高中数学说课稿汇编8篇
作为一名默默奉献的教育工作者,很有必要精心设计一份说课稿,说课稿有助于顺利而有效地开展教学活动。说课稿应该怎么写呢?以下是小编为大家整理的高中数学说课稿8篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学说课稿 篇1
一、教材分析
1、教材内容
本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.
2、教材所处地位、作用
函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.
3、教学目标
(1)知识与技能:使学生理解函数单调性的`概念,掌握判别函数单调性
的方法;
(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.
4、重点与难点
教学重点(1)函数单调性的概念;
(2)运用函数单调性的定义判断一些函数的单调性.
教学难点(1)函数单调性的知识形成;
(2)利用函数图象、单调性的定义判断和证明函数的单调性.
二、教法分析与学法指导
本节课是一节较为抽象的数学概念课,因此,教法上要注意:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.
2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.
4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.
在学法上:
1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.
2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.
高中数学说课稿 篇2
一、教材分析
1、教学内容
本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2、教材的地位和作用
函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3、教材的重点﹑难点﹑关键
教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念。
教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程、
4、学情分析
高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强。
二、目标分析
(一)知识目标:
1、知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2、能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
3、情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。
(二)过程与方法
培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。
三、教法与学法
1、教学方法
在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。
2、学习方法
自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。
四、过程分析
本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。
(一)问题情景:
为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知欲望,为学习函数的单调性做好铺垫。(祥见课件)
新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
(二)函数单调性的定义引入
1、几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:
问题1、观察下列函数图象,从左向右看图象的变化趋势?
问题2:你能明确说出“图象呈上升趋势”的意思吗?
通过学生的交流、探讨、总结,得到单调性的“通俗定义”:
从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?
通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。
设计意图:
①通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。
②通过学生已学过的一次y=2x+4,,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。
③从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。
④从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。
(三)增函数、减函数的定义
在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。
定义中的“当x1x2时,都有f(x1) 注意: (1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x1,x2的任意性; (3)函数的单调性是对某个区间而言的,它是一个局部概念。 让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。 设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的`单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处 理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。 (四)例题分析 在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。 2、例2、证明函数在区间(—∞,+∞)上是减函数。 在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。 变式一:函数f(x)=—3x+b在R上是减函数吗?为什么? 变式二:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。 变式三:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。 错误:实质上并没有证明,而是使用了所要证明的结论 例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。 (五)巩固与探究 1、教材p36练习2,3 2、探究:二次函数的单调性有什么规律? (几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。 设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。 通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。 (六)回顾总结 通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。 设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。 (七)课外作业 1、教材p43习题1。3A组1(单调区间),2(证明单调性); 2、判断并证明函数在上的单调性。 3、数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。 设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。 (七)板书设计(见ppt) 五、评价分析 有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了: 第一、教要按照学的法子来教; 第二、在学生已有知识结构和新概念间寻找“最近发展区”; 第三、强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。 本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,激情引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。 1.教材分析 1-1教学内容及包含的知识点 (1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容 (2)包含知识点:点到直线的距离公式和两平行线的距离公式 1-2教材所处地位、作用和前后联系 本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。 可见,本课有承前启后的作用。 1-3教学大纲要求 掌握点到直线的距离公式 1-4高考大纲要求及在高考中的显示形式 掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。 1-5教学目标及确定依据 教学目标 (1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。 (2)培养学生探究性思维方法和由特殊到一般的研究能力。 (3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。 (4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。 确定依据: 中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年) 1-6教学重点、难点、关键 (1)重点:点到直线的距离公式 确定依据:由本节在教材中的地位确定 (2)难点:点到直线的距离公式的推导 确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。 分析“尝试性题组”解题思路可突破难点 (3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。 2.教法 2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。 确定依据: (1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。 (2)事物之间相互联系,相互转化的辩证法思想。 2-2教具:多媒体和黑板等传统教具 3.学法 3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。 一句话:还课堂以生命力,还学生以活力。 3-2学情: (1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。 (2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。 (3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。 3-3学具:直尺、三角板 3. 教学程序 时,此时又怎样求点A到直线 的距离呢? 生: 定性回答 点明课题,使学生明确学习目标。 创设“不愤不启,不悱不发”的学习情景。 练习 比较 发现 归纳 讨论 的距离为d (1) A(2,4), :x = 3, d=_____ (2) A(2,4), :y = 3,d=_____ (3) A(2,4), :x – y = 0,d=_____ 尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。 请三个同学上黑板板演 师: 请这三位同学分别说说自己的解题思路。 生: 回答 教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。 视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的`思路吗”。 说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形) 师:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线 :Ax+By+C=0(A,B≠0)的距离又怎样求? 教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗? 生:方案一:根据定义 方案二:根据等积法 方案三: ...... 设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。 师生一起进行比较,锁定方案二进行推证。 “师生共作”体现新型师生观,且//时,又怎样求这两线的距离? 生:计算得线线距离公式 师:板书点到直线的距离公式,两平行线间距离公式 “没有新知识,新知识均是旧知识的组合”,创设此问可发挥学生的创造性,增加学生的成就感。 反思小结 经验共享 (六 分 钟) 师: 通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问? 生: 讨论,回答。 对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。 共同进步,各取所长。 练习 (五 分 钟) P53 练习 1, 2,3 熟练的用公式来求点线距离和线线距离。 再度延伸 (一 分 钟) 探索其他推导方法 “带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。 4. 教学评价 学生完成反思性学习报告,书写要求: (1) 整理知识结构 (2) 总结所学到的基本知识,技能和数学思想方法 (3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因 (4) 谈谈你对老师教法的建议和要求。 作用: (1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。 (2) 报告的写作本身就是一种创造性活动。 (3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。 5. 板书设计 (略) 6. 教学的反思总结 心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。 各位老师: 大家好!我叫张西元。我说课的题目是《系统抽样》,内容选自于苏教版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等五大方面来阐述我对这节课的分析和设计: 一、教材分析 1.教材所处的地位和作用 学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,它也是“统计学”的重要组成部分,通过对系统抽样的学习,更加突出统计在日常生活中的应用,体现它在中学数学中的地位。 2 教学的重点和难点 重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。难点:当 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。 二、教学目标分析 1.知识与技能目标: (1)正确理解系统抽样的概念; (2)掌握系统抽样的一般步骤; (3)正确理解系统抽样与简单随机抽样的关系; 2、过程与方法目标: 通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法高考资源 3、情感态度与价值观目标: 通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系 三、教学方法与手段分析 1.教学方法:为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学。 2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。 四、教学过程分析 (一)新课引入 1、复习提问: (1)什么是简单随机抽样?有哪两种方法? (2)抽签法与随机数表法的一般步骤是什么? (3)简单随机抽样应注意哪两个原则? (4)什么样的总体适合简单随机抽样?为什么? [设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础 2、实例探究 实例:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的.方法? 当总体数量较多时,应当如何抽取?结合具体事例探究问题,设计你的抽取样本的方法。抽取的样本公平性与代表性如何?学生自主探究后小组讨论回答。 [设计意图]通过设置问题情境,让学生参与问题解决的全过程,引导学生探究发现新知识新方法,完成从总体中抽取样本,并发现“等距抽样”的特性,从而形成感性的系统抽样的概念与方法。这样做既充分体现学生的主体地位和教师的主导作用,同时也较好地贯彻新课程所倡导“自主探究、合作交流”的学习方式。 (二)新课讲授 1、系统抽样的概念方法步骤 (学生阅读课本上的内容,教师引导学生总结归纳得出“系统抽样”的概念,并点明课题) [设计意图]经历实例探究过程,学生对系统抽样的概念方法步骤应有大致了解,辅以教师引导,从具体到一般,本节新课题的学习便水到渠成。 2、典型例题精析 例1、某校高中三年级的300名学生已经编号为1,2,……,300,为了了解学生的学习情况,要按10%的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程。 (教师题意分析,引导学生应用新知识新方法,学生分析思考,探究解题,小组讨论后口述解题过程) [设计意图]实例巩固,在得出新课的有关知识之后,再次让学生在解决实际问题的过程中,进一步理解掌握系统抽样的方法步骤,达到学以致用的技能,培养“学数学,用数学”的意识。 例2、某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。 [设计意图]当 不是整数时,设置本题让学生尝试回答,并形成一般思路与方法。 (三) 练习巩固 1、将全班学生按男女生交替排成一路纵队,用掷骰的方法在前6名学生中任选一名,用 表示该名学生在队列中的序号,将队列中序号为 ,(k=1,2,3,…)的学生抽出作为样本,这种抽样方法叫做系统抽样吗?为什么?其样本的代表性与公平性如何? 2、若按体重大小次序排成一路纵队呢? [设计意图]配合课本第60页“边空”问题:“请将这种抽样方法与简单随机抽样做一个比较,你认为系统抽样能提高样本的代表性吗?为什么?”,帮助理解个体编号具有某种周期性时,样本代表性较差的特点。同时分析系统抽样的优点与缺点。 (四)回顾小结 1、师生共同回顾系统抽样的概念方法与步骤 2、与简单随机抽样比较,系统抽样适合怎样的总体情况? 3、当 不是整数时,一般步骤是什么?此时样本的公平性与代表性如何? (五)布置作业 课本第61页的练习第1,2,3题 设计意图:课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。 各位老师: 大家好! 我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计: 一、教材分析 1.教材所处的地位和作用 古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。 2.教学的重点和难点 重点:理解古典概型及其概率计算公式。 难点:古典概型的判断及把一些实际问题转化成古典概型。 二、教学目标分析 1.知识与技能目标 (1)通过试验理解基本事件的概念和特点 (2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。 2、过程与方法: 经历公式的推导过程,体验由特殊到一般的数学思想方法。 3、情感态度与价值观: (1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。 (2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。 三、教法与学法分析 1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。 2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。 ㈠创设情景、引入新课 在课前,教师布置任务,以小组为单位,完成下面两个模拟试验: 试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总; 试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。 在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。 1.用模拟试验的方法来求某一随机事件的概率好不好?为什么? 不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。 2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?] 「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的'提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。 ㈡思考交流、形成概念 学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。 [基本事件有如下的两个特点: (1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和.] 「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。 例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件? 先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。 「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点 观察对比,发现两个模拟试验和例1的共同特点: 让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。 [经概括总结后得到: (1)试验中所有可能出现的基本事件只有有限个;(有限性) (2)每个基本事件出现的可能性相等。(等可能性) 我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。 「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。 ㈢观察分析、推导方程 问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算? 教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式: 「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。 提问: (1)在例1的实验中,出现字母"d"的概率是多少? (2)在使用古典概型的概率公式时,应该注意什么? 「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。 ㈣例题分析、推广应用 例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少? 学生先思考再回答,教师对学生没有注意到的关键点加以说明。 「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。 例3同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少? 先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。 「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。 ㈤探究思想、巩固深化 问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗? 要求学生观察对比两种结果,找出问题产生的原因。 「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。 ㈥总结概括、加深理解 1.基本事件的特点 2.古典概型的特点 3.古典概型的概率计算公式 学生小结归纳,不足的地方老师补充说明。 「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。 ㈦布置作业 课本练习1、2、3 「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。 各位评委:下午好! 我叫 ,来自 。今天我说课的课题《 》(第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。 一、教材分析 (一)教材的地位和作用 《 》是人教版出版社 第 册、第 单元的内容。《》既是 在知识上的延伸和发展,又是本章 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。 概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。 (二)、学情分析 通过前一阶段的教学,学生对 的认识已有了一定的认知结构,主要体现在三个层面: 知识层面:学生在已初步掌握了 。 能力层面:学生在初步已经掌握了用 初步具备了 思想。 情感层面:学生对数学新内容的`学习有相当的兴趣和积极性。但探究问题的能力以及合作交流等方面发展不够均衡. (三)教学课时 本节内容分 课时学习。(本课时,品味数学中的和谐美,体验成功的乐趣。) 二、教学目标分析 根据教学大纲的要求、本节教材的特点和高中生的认知规律,本节课的教学目标确定为: 知识与技能: 过程与方法: 情感态度: (例如:创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。在自主探究与讨论交流过程中,培养学生的合作意识和创新精神. 通过 对立统一关系的认识,对学生进行辨证唯物主义教育) 在探索过程中,培养独立获取数学知识的能力。在解决问题的过程中,让学生感受到成功的喜悦,树立学好数学的信心。在解答数学问题时,让学生养成理性思维的品质。 三、重难点分析 重点确定为: 要把握这个重点。关键在于理解 其本质就是 本节课的难点确定为: 要突破这个难点,让学生归纳 作铺垫。 四、教法与学法分析 (一)学法指导 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。 (二)教法分析 本节课设计的指导思想是:现代认知心理学--建构主义学习理论。 建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。 本节课采用“诱思探究教学法”( 陕西师范大学教育研究所张熊飞教授)。在课堂教学中凸显学生主体地位的重要性,不再是以教师为中心去设计教学过程,而是以学生为主体去组织教学进程。把课堂真正地交给了学生,学生主体地位得以实现。 五、说教学过程 本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。 (一)创设情景…………………. (二)比旧悟新…………………. (三)归纳提炼………………… (四)应用新知,熟练掌握 ………………… (五)总结………………… (六)作业布置………………… (七)板书设计………………… 以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢 著名美国数学家和数学教育家波利亚 包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。精髓是启发你去联想。联想什么?怎样联想? 一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 二.目标分析: 教学重点.难点 重点:集合的含义与表示方法. 难点:表示法的恰当选择. 教学目标 l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; 2.过程与方法 (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3.情感.态度与价值观 使学生感受到学习集合的必要性,增强学习的积极性. 三.教法分析 1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标. 2.教学手段:在教学中使用投影仪来辅助教学. 四.过程分析 (一)创设情景,揭示课题 1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。 (2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征? 引导学生互相交流.与此同时,教师对学生的活动给予评价. 2.活动:(1)列举生活中的集合的例子; (2)分析、概括各实例的共同特征 由此引出这节要学的内容。 设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫 (二)研探新知,建构概念 1.教师利用多媒体设备向学生投影出下面7个实例: (1)1-20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形; (5)海南省在xxxx年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点; (7)国兴中学xxxx年9月入学的高一学生的全体. 2.教师组织学生分组讨论:这7个实例的共同特征是什么? 3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义. 一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素. 4.教师指出:集合常用大写字母A,B,c,D,...表示,元素常用小写字母...表示. 设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神 (三)质疑答辩,发展思维 1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等. 2.教师组织引导学生思考以下问题: 判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流. 让学生充分发表自己的建解. 3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价. 4.教师提出问题,让学生思考 (1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.[来源:Z,xx,k.com] 如果是集合A的元素,就说属于集合A,记作. 如果不是集合A的元素,就说不属于集合A,记作. (2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示. (3)让学生完成教材第6页练习第1题. 5.教师引导学生回忆数集扩充过程,然后阅读教材中的.相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题. 6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题: (1)要表示一个集合共有几种方式? (2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么? (3)如何根据问题选择适当的集合表示法? 使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。 设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。 (四)巩固深化,反馈矫正 教师投影学习: (1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合 (3)试选择适当的方法表示下列集合:教材第6页练习第2题. 设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象 (五)归纳小结,布置作业[来源:Zxxk.com] 小结:在师生互动中,让学生了解或体会下例问题: 1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义? 3.选择集合的表示法时应注意些什么? 设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。 作业: 1.课后书面作业:第13页习题1.1A组第4题. 2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材. 五.板书分析 PPT 集合的含义与表示 定义例1 集合××××××× ×××××××××××××× 元素××××××× ×××××××例2 元素与集合的关系××××××× ×××××××××××××× 作业×××××××××××××× 说课目标 (1)知识目标:掌握抛物线的定义,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。 (2)能力目标:通过对抛物线概念和标准方程的学习,培养学生分析和概括的能力,提高建立坐标系的能力,由圆锥曲线的统一定义,形成学生对事物运动变化、对立、统一的辨证唯物主义观点。 (3)德育目标:通过抛物线概念和标准方程的学习,培养学生勇于探索、严密细致的科学态度,通过提问、讨论、思考等教学活动,调动学生积极参与教学,培养良好的学习习惯。 教学重点:(1)抛物线的定义及焦点、准线; (2)利用坐标法求出抛物线的四种标准方程; (3)会根据抛物线的焦点坐标,准线方程求抛物线的标准方程。 教学难点:(1)抛物线的四种图形及标准方程的区分; (2)抛物线定义及焦点、准线等知识的灵活运用。 说课方法:启发引导法(通过椭圆与双曲线第二定义引出抛物线)。 依据建构主义教学原理,通过类比、归纳把新知识化归到原有的认知结构中去(二次函数与抛物线方程的对比,移图与建立适当建立坐标系的方法的归纳)。 利用多媒体教学 说课过程: 一、课题引入 利用学生已有知识提问学生:1、椭圆的第二种定义:到定点与到定直线的距离的比是小于1的常数的点的轨迹是椭圆。(用课件演示) 2、双曲线的第二种定义:到定点与到定直线的距离的比是大于1的常数的点的轨迹是双曲线。(用课件演示) 由此引出:到定点的距离和到定直线的距离的比是等于1的常数的点的轨迹 是什么? (以问题为出发点,创设情景,提高学生求知欲) 教师用直尺、三角板和细绳演示,学生观察所得曲线。 从而引出本节课的学习内容。 二、讲授新课 1.对抛物线的初步认识 物理中抛物线的运动轨迹;数学中二次函数的图象;生活中抛物线的实例(图片显示)等。 2.抛物线的定义 3.抛物线标准方程的推导:①学生回顾求曲线方程的步骤(建系、设点、列方程); ②若焦点F和准线的距离为()这样建立坐标系?由学生思考:可能出现的结果: 四、课堂小结 1、本节课的内容:抛物线的定义,焦点、准线的意义及四种标准方程; 2、理解参数的几何意义(焦准距) 3、利用坐标法求曲线方程是坐标系的适当选取。 课后作业:119页习题8.52,4 设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的.目标性。 抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。 利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数及其几何意义,焦点坐标和准线方程与的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。 当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。 【高中数学说课稿】相关文章: 高中数学说课稿07-09 高中数学《集合》说课稿07-22 关于高中数学说课稿11-26 高中数学《向量》说课稿范文02-15 高中数学说课稿范文11-02 高中数学说课稿三篇01-09 高中数学说课稿4篇01-09 高中数学说课稿(15篇)06-14 高中数学说课稿六篇01-23 高中数学说课稿9篇01-28高中数学说课稿 篇3
高中数学说课稿 篇4
高中数学说课稿 篇5
高中数学说课稿 篇6
高中数学说课稿 篇7
高中数学说课稿 篇8