思苦想后的豁然开朗,体会逻辑思维的严谨美,体会一题多变的变幻美,体会数形结合的奇异美。
【高中数学说课稿 】相关文章:
高中数学《集合》说课稿07-22
高中数学经典说课稿优秀11-20
高中数学说课稿07-09
高中数学说课稿06-25
高中数学《向量》说课稿01-06
高中数学说课稿05-20
关于高中数学说课稿11-26
(优)高中数学说课稿05-20
精选高中数学说课稿九篇06-27
精选高中数学说课稿3篇06-26