当前位置:育文网>教学文档>说课稿> 高中数学说课稿

高中数学说课稿

时间:2022-01-13 07:34:43 说课稿 我要投稿

高中数学说课稿范文集锦5篇

  作为一位不辞辛劳的人民教师,就有可能用到说课稿,说课稿有助于提高教师的语言表达能力。那么优秀的说课稿是什么样的呢?以下是小编为大家收集的高中数学说课稿5篇,希望对大家有所帮助。

高中数学说课稿范文集锦5篇

高中数学说课稿 篇1

  函数的单调性

  今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。

  一、说教材

  1、教材的地位和作用

  本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。

  2、学情分析

  本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。

  教学目标分析

  基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

  1.知识与技能(1)理解函数的单调性和单调函数的意义;

  (2)会判断和证明简单函数的单调性。

  2.过程与方法

  (1)培养从概念出发,进一步研究性质的意识及能力;

  (2)体会数形结合、分类讨论的数学思想。

  3.情感态度与价值观

  由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。

  三、教学重难点分析

  通过以上对教材和学生的分析以及教学目标,我将本节课的重难点

  重点:

  函数单调性的概念,判断和证明简单函数的单调性。

  难点:

  1.函数单调性概念的认知

  (1)自然语言到符号语言的转化;

  (2)常量到变量的转化。

  2.应用定义证明单调性的代数推理论证。

  四、教法与学法分析

  1、教法分析

  基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

  2、学法分析

  新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。

  五、教学过程

  为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。

  (一)知识导入

  温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。

  (二)讲授新课

  1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?

  通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。

  2.观察函数y=x2随自变量x变化的情况,设置启发式问题:

  (1)在y轴的右侧部分图象具有什么特点?

  (2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1

  (3)如何用数学符号语言来描述这个规律?

  教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。

  (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?

  类似地分析图象在y轴的左侧部分。

  通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1

  仿照单调增函数定义,由学生说出单调减函数的定义。

  教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。

  (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的.增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)

  (三)巩固练习

  1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x

  练习2:练习2:判断下列说法是否正确

  ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。

  ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。

  1③已知函数y=,因为f(-1)

  1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x

  上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。

  (四)归纳总结

  我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。

  (五)布置作业

  必做题:习题2-3A组第2,4,5题。

  选做题:习题2-3B组第2题。

  新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。

  篇二:高一数学必修一说课稿

  二次函数的图像说课稿

  今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

  一、教材分析

  教材的地位和作用

  本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。

  学情分析

  本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

  二、教学目标分析

  基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

  1.知识与技能

  理解二次函数中参数a,b,c,h,k对其图像的影响;

  2.过程与方法

  通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。

  3.情感态度与价值观

  通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。

  三、教学重难点分析

  通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下

  重点:

  二次函数图像的平移变换规律及应用。

  难点:

  探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。

  四、教法与学法分析

  1、教法分析

  基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

  2、学法分析

  新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的.方法进行学习。

  五、教学过程

  为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。

  (1)知识导入

  温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。

  (2)讲授新课

  例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像

  让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。

  前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解,

  (3)巩固练习

  我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。

  (4)归纳总结

  我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。

  (5)布置作业

  略

高中数学说课稿 篇2

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1、能判断一些简单函数的奇偶性。

  2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的`归纳概括能力。

  【情感、态度与价值观】

  通过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上达到了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、形成概念

  在这一环节中共设计了2个探究活动。

  探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三) 学生探索、领会定义

  探究3 下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1判断下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。

  例1设计意图是归纳出判断奇偶性的步骤:

  (1) 先求定义域,看是否关于原点对称;

  (2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。

  例2 判断下列函数的奇偶性:

  例3 判断下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?

  例4(1)判断函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。

高中数学说课稿 篇3

  尊敬的各位专家、评委:

  下午好!

  我的抽签序号是____,今天我说课的课题是《_______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  (一)地位与作用

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  (二)学情分析

  (1)学生已熟练掌握_________________。

  (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

  (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

  (4) 学生层次参次不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的.主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

  (一)教学目标

  (1)知识与技能

  使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

  (2)过程与方法

  引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  (二)重点难点

  本节课的教学重点是________________________,教学难点是_____________________。

  三、教法、学法分析

  (一)教法

  基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

  (二)学法

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

  四、教学过程分析

  (一)教学过程设计

  教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

  (1)创设情境,提出问题。

  新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  (2)引导探究,建构概念。

  数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.

  (3)自我尝试,初步应用。

  有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

  (4)当堂训练,巩固深化。

  通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

  (5)小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

  (二)作业设计

  作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本

  节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

  我设计了以下作业:

  (1)必做题

  (2)选做题

  (三)板书设计

  板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!

高中数学说课稿 篇4

  各位老师,大家好!

  我是08数学本科(2)班的xx,我今天说课的题目是集合的含义与表示.下面我先对教材进行分析.

  一、教材分析

  集合的含义与表示是选自高中新课标A版教材必修1第一章第一节内容。在此之前,学生已经接触过集合的一些相关概念,如自然数的集合、有理数的集合.集合是一个基础性概念,是数学以至所有科学的基础,应用广泛. 集合是高考的对象,在高考中以选择题或填空题的形式出现,在高考中具有不可忽视的地位.本节内容能够培养学生的探索精神和数学素养.

  二、教学目标

  根据上述对教材的分析,我确定本节课的教学目标为 1. 知识与技能目标 理解集合的含义,集合的元素的特征,元素与集合的关系. 掌握集合的表示方法. 了解常用的数集.培养学生的抽象思维能力、分析能力、判断能力.

  2. 过程与方法目标

  应用自然语言与集合语言描述不同的具体问题,与学生一道归纳出集合的含义. 掌握从具体到抽象,从特殊到一般的研究方法.

  3. 情感态度价值观目标

  使得学生感受数学的简洁美与和谐统一美. 培养学生正确的、高尚的、唯物的价值观.培养学生独立思考、敢于创新、勇于探索的科学精神,激发同学们学习数学的兴趣. 三、重点和难点

  重点:根据上述对教材的分析,确定的教学目标,我确定本节课的教学重点为:集合的含义,集合的表示方法.

  难点:考虑到学生已有的知识基础与认知能力,我认为教学难点是集合的表示方法. 关键:学好本节课的关键是理解集合的含义,掌握集合的表示方法. 四、教学方法 1.学情分析

  (1)生理特点:高中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步走向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.

  (2)心理特点:高中学生虽有好奇,好表现的因素,更有知道原理、明白方法的理性愿望,希望平等交流研讨,厌烦空洞的说教.

  (3)认知障碍:有的学生遗忘了学过的知识,有的学生想象能力与归纳能力较差. 2.教法学法

  根据上面的分析,从高中生的心理特点和认知水平出发,结合学生的实际情况与认知障碍,按照突出重点,突破难点,本节课采用学生广泛参与,师生共同探讨的启发式教学法. 五、教学过程(用描述性语言,不要具体化!)

  根据以上分析,我对本节课的教学过程作如下安排:

  1.引入课题

  先引导学生回顾自然数的集合,有理数的集合,再提出问题:集合的含义是什么呢? 2.新课讲解

  (1)分析自然数的集合,有理数的集合,不等式的解集,归纳出它们的共同特征:都是由一些确定的、互不相同的对象组成的整体.

  (2)根据上面的分析与讨论,以及归纳出的共同特征,讲解集合的含义,元素与集合的关系,一些常见的数集.

  (3)为了化解教学难点,我将结合具体的例子,讲解列举法与描述法.

  (4)为了加强学生对集合的含义的理解,我将与学生一起归纳出集合的元素的特征. (5)为了提高学生解决实际问题的能力,我将讲解三个不同题型、不同难度的例题. 3.课堂练习

  为了使得学生掌握等差数列的定义与通项公式,提高解题技能,我将在课堂上布置3道不同类型、不同难度的练习题.

  4.归纳小结

  完成以上的教学内容后,我将组织学生对本节课的内容做一个总结,强调重点. 5.布置作业

  为了巩固所学知识,激发学生的求知欲,我将布置3道不同类型、不同难度的作业题. 六、板书设计

  结合中学黑板的特点,我将如下板书本节教学内容: 集合的含义与表示 实例 1. 2. 3. 集合的含义 常见数集 元素与集合的`关系 集合的表示方法 集合的元素的特征 例1 例2 例3 练习 作业 各位老师,以上只是我的一种预设方案,但课堂千变万化,我将根据实际情况灵活掌握,随机发挥.本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢! 1.1.2集合间的基本关系

  数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.

  一 、教学内容分析

  集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学

  习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.

  本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.

  本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。

  二、学情分析

  本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。

  根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下:

  三、教学目标: 知识与技能目标:

  (1)理解集合之间包含和相等的含义; (2)能识别给定集合的子集;

  (3)能使用Venn图表达集合之间的包含关系 过程与方法目标:

  (1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系;

  (2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力;

  情感、态度、价值观目标:

  (1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义;

  (2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。

  四、本节课教学的重、难点:

  重点:(1)帮助学生由具体到抽象地认识集合与集合之间的关系——子集; (2)如何确定集合之间的关系; 难点:集合关系与其特征性质之间的关系 五、教学过程设计

  1.新课的引入——设置问题情境,激发学习兴趣

  我们的教学方式,要服务于学生的学习方式。那我们来思考一下,在何种情况下,学生学得最好?我想,当学生感兴趣时;当学生智力遭遇到挑战时;当学生能自主地参与探索和创新时;当学生能够学以致用时;当学生得到鼓励与信任时,他们学得最好。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,这样才能让学生体验到成就感,保持积极的兴奋状态。而集合的语言对于学生来说是陌生的,虽然比较容易理解,但是由于概念多,符号多,学生容易产生厌烦心理,如何让学生长时间兴趣盎然地投入到集合关系的学习中呢?我在整个教学过程中层层设问,不断地向学生提出挑战,以激发学生的学习兴趣。在引入的环节,我设计了下面的问题情境1:元素与集合有“属于”、“不属于”的关系;数与数之间有“相等”、“不相等”的关系;那么集合与集合之间有什么样的关系呢?问题的抛出犹如一石激起千层浪,在这儿,答案并不重要,重要的是学生迫切寻求答案的愿望,激发学生的求知欲。在学生讨论的基础上提出这一节课我们来共同探讨集合之间的基本关系。(板书课题)

  2.概念的形成——从特殊到一般、从具体到抽象,从已知到未知 问题情境1的探究:

  具体实例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四边形} (3)A={x| x>2}, B={x| x>1};

  此环节设置了三个具体实例,包含了有限集、无限集、数集(包括不等式)、图形的集合。第一个例子为有限集数集,最为简单直观,对学生初步认识子集,理解子集的概念很有帮助;第二个例子是图形集合且是无限集,需要通过探究图形的性质之间的关系找出集合间的关系;第三个例子是无限数集,基于学生初中阶段已经学习了用数轴表示不等式的解集,启发学生可以通过数形结合的方式来研究集合之间的关系,从而引出Venn图。对第一个例子,借助多媒体演示动画,帮助学生体会“任意”性。使学生在经历直观感知、观察发现的基础上建构子集的概念,并且我在教学的过程中特别注重让学生说,借此来学习运用集合语言进行交流,对于学生的创新意识和创新结果我都给予积极的评价。

  3、概念的剖析

  (1)A中的元素x与集合B的关系决定了集合A与集合B之间的关系,

  (2)符号的表示,Venn图的引入及其用Venn图表示集合的方法。

  这里引入了许多新的符号,对初学者来说容易混淆,是一个易错点,因此我在这里设置了一个填空小练习:

  0 {0}, {正方形} {矩形},三角形 {等边三角形} {梯形} {平行四边形},{x|-1

  并引导学生类比数与数之间的“≤”“≥”符号来记忆“?”“?”符号。

  4、概念的深化——集合的相等与真子集

  问题情境2:如果集合A是集合B的子集,那么对于任意的x?A,有x?B;那么对于集合B中的任何一个元素,它与集合A之间又可能是什么关系呢?

高中数学说课稿 篇5

  一、说教材

  (1)说教材的内容和地位

  本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

  (2)说教学目标

  根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

  1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。

  2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。

  3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

  (3)说教学重点和难点

  依据课程标准和学生实际,我确定本课的教学重点为

  教学重点:集合的基本概念及元素特征。

  教学难点:掌握集合元素的'三个特征,体会元素与集合的属于关系。

  二、说教法和学法

  接下来则是说教法、学法

  教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

  总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

  三、说教学过程

  接着我来说一下最重要的部分,本节课的教学过程:

  这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。

  第一环节:创设问题情境,引入目标

  课堂开始我将提出两个问题:

  问题1:班级有20名男生,16名女生,问班级一共多少人?

  问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

  这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

  待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

  安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

  很自然地进入到第二环节:自主探究

  让学生阅读教材,并思考下列问题:

  (1)有那些概念?

  (2)有那些符号?

  (3)集合中元素的特性是什么?

  安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

  让学生自主探究之后将进入第三环节:讨论辨析

  小组合作探究(1)

  让学生观察下列实例

  (1)1~20以内的所有质数;

  (2)所有的正方形;

  (3)到直线 的距离等于定长 的所有的点;

  (4)方程 的所有实数根;

  通过以上实例,辨析概念:

  (1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。

  (2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

  小组合作探究(2)——集合元素的特征

  问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

  问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?

  集合中的元素必须是确定的

  问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

  集合中的元素是不重复出现的

  问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的

  我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。

  小组合作探究(3)——元素与集合的关系

  问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

  问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?

  a属于集合A,记作a∈A

  问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?

  a不属于集合A,记作aA

  小组合作探究(4)——常用数集及其表示方法

  问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

  自然数集(非负整数集):记作 N

  正整数集:

  整数集:记作 Z

  有理数集:记作 Q 实数集:记作 R

  设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

  第四环节:理论迁移 变式训练

  1.下列指定的对象,能构成一个集合的是

  ① 很小的数

  ② 不超过30的非负实数

  ③ 直角坐标平面内横坐标与纵坐标相等的点

  ④ π的近似值

  ⑤ 所有无理数

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五环节:课堂小结,自我评价

  1.这节课学习的主要内容是什么?

  2.这节课主要解释了什么数学思想?

  设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

  第六环节:作业布置,反馈矫正

  1.必做题 课本习题1.1—1、2、3.

  2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。

  设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

  四、板书设计

  好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

  集 合

  1.集合的概念

  2.集合元素的特征

  (学生板演)

  3.常见集合的表示

  4.范例研究

【高中数学说课稿】相关文章:

高中数学《集合》说课稿07-22

高中数学说课稿07-09

关于高中数学说课稿11-26

高中数学《向量》说课稿范文02-15

高中数学说课稿范文11-02

高中数学说课稿7篇02-12

高中数学说课稿 15篇11-14

高中数学说课稿九篇02-13

高中数学《古典概型》说课稿02-16

【精选】高中数学说课稿4篇02-03