实用的数学说课稿合集10篇
作为一位杰出的教职工,常常需要准备说课稿,编写说课稿是提高业务素质的有效途径。怎么样才能写出优秀的说课稿呢?下面是小编帮大家整理的数学说课稿10篇,欢迎大家借鉴与参考,希望对大家有所帮助。

数学说课稿 篇1
说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。
一、说教材
1、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其 他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
2、教学目标的确定及依据。
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。
(2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。
(3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。
(4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键
重点:对数函数的概念、图象和性质;
难点:利用指数函数的图象和性质得到对数函数的图象和性质;
关键:抓住对数函数是指数函数的反函数这一要领。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用“从特殊到一般”、“从具体到抽象”的方法。
(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
(4)多媒体演示法。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、说教学程序
1、复习导入
(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
2、认定目标(出示教学目标)
3、导学达标
按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。 把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。
因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。
教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的'图象。
方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x= , , ,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.
方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。
这样可以充分调动学生自主学习的积极性。
(3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。
作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)
设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。
4、巩固达标(见课件)
这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。
5、反馈练习(见课件)
习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。
6、归纳总结(见课件)
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
7、课外作业 :(1)完成P178 A组1、2、3题
(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?
五、说板书
板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。
数学说课稿 篇2
一、说教材分析
《图书馆》是北师大版数学实验教材第二册第五单元中的第一节内容,在此之前,学生已经学习了运用“凑十法”进行一位数加一位数的口算进位加法,并且在本学期第三单元学会了运用列竖式的方法计算不进位的两位数加法。在本节课中,要让学生在独立思考的基础上,经历与他人交流各自算法的过程,探索并掌握两位数加一位数进位加法的计算方法,并能正确地计算。学生第一次接触到列竖式的方法计算进位加法,了解 “满十进一”的计算规律,这对于他们以后学习笔算加法非常重要。因此对竖式的写法,教师要进行必要的指导。基于这些理念,本课设计了以下教学目标:
教学目标:
1、学会正确计算两位数加一位数的进位加法,在竖式计算中,知道“满十进一”的运算规律。。
2、探索适合于自己的计算方法,体会算法的多样化,培养学生思维的灵活性。
3、通过引导学生自主探索、交流,培养学生综合的学习能力。提高学生探索问题的能力,鼓励学生学会与他人积极合作学习的良好学习品质。
4、使学生体会数学与现实生活的密切联系。
教学重难点:
教学重点是运用“满十进一”的规律正确计算两位数加一位数的进位加法。教学难点是培养学生表达信息、解决问题的能力。
二、说学生的认知分析
一年级学生年龄小、思维活跃、表现欲强,有一定的独立思考、合作交流和解决问题的能力。学生已有两位数加减一位数(不进位、不退位)的知识作基础,对竖式有简单的了解,在前面的学习中已有过练习。在数学学习中,学生对计算有着浓厚的兴趣,这些都是本节课学生学习的前提条件。
三、说教法与学法分析
根据一年级学生的年龄、心理、认知规律特点,我采用了灵活多样、新颖有趣的方法手段,以吸引学生的注意力,提高课堂教学效率,这也是我们在“激趣导学”课题研究中大力倡导的。因此本课我采用愉快式教学方法为主,运用大量的活动、讨论、比赛等形式引导学生学习,注重运用引导法、观察法、讨论法等方法进行教学,充分调动学生学习的积极性,让学生在问题情境中主动探究算法,让学生真正成为学习的主人、课堂的主人。根据小学一年级儿童的特点以及本课的特点,把本节课学生的学法定格为:自主探究法、讨论学习法等。
四、说教学过程分析
(1)创设情境、导入新课。
在开课之初,我利用小学生好胜心强的心理特点设计了让学生过二关才能到图书馆去看看的情境,使得学生都想当勇敢的闯关者,激发了学生挑战知识的欲望,并为学习新知作好了铺垫,使课堂有了良好的'开端。
(2)自主学习、探究新知。
在这一部分内容中,首先我利用“图书馆”这一情境图进行新旧知识链接,可以体现数学来源于生活实际这一原则。然后,在探讨算法中,我设置了三个步骤:第一步是自己独立思考算法,给学生充分的自主探究的空间和时间,保证每个学生都能感受探索的乐趣,品尝成功的快乐。第二步是在组内交流调动学生的学习积极性,提高学生的主动参与意识;给学生充分探索、思考、动手、动口、交流的时间和空间,开阔学生的思路,培养学生的合作精神,第三步让学生在全班交流,培养学生表达、交流的能力。在交流中,我特别注重了列竖式的计算方法,学生已经学会列竖式计算两位数不进位加法,有的学生甚至已经有列竖式计算进位加法的知识储备,所以当学生提出可以列竖式计算时,我就先让学生试着列竖式计算,自己讲解计算方法,然后教师再强调“满十进一”的计算法则。
(3)畅谈收获、总结学法。
在小结中,不仅让学生谈自己的收获,而且还评价自己这节课的表现,这样做不仅归纳了本节课的知识要点,提高学生总结归纳知识的能力,更重要的是让学生对学习充满了自信心,找准了自身的闪光点和不足之处,学生相互学习、取长补短、共同提高。
(4)联系实际、拓展延伸。
本节课紧紧围绕本次研究主题“激趣、导学”,从学生熟悉的生活情境中引出学习内容,引导学生自主探究算法,培养了学生的各种能力,激发了学生的学习兴趣。使学生体会数学知识来源于生活实际,也可以用数学知识解决实际问题。
数学说课稿 篇3
我说课的题目是《概率的意义》,它是人教版九年级上册第二十五章概率初步第一节的内容。下面我从将从背景分析、目标分析、过程分析、教法分析、评价分析五个方面对本节课的设计进行说明。
一、背景分析
1、教材分析:
按照教学内容交叉编排、螺旋上升的方式,本章是在统计的基础上展开对概率的研究的,而本节又是从频率的角度来解释概率,其核心内容是介绍实验概率的意义,即当试验次数较大时,频率渐趋稳定的那个常数就叫概率。本节课的学习,将为后面学习理论概率的意义和用列举法求概率打下基础。因此,我认为概率的正确理解和它在实际中的应用是本次教学的重点。
2、学情分析:
1)、学生初学概率,面对概率意义的描述,他们会感到困惑:概率是什么,是否就是频率?因此辩证理解频率和概率的关系是教学中的一大难点。
2)、由于本节课内容非常贴近生活,因此丰富的问题情境会激发学生浓厚的兴趣,但学生过去的生活经验会对这节课的学习带来障碍,因此正确理解每次试验结果的随机性与大量随机试验结果的规律性是教学中的又一大难点。
二、目标分析
根据背景分析和学生的认知特点,我将本节课的教学目标设置为:
知识技能:
1)理解概率的含义并能通过大量重复试验确定概率。
2)能用概率知识正确理解和解释现实生活中与概率相关的问题。
过程方法:
1)经历用试验的方法获得概率的过程,培养学生的合作交流意识和动手能力。
2)在由“试验形成概率的定义”的过程中培养学生分析问题能力和抽象思维能力。
情感态度与价值观:
1)利用生活素材和数学史上著名例子,激发学生学习数学的热情和兴趣。
2)结合随机试验的随机性和规律性,让学生了解偶然性寓于必然性之中的辩证唯物主义思想。
三、过程分析
为达到上述教学目标,教学中,我设置五个教学环节(见流程图)。
活动1:复习巩固引入新知
活动2:创设情境实验探究
活动3:形成概念深化认识
活动4:变式训练 拓展提高
活动5:小结归纳课堂延伸
下面我重点谈谈整个教学过程:
1、复习巩固 引入新知
多媒体展示图片和问题:下列事件中,哪些是随机事件,哪些是必然发生的,哪些是不可能发生的。通过生动的实物图片和生活情境,一方面突出复习随机事件的判断,另一方面,可引出本节课的中心问题:随机事件发生的可能性有多大呢?如(遇上红灯、生个儿子、天气晴好)。自然地把学生引入到随机事件的概率的探究过程中来。
2、创设情境 实验探究
要研究随机事件的概率,抛掷硬币的试验既典型又方便,但如果教师简单直叙说要抛掷硬币,难免让学生觉得被老师牵着走,兴趣不大。在这里,我借助于学生具有的课外知识——对世界杯的了解,让学生先看到世界杯的'冠军奖杯,自然想到今年德国世界杯足球比赛,再给一幅图,让学生猜想到这是在由抛掷硬币决定哪个队先开球。然后,顺势提问:这种决定方法对比赛双方公平吗?为什么?
这个问题,问到了学生的心坎上,直觉判断:公平。可是,为什么呢?学生暂时答不上来。怎么办?能否用试验来验证?学生颇感怀疑。
无独有偶,历史上有几位著名的数学家都做过这样的试验,我们今天抛掷的结果会与他们一致吗?
第一步:分组试验
将全班分十组,要求每组掷一枚硬币60次,并把试验数据记录在表格中。
分析试验结果:
提问①:各小组正面朝上的频率一样吗?是否为0.5?
提问②:如果把全班十组结果进行累计,正面朝上的频率会有什么规律?
设计意图:
通过提问1:引导学生认识到随机事件的发生具有偶然性。
通过提问2:引导学生发现在次数逐渐增大的情况下,频率数值渐趋稳定。
第二步:比较试验
试验者抛掷次数(n)正面向上的
次数(频数m)频率()
棣莫弗204810610.5181
布丰404020480.5069
费勒1000049790.4979
皮尔逊1200060190.5016
皮尔逊24000120120.5005
这个表让学生既了解到一些数学家的故事、感受到他们为追求真理而不惜时间的精神(比如:皮尔逊投了24000次,可想而知需要大量时间),又惊喜的看到:几位数学家的试验结果跟我们今天的试验结果大致相同----大量试验次数下频率数值稳定于0.5。学生很有成就感,老师趁此鼓励:今天,你们就可以做出数学家做的事,那么明天,你们就是未来的数学家。
第三步:模拟试验
输入次数,电脑很快地抛掷硬币,得到正面朝上的频数和频率,并同时画出了频率随试验次数增大的曲线图。
学生一方面惊叹于信息技术为数学研究带来的方便(像这样的抛掷硬币,省时省力、直观形象),另一方面认识到:尽管是随机试验,尽管每一次事件的发生具有偶然性,但随着试验次数的增加,正面朝上的频率曲线越来越平稳:即稳定于0.5。
以上分三步实施的试验说明:“正面向上”的频率稳定于0.5,“反面向上”的频率也稳定于0.5。由两个频率稳定到的常数相等说明两者发生的可能性相等,从而验证了猜想,判断公平的直觉是对的。
到这时,学生已经看到,大量重复试验下,任意抛掷硬币“正面朝上”这个随机事件发生的频率逐渐稳定到的常数刻画了随机事件发生的可能性的大小。
3、形成概念 深化认识
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p叫做事件A的概率,记作P(A)=p。其中m是事件A发生的频数,n是试验次数。
思考①:概率的取值范围是什么呢?
大部分学生能得出 0
思考②:定义中的“频率”和“概率”有何区别?
结合投币试验,同学知道各小组试验算出的频率不一定等于概率。区别就是:频率不一定等于概率,概率是频率趋于稳定的那个值。
你会求吗?
例:对某电视机厂生产的电视机进行抽样检测的数据如下:
抽取台数501002003005001000
优等品数4592192285478954
频 率0.900.920.960.950.960.95
1)计算表中优等品的频率(精确到0.01);
2)该厂生产的电视机优等品的概率是多少(精确到0.01)?
这个例题,是利用抽样检测这种大量重复试验,让学生先计算优等品的频率,然后观察频率稳定在哪个常数附近,从而选取这个常数作为优等品的概率。通过例题,使学生更具体地理解概率,巩固概率和频率的关系即频率不一定等于概率,比如频率有0.92、0.96,概率为0.95。突破难点1。同时也让学生看到进行大量重复试验是确定概率的一种方法。
4、变式训练 拓展提高
听两段情境对话,分组讨论对错并说明理由:
情境1):甲——我知道掷硬币时,“正面向上”的概率是0.5。
乙——噢,那我连掷硬币10次,一定会有5次正面向上。
2):甲——天气预报说明天降水概率为90%。
乙——我知道了,明天肯定会下雨,要不然就是天气预报不准。
对这两个情境,判断对与错并不难,难就难在如何准确的用概率知识理解。学生讨论时,教师深入各组,及时点拨,澄清学生可能存在的错误认识。
设计意图:情境1强调概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在。情境2突出概率从数量上刻画了一个随机事件发生的可能性大小。用这两个情境使学生正确理解大量随机试验结果的规律性和每次试验结果的随机性,突破难点2。
5、小结归纳 课堂延伸
小结归纳:
1)学生分组讨论,谈本次课收获与疑问,学生之间相互补充,相互释疑。
2)教师表扬课堂上中参与积极、表现精彩的小组和个人。
3)教师引导学生再一次理解概率的意义,揭示频率与概率的联系与区别。
课堂上的时间总是有限的,而知识的触觉是多方位的。为巩固本课知识,多角度提升能力,我设置了课堂延伸:
1)、P144 5,6题。
——进一步巩固由大量重复试验所得数据计算频率进而确定概率的方法。
2)、上网搜索并阅读有关姚明参加NBA以来罚球数据的统计,并根据你搜索到的数据,指出姚明在NBA比赛中罚球命中的概率。
——提高学生利用网络资源的意识和处理信息能力,让学生再一次感悟概率的意义和在生活中的应用。
四、方法分析
1、为了激活学生的课堂思维,体会随机现象特点,我采用情境激趣法,营造学习氛围。
2、为了让学生把对随机事件的直觉思维过渡为理性认识,我采用实验探究法,并且分三步实施:分组试验、比较试验、模拟试验,让学生更清晰地看到随着试验次数的增加,频率趋于稳定,从而更好的理解概率意义,突出重点。
3、为了突破难点——理解好频率与概率、随机性与规律性的关系,我采用小组讨论法和启发点拨法。
4、教学手段方面:利用多媒体技术,引用情境对话、制作电脑模拟试验,让学生感受信息技术为数学学习带来的方便,突出表现数学内在美。
五、评价分析
1、教学内容上:我关注教材的变化,概率统计内容在新教材里地位得到加强,但也有一个逐步渗透学习的过程。
熟悉问题情境→激发学习动机
易误解的例子→加强概念理解
著名数学史料→延续求知热情
2、教学理念上:始终贯彻以学生为中心的教育理念。关注学生的认知过程,重视学生的合作与讨论,随时发现、肯定学生的闪光点,让学生及时享受成功的愉悦。同时,结合学生暴露出的思想或方法上的问题,给予适时点拨。
3、教学预想:课堂是一个动态的过程,为使严谨的课堂更具弹性,我还做了其他准备,比如气象部门怎样计算得出降水概率,姚明参加NBA以来罚球数据的原始资料及分析等学生感兴趣的且与本节课相关的问题,以便适时的给学生拓宽知识,让学生更充分地感受到数学知识在生产、生活、娱乐、服务等方面的广泛应用。
数学说课稿 篇4
《8、9的加减法》是小学数学第一册第六单元第二小节的重点内容之一,它是在学生学习了7以内的加减法和8、9的认识的基础上安排的,是进一步学习20以内加减法计算最直接的基础。它是本单元的重点,也是本册书的重点内容之一,甚至在整个小学数学教学中都占有着非常重要的地位。
根据《教学大纲》的要求、教材特点以及学生的`实际情况制定教学目标如下:
1、通过观察、操作,使学生感受到根据一幅图能够列出两加两减四个算式。会计算8、9的加、减法。
2、培养学生的观察能力、想象能力和表达能力。
3、培养学生合作意识、探索意识、评价意识和创新精神。其中教学的重点是计算8、9的加、减法。教学难点是看图列算式(减法算式)、正确计算。
为了突出重点、突破难点,在学法上我采用了让学生通过合作交流、操作、思考、游戏等多种方式进行学习,培养学生善于归纳、合作以及创新的精神、培养学生思维的灵活性,充分体现学生的主体地位。在教法上采用一法为主、多法配合的方式,主要应用引导、探究的教学方法组织教学。通过点拨、引导使学生形成技能。在教学程序上,遵循学生的认知规律,安排了以下三个环节:
第一:导课。
在这个环节中,首先对学生提出《课堂常规》要求,以对口令、比一比的形式,让学生了解《常规》、遵守《常规》;再复习8、9的组成,为熟练口算扫清障碍。
第二:新课。
1、结合情境,引导学生充分感受“一图四式”。由于学生已经有了看一幅图列出两个算式的基础,所以列出加法算式相对容易一些,而列出减法算式则是这部分的难点。因此我采用小组合作的方式,让学生以看图说话的方式搜集相关数据,初步感知根据一幅图可以列出四道不同的算式。
2、在老师的指导下进行操作,通过摆苹果图使学生进一步巩固和理解“一图四式”。在计算过程体现加减法之间的联系。
3、帮助学生积累计算方法,为学生提供创造的空间。直接出示算式5+3、3+5、8-3、8-5计算,提问:你是怎样算出得数的?鼓励学生说出多种计算方法,使计算方法多样化(如:数数、想数的组成与分解、调换加数的位置、算减法想加法等)。
同时让学生进一步感知加减法之间的关系。
第三:反馈练习,巩固新知。
根据一年级学生的特点,在练习内容的设计上由易到难,符合学生的认知规律。如:先根据班内两组学生的人数列出两加两减四个算式;再通过找朋友的游戏进一步巩固加减计算;最后通过看卡片计算提高学生的计算能力。这样的设计同时又能够体现数学来源于生活、应用于生活。、
数学说课稿 篇5
各位领导,各位老师:
我说课的课题是《任意角的三角函数》,内容取自人教版普通高中课程标准实验教科书《数学》④(必修)第1、2、1节。
一、教材结构与内容简析
本节内容在全书及章节的地位:三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。三角函数的定义是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试类比、数形结合等数学思想方法。
二、教学重点、难点、关键
教学重点:任意角的三角函数的定义,三角函数的符号规律。
教学难点:任意角的三角函数概念的建构过程。
教学关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。
三、学情分析
学生已经掌握的内容及学生学习能力
1、学生在初中时已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2、学生的运算能力较差。
3、部分同学对数学的学习有相当的兴趣和积极性。
4、在探究问题的能力,合作交流的意识等方面发展不够均衡,必须在老师一定的指导下才能进行。
四、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
1、基础知识目标:使学生正确理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;
2、能力训练目标:通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力。
3、情感目标:通过学习,渗透数形结合和类比的数学思想,培养学生良好的思维习惯。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
五、教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学教法,在课堂结构上,设计了①创设情境——揭示课题②推广认知——形成概念③巩固新知——探求规律④总结反思——提高认识⑤任务后延——自主探究五个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的教学过程:
六、教学程序及设想
总体来说,由旧及新,由易及难,逐步加强,逐步推进,给定定义后通过应用定义又逐步发现新知识,拓展、完善定义、
先由初中的直角三角形中锐角三角函数的定义,过度到直角坐标系中锐角三角函数的定义,再发展到直角坐标系中任意角三角函数的定义。
(一)创设情境——揭示课题
问题1:在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?
【设计意图】学生在初中学习了锐角的三角函数概念,现在学习任意角的'三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展)。温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。
问题2:角的概念推广之后,这样的三角函数定义还适用吗?
问题3:若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。
能表示吗?怎样表示?针对刚才的问题点名让学生回答。用角的对边、邻边、斜边比值的说法显然是受到阻碍了,由于前面已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。
【设计意图】
从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值)。
问题4:对于确定的角,这三个比值是否与P在
的终边上的位置有关?为什么?
先让学生想象思考,作出主观判断,再引导学生观察右图,
联系相似三角形知识,探索发现:对于锐角α的每一个确定值,
六个比值都是确定的,不会随P在终边上的移动而变化。
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化、所以,六个比值分别是以角α为自变量、以比值为函数值的函数。
(二)推广认知——形成概念
将锐角的比值情形推广到任意角α后,水到渠成,师生共同进行探索和推广出:任意角的三角函数定义。同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数,对数学学习能力较好的同学起到了很好的指导作用。
教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。
(关于值域,到后面再学习)。
【设计意图】定义域是函数三要素之一,研究函数必须明确定义域、指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。
(三)巩固新知——探求规律
为了使学生达到对知识的深化理解,进而达到巩固提高的效果,
例1、已知角的终边过点,求的六个三角函数值
要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照板书,模仿书面表达格式。
巩固定义之后,我特地设计了一组即时训练题,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动,培养学生分析解决问题的能力。
例2、求的正弦、余弦和正切值。
分析:终边上有无穷多个点,根据三角函数的定义,只要知道终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义)
师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。
取特殊点能使计算更简明。
等待学生基本理解和掌握三角函数定义后,观察、分析初、高中所计算的函数值有何变化,让学生意识到三角函数值的正负与角所在象限有关,然后引导学生紧紧抓住三角函数定义来分析,从而导出三角函数值的正负与角所在象限的关系,进而由教师总结符号记忆方法,便于学生记忆。
【设计意图】判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求、要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的“才”字符号法则,这也是理解和记忆的关键。
(四)总结反思——提高认识
由学生总结本节课所学习的主要内容:⑴任意角的三角函数的定义及其定义域;⑵三角函数的符号规律。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(五)任务后延——自主探究
学生经过以上四个环节的学习,已经初步掌握了任意角的三角函数的定义及三角函数的符号规律,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的作业,其中思考题的设计思想是:综合练习巩固提高,更为下节的学习内容打下基础,同时留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的,以有利于全体学生的发展。
七、简述板书设计。
cotα、cscα、secα的定义写在sinα、cosα、tanα的左下方,突出本节重要内容的主体地位。
结束:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。
数学说课稿 篇6
教材分析
这是本章的第一节,研究对象是函数,目标是怎样通过函数的解析式求其定义域,其学习以函数的概念为基础,在学习过程中借助于求代数式的值的方法,确定研究的方向,因势利导,在整个过程中注重让学生自己探索发现,培养学生猜想,归纳等独立思考的能力,可为后阶段的学习打下良好的基础。
学情分析
去年带的毕业班上的老教材,今年接的初二是第一届二期课改的新教材。对于我来说,本身也和学生一样有一个学习和适应的过程。这两个班的学生的情况是完全不同的,(3)班学生非常活跃,到了初二学生有这样的热情是难能可贵的,确实值得我去珍惜和正确引导,(4)班就是另一个极端,他们比较冷漠,上课不会呼应你,时常让我感觉到是在唱独角戏。两个班中都有一部分学习比较困难的学生,基本计算能力和技能较差,因此在教学时为学生创设自主探索合作交流的环境,以直观,操作观察,概括和交流作为重要的活动方式,通过课前准备和课中交流去引导学生,发现求函数的定义域的方法,提高学生的感知,认知水平和知识归纳能力。
学生在第一节中已经学习过"函数的概念",对函数已经有了初步的认识,在此基础上研究函数的定义域对后继的学习产生了积极的影响。
教学目标
知道函数的定义域。
掌握根据函数的解析式求函数的定义域的方法。
掌握复合函数的函数求定义域的方法,并正确求出不等式组的公共部分,特别强调"且"字的使用。
教学重点与难点
教学重点:根据函数的解析式求函数的定义域的方法。
教学难点:正确求出不等式组的公共部分,特别强调"且"字的使用。
教学分析和学法指导
本课教学采用发现法,启发引导,讲练结合,其依据是:
遵循教材的结构特点和学生的认知能力。
教学方法改革发展的新趋势:注重启发式,加强对学生学法的研究和指导。
教师的主导作用和学生的主体参与有机的结合。
教学过程
(一)创设问题情境,引入新课
师:同学们还记得我们学过的函数吗 什么是函数呢 其三要素是什么
生:(略)。
设计意图:回顾函数的概念以及三要素,为学习函数的定义域做准备。
(二)提出问题,探究新知
师:请同学们把预习的`表格拿出来,小组进行讨论一下。
1,操作(学生事先已经准备好)
已知函数y=2x+5和y=x ,按要求分别进行以下操作:
输入x →y=2x+5→输出y
对变量x取一些数值,分别代入式子2x+5中,把x每次所取的值与计算结果填入下表中:
x
y
输入x →y=x →输出y
对变量x取一些数值,分别代入式子x 中,把x每次所取的值与计算结果填入下表中:
x
y
2,思考:
师:对于函数y=2x+5,自变量x可以取任意一个实数 函数y=x 呢
生:(略)。
设计意图:通过操作活动引导学生已函数的观点重新认识学过的求代数式的值,让学生知道由函数y=x 说明函数中自变量的取值常会有限制,用数学式子表示函数y=f(x)要考虑自变量的取值使f(x)有意义。
3,通过学生操作,讨论引出函数的定义域的概念
使函数解析式或实际问题有意义的自变量x 的取值范围叫做函数的定义域。
由函数解析式求函数的定义域
1,当函数是简单表达式时
例1:求下列函数的定义域
y=5x—3(2)y=(3)y=x—1 (4)y=3x—2 (5)y=
设计意图:说明"求函数的定义域"的思考方法。在知道函数解析式和对定义域未加说明的情况下,函数的定义域由确保解析式有意义来确定,引导学生思考的方向和解题的方法。
学生练习1:求下列函数的定义域
y=2x+5 (2)y=(3)y=3x—4 (4)y=
设计意图:乘热打铁,通过练习指导学生如何根据函数解析式的特征列出不等式来确定函数的定义域,使学生在模仿中对知识加以巩固。
想一想:根据函数解析式的特征求这个函数的定义域,一般应怎样思考
由函数解析式来确定定义域大致有以下几种情况:
整式——x取一切实数
分式——x取分母≠0的实数
偶次根式(例如:二次根式)——x取被开方数≥0的实数
齐次根式(例如:立方根)——x取一切实数
设计意图:在教师讲解和学生练习的基础上,由学生总结:如何根据函数解析式的特征确定函数的定义域时,一般按解析式中的表示函数的式子是整式,分式或根式(偶次,齐次)等不同归类,培养学生归纳能力。
2,当函数是复合表达式时
例2:求下列函数的定义域
(1)y=(2)y=
设计意图:当解析式为复合表达式时,引导学生运用新知寻求解决方法,首先逐个列出不等式,求出各部分的允许取值范围,再使用数轴求其公共部分。
学生练习2:求下列函数的解析式
(1)y=(2)y=(3)y=(4)y=
设计意图:当函数解析式为复合表达式时,因为初中的函数不会很难,因此我认为学生最困难的不是列出不等式组,而是取公共部分,特别是"且"字,往往有许多学生乱用,看到不等号就用"且"连,因此通过学生练习2,指出学生的弊病,加强"且"字的训练。
拓展练习:求下列函数的解析式
(1)y=x+(2)y=—x +3x (3)y=2x—1 +2—3x (4)y=2x—1 +
设计意图:对于大多数学生只要求掌握例1和例2,而对数学基础较好的学生,要求他们掌握得难度深一点,以拓展他们的发散思维。
归纳总结,布置作业
师:让学生谈谈这节课的收获(分组讨论后请同学发言)
今天你学到了什么
你还有疑问吗
设计意图:通过学生分组讨论,归纳,总结,使学生进一步了解求函数定义域的方法,体验学习的成功和快乐,培养学习数学的兴趣。
作业:练习册P36习题18。1(2)
反思
平时非常注重学生新课的预习,提前预习能取到事半功倍的作用,当然也要预防学生懂了之后上课不听的状况出现。
由于本节课内容较多,而且引出新课前还有一个操作,因此我提前把这个操作安排到学生的预习工作中,在课堂上可以节约许多的时间,对于计算能力差的同学能给予他们更多的时间去完成。
这两个班是我新接的,只靠一个月的时间去深入的了解他们显然时间是不够的,但现在通过各种途径知道他们层次不一,"贫富悬差很大",特别是两个班都有不小的尾巴,因此我放慢速度,争取一节课能解决一个到两个问题,我想效果可能会好一点。
本节课在最后运用新知拓展训练中,提升了一定的难度,有一部分学生可能不那么容易理解,需要进行适当的点拨,对于取公共部分还需通过数轴加强训练。
数学说课稿 篇7
一、说教材
义务教育课程标准实验教科书(北师大版)这套教材,统计与概率的知识是分多次进行教学的,在一至六年级的数学教材中均有涉及。本课时是在学生二年级学习过认识统计图表的基础上,向学生介绍平均数的意义和求平均数的方法。《数学课程标准》中对第六册的要求是:通过丰富的实例,了解平均数的意义,会求简单数据的平均数(结果为整数)。
新教材中的这一教学内容与传统教材相比,明显在理解平均数的意义上加重了份量,因此,我在设计教学预案时,努力通过具体问题情境的呈现,吸引学生积极参与到解决实际问题的活动中,让学生在认知冲突中逐步感受到求平均数的实际意义和价值,并启发学生探索求平均数的基本方法。
二、说教学理念
教学理念:《数学课程标准》在课程实施建议中指出:数学教学活动中,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习环境,让学生在观察、操作、猜测、交流、反思等活动中,逐步体会数学知识产生、形成与发展的过程。简言之,也就是说在新课程理念下的数学课堂,强调学生对于知识的建构,充分让学生在具体问题情境中生成知识。本节课在设计上我把学生的数学学习放在数学活动中,首先让学生在比赛拍球活动中产生对平均数的强烈需求,体验平均数产生的过程。在经历平均数产生的过程之中,自然而然地理解平均数的本质意义,学会求平均数的方法,然后再去用之解决生活中的实际问题,进一步感受平均数在生活中的作用,体验学习数学、解决实际问题的乐趣。
教学目标:
1、知识技能目标:
(1)理解平均数的概念,了解平均数的特点和作用,掌握求简单平均数的方法。
(2)在解决问题的过程中培养学生的分析、综合、估算和说理能力。
2、过程与方法目标:经历平均数产生的过程
3、情感态度与价值观目标:感受平均数在现实生活中的运用
三、说教学内容
学情分析:用平均数表示一组资料的情况,有直观、简明的特点,在日常生活中经常用到,如平均速度、平均身高、平均成绩等。对于这些名词术语,学生经常听到,并不陌生,但其真正含义、在统计中的作用以及计算方法,学生却并不明白。由于学生已经具备平均分的基础知识,所以应着重让学生理解平均数的意义,在此基础上让学生列出算式进行计算。
教学重点:
理解平均数的意义,掌握平均数的计算方法。
教学难点:
运用平均数的知识灵活的解决实际问题。
在确定本节课的教学重点时,我依据了本节课教材的编排特点和学生的学习实际。从教材的编排特点看,学生只有准确的理解了平均数的意义,掌握了平均数的计算方法,才能在具体的生活情境中将二者相结合,运用平均数知识、灵活地解决与之有关的实际问题。
平均数的概念本身比较难理解;运用新知识的灵活解决实际问题,历来是新授课教学中的难点。这两个问题同时存在,就形成了本节课的难点。
四、说教法学法
为了实现教学目标、有效地突出重点、突破难点,我大胆重组教材,在教学中为学生创设贴近学生生活实际的情境,使学生感受数学与生活的密切联系。通过师生交互式的讨论,使学生充满学习新知的欲望。以自主探究和小组合作学习的形式,充分调动学生学习的积极性、主动性,让学生有充分的时间和机会,通过动手操作、分析、讨论等方法主动地获取知识,从而培养学生的自主学习意识和创新意识,学会探究问题的方法。
五、说教学过程
本节课,我主要设计了以下四个环节展开教学:
第一环节:创设情境,提出问题
组织学生进行拍球比赛前的准备。准备工作包括:分组取队名、确定计数员、讨论比赛方法。
我这样设计的目的是从学生喜欢的拍球游戏入手,激发学生的学习兴趣;让学生自己想出比赛的办法,把自主权留给了学生。
第二环节:实践操作,探究新知
在本环节,我安排了四个不同的层次,帮助学生建立平均数的概念、掌握平均数的计算方法。
1、感受平均数产生的需要
根据学生的意见组织学生进行比赛。
第一次比赛:每组选一人参赛。在学生认为不能代表本组水平时,进行第二次比赛。
第二次比赛:每组选四人进行比赛。比赛完成后让学生自己判断谁获胜,说出的获胜理由,指出:在每队参赛人数相等时,可以比较总数来决定胜负。
在胜利方欢呼时,教师宣布加入输球队,继续进行比赛,使成绩发生变化失败方获胜,激起原获胜队的不满。在矛盾中引导学生思考:当人数不相等时,怎样比较才公平?让学生通过小组讨论,找出公平的比较方法求平均数。
在一次又一次的矛盾激化中,使学生处于原有知识经验无法解决新问题的认知状态,在参赛人数不同、比较总数不公平的`状态下引入平均数,是在认知发生危机的迫切需要的情况下认识平均数这个新朋友的,加深学生对平均数的理解,学生体会到计算平均数的意义和学习的必要性。
2、探索求平均数的方法
先让学生独立思考:怎样求出每队的平均数?
接着让学生自己想方法,求刚才比赛时男女生队拍球的平均数。学生在交流时可能出现的方法有:a、移多补少的方法;b、把较大数多的部分移给小数,使各数平均;c、用计算的方法。对每一种方法,教师给予适时指导,并及时沟通三种方法之间的联系,使学生清晰地理解平均数的意义,突出了本节课的重点。
3、理解平均数的意义
平均数已经求出来后,教师提问:男队拍球的平均数是8个,是不是每个队员都拍了8个?拍了8个吗?那怎么变成了8个?
女队的平均数是7,我将继续引导学生探讨:7代表了什么?你怎么理解这个7?
在交流探讨中让学生知道:平均数它不是一个实实在在的数,而是代表一组数的平均值。
4、沟通平均数与生活的联系
先让学生举出生活中了解到的平均数的例子,感知平均数应用的广泛性。
接着,我出示两条有关平均数的信息:
(1)陕西省历史博物馆日平均接待游客2900人。
(2)20xx年西安市城镇居民人均可支配收入18963元,农村居民人均纯收入6275元。
让学生谈自己对这3个数据的认识,使学生进一步感受平均数与社会生活的密切联系,在现实生活的背景中加深对平均数意义的理解。
第三环节:联系实际,拓展应用
数学来源于生活,目的还是为了应用于生活。依据在生活中学习数学的教学理念,我设计了以下几个练习:
1、教科书P81,第2题。
学生独立计算,做完后用自己喜欢的方法验证。让学生在熟悉平均数计算方法的同时,直观感知:平均数比最大值小,比最小值大。
2、月平均用水量
先介绍近期我国西南地区缺水的现状及月人均用水量让学生了解信息;再对比展示某居民用户20xx年每个季度的用水情况,并让学生选择正确的求每个月用水量的算式,同时指出另外两个算式表示的意思。最后让学生比较这两个数据,谈自己的感受。让学生进一步熟悉平均数的计算方法,进行节水教育。
3、小明会遇到危险吗?
计算机画面上出现课本第72页数学故事中的画面,让学生进行思考后进行判断,并阐明理由。
通过这样一个生活情境,让学生深切地体会到在现实生活中,数学知识应用要灵活,在解决实际问题时,不仅要考虑数学因素,还要考虑其它的相关因素。
4、GDP大比拼(机动题)让学生进一步感知平均数的作用。
5、打靶游戏(机动题)让学生体会加入新的数据后队员平均数的影响。 这两道题我将根据课堂时间灵活处理。
第四环节:总结评价,布置作业
通过这节课的学习,你对平均数有什么认识?你有哪些收获?在交流中梳理本节课的知识,关注学生的学习结果和方法,把学生当作知识建构的主体,使数学课堂焕发出生命力。
作业布置:课本P71第1题。用于巩固平均数的计算方法。
六、说教学媒体
本节课使用的主要媒体是多媒体课件和磁性圆形贴片。通过多媒体的使用给学生提供充足的数学信息,在有限的时间内尽可能多的解决问题,从而提高教学效率;磁性圆形贴片的运用主要是便于学生通过移多补少的方法求平均数。
七、说教学评价
对学生数学学习的评价,既要关注学生知识与技能的理解和掌握,更要关注他们情感与态度的形成和发展;既要关注学生数学学习的结果,更要关注他们在学习过程中的变化和发展。设计多种形式的练习,及时回馈学生对新知识的掌握程度,为进行后续教学提供有效信息。
课堂中评价以口头评价为主,师对生的评价以激励、引导为主,要善于用贴切自然的激励法。同时倡导评价延迟,从而给学生一个自由思考的空间,让学生在和谐的气氛中驰骋想象,畅所欲言,相互启发,从而获得了更多、更美好的创新灵感,使个性思维得到充分的发展。但必要时应适时指出学生的错误。同时鼓励学生互评、学生自评。评价的目的是促进学生的发展特长,形成一股积极探究的氛围。
八、说板书设计
黑板的中间我将写上课题《分一分》,课题下面的较为明显的分成三份:左边和中间展示两组比赛的统计图和计算平均数的算式,右边列举出平均数的三种计算方法,强化平均数计算方法的指导。
数学说课稿 篇8
一、找准学生学习新知的“最近发展区”,在大背景下认识分数
1、分数对于学生来说是全新的,如何将这一全新的知识内化为学生自身的知识,找准学生学习的“最近发展区”是重要的,它是促使学生从“实际发展水平”向“潜在发展水平”的桥梁,学生的思维从已知世界自然而然滑向未知领域。教学时,从学生熟悉的“一半”入手,明确一半是怎么分的,从而引入用一个新的数来表示所有事物的“一半”。
2、以往我们在初次教学分数时,总是以单个的物体的进行平均分,然后“半个”无法用整数表示的时候就引入了分数,优点是这样分数出现的'实际需要性能够凸现,学生对分数的产生印象深刻;缺点是这样以单个的物体入手,学生对分数的认识受到局限,会导致到高段学习分数的意义的时候,对单位“1”难以理解和接受。其实“一半”和“半个”是有区别的,只有“半个”才用分数表示是不全面的。因此,我在分数引入的时候,请学生说身边一些事物的一半,发现日光灯是11个,一半一下子无法说出来。同时一个圆的一半是多少也无法说清。然后,引出“所有事物的一半我们只用一个数表示出来”。从而引入分数二分之一,这样对于分数的认识放在了一个宽广的背景下来学习,学生体会到任何事物的一半都可以用一个1/2来表示。
二、加强直观教学,降低认知难度
分数的知识是学生第一次接触,是在整数认识的基础上进行的,是数的概念的一次扩展。对学生来说,理解分数的意义有一定的困难。而加强直观教学可以更好地帮助学生掌握概念,理解概念。在本节课的教学中,教师充分重视学生对学具的操作,通过折纸让学生对分数的含义有一个直观的认识,充分利用多媒体课件的演示来加强直观教学,让学生加深对分数概念含义的理解,降低了对分数概念理解上的难度。特别是在比较分子是1的分数大小时,尽管学生在正方形纸上这出了几个几分之一的分数,并且用分数表示出来,但是学生在比较分数大小的时候,还是受到整数认识的影响,认为1/32比1/8大,于是课件显示猪八戒分西瓜的过程,学生直观的认识到分的份数越多,一份就越小。从而使学生内化了分子是一的分数大小的比较这一知识。
三、根据学生年龄特征,创设有趣的问题情境
对于小学生来说,数学学习往往是他们自己生活经验中对数学现象的一种“解读”.在教学中,如果能密切联系学生的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,那么学起来必然亲切、有趣、易懂了。学生的好胜心理强,教师在学生认识了1/4。纸上折了1/4后,谁还能折出其它分子是1的分数,学生动手积极性很高,纷纷折出了其它分数。当问谁折的分数大的时候学生就更愿意比了。起初,学生对分数的比较这一知识停留在比较表面、比较肤浅的水平上。他们用整数的大小比较方法来比较分数,教师也不做出判断,而是利用学生喜欢听的故事,将知识蕴于故事中,在听故事、看课件演示中,使学生主动得构建自己的知识,而不是被动地去接受知识。当回过头来再比谁折的分数大的时候,学生都笑了。而教师也不必再多说什么,学生已经自己推翻了先前的认识。
在整个课堂预设时,想的比较完美,事实上在真正上这堂课的时候有很多的缺憾、很多教学环节还有待完善。从整体上认识分数,对三年级学生而言是否要求拔得过高,在折分数操作时是否需要及时的比较等等。我想只有一次次积累、一次次思考,才能上出真正平实而有效的数学课。
数学说课稿 篇9
一、教材分析
平行四边形判定是初二教材的第二十章内容。这部分内容既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是本章后续学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力,今天我说课的内容是平行四边形判定的第一课时,主要探究与边有关的三种判定方法。
二、学情分析
初二下半学期,学生已经学习了初中阶段包括全等三角形的性质判定在内的绝大多数几何概念及定理。抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。
三、教学目标
掌握平行四边形的判定定理的证明、应用,培养学生的逻辑思维能力和推理论证能力。
四、教学重点难点
探究平行四边形的判定定理的过程需要经过对逆命题的猜想、图形验证、逻辑证明三个过程,需要让学生体验并逐步掌握这种发现数学结论的方法,因此判定定理的探究过程是本节课的重点。
学习完平行四边形的判定后,根据题目给出的条件,如何灵活准确的选择性质定理和判定定理,是本节的难点。
五、教学过程
(一)复习旧知,引入新课:
1、写出平行四边形的定义和性质。
2、写出以上性质的逆命题。、
以上逆命题是否正确呢?你会用什么方法来说明它的正确性呢?这就是今天我们要探究的问题:引入新课,教师板书课题。
(二)提出议题,引发思考:
发挥学生的主观能动性,让学生在动手、动脑中积极参与知识发生、发展的过程。
1、判定方法一:平行四边形的定义
2、判定方法二的探究过程:教师起主导作用,给出提示小组完成并交流。
图形验证:作一个两组对边分别相等的四边形,看是否都是平行四边形。
逻辑证明:利用全等和平行线的判定证明。对学生来说不是难题。
归纳结论:让学生语言归纳,作为判定方法二。
3、类比以上探究的过程,让学生完成“一组对边平行且相等的四边形是平行四边形”的探究过程。
教师巡视,对发现问题及时纠正。
总结:图形验证过程会出现多种方法作图:先画两条平行线再分别截取相等线段;或者利用格点图作。
(三)例题引路,尝试议练:
让学生尝试完成教材例题1,
在平行四边形ABcD中,E、f分别是对边Bc、AD上的`两点,且Af=cE,求证:四边形AEcf是平行四边形。
思路分析:已知一组对边相等,要想证明是平行四边形,只需证明另一组对边相等或者是该组对边平行,由已知条件可知能证明平行。
(四)巩固练习:难点突破
1、点A、B、c、D在同一平面内,AB//cD,AD//Bc,AB=cD,AD=Bc,从这四个条件中选择两个,能使四边形ABcD是平行四边形的选法有几种。
目的:考察学生对所学三方法的熟练程度。
2、例题变式:如果把条件Af=cE改为Af、cE分别是AD、Bc的五分之一呢?
目的:如何根据条件正确的选择方法。
3、求证两线段分别平分的题目。
目的:性质定理和判定定理的综合运用。
六、课堂总结及作业布置
1、由学生总结本节所学知识及方法:平行四边形的判定方法及探究一般数学定理的探究过程。
2、习题1、2
3、探究“对角线互相平分的四边形是平行四边形”
七、教法:
本节课教法上突出三个特点:
1、动:判定方法的探究主要由学生参与,让其感悟知识的发展、发生的过程。
2、变:尽量抓住时机对例题进行变式训练,培养学生思维的广阔性和深刻性。
3、引:探究和训练中学生思维受阻时,教师适当给予引导,做到引而不灌。
八、教后反思
把判定定理的探究过程交给学生,这样能把学生们的积极性,探索欲调动出来,加以老师的点拨,把本节的重点、难点个个突破,学生们的知识能力、情感各个方面都得到了进一步的提升,应该能达到预期的效果。
数学说课稿 篇10
一、 地位和作用:
本节内容处于数学北师大版六年级上册第三章最后一节.从这一章开始利用字母表示数(即符号化),它深刻揭示存在于一类实际问题中的共性.有助于人们对显示世界的认识,它的各种表示方法(如公式法、表格法、图象法等),不仅为解决实际问题提供了重要策略,而且为数学交流提供了有效的途径,它的模型化方法、函数思想以及推理的方法也为数学本身和其它学科的研究提供了基础.
二、 教学目标:
根据《课标》中“强调学生的数学活动,发展学生的数感、符号感及应用意识”确定了如下的知识目标和能力目标:
1.经历探索数量关系,运用符号表示规律,通过运算、验证规律的过程.
2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律.
3.提高学生分析问题、解决问题的能力.
根据“义务教育阶段的数学课程的出发点是促进学生全面、持续、和谐地发展”确定了如下的情感目标:通过学生动手、动脑、利用转化、类比的方法去探索、培养学生的观察能力、交往协作能力、动手操作能力、归纳概括能力、创新能力.
三.教材重点、难点的确定.
根据“材设计关注的是学生是否理解字母表示的含义,能否用字母表示和能否积极从事数量关系的探索过程”,从而确定了教学重点是能将探索发现数学规律并能正确验证.对于刚刚接触用字母表示数的学生来说,整个过程需要大胆进行探索、猜想、归纳、验证等能力的培养比较困难,因此发现数学规律也是本节的教学难点.
如何突出重点和难点71页
教法:根据本节课的特点,采用探究式的教学法.
学法:根据初一学生知识储备量小、学生性格好动的特点,采用分组、合作、交流的学习方法.
四.教学流程:
1.巧用情景引入课题,通过儿歌“一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿…”引出问题“n只青蛙几张嘴,几只眼睛几条腿?”从中鼓励学生发现规律,尝试用字母符号表达规律.
2.讲授新课:首先出示某年某月的日历,然后根据问题探讨日历中的规律.由于这是本节的重点和难点,根据学生情况,为了突破难点,对于课本的编排从新调整.提出了如下的几个问题:①日历中同一行中连续三个数之间有什么关系?②日历中同一列中相邻三个数之间有什么关系?③日历中斜着的三个数之间有什么关系?④用长方形框住的四个数有什么关系?⑤用正方形框住的九个数有什么关系?先让学生用具体的数来回答问题,然后上升到用字母来反映规律.从而让学生体会由特殊到一般的方法。
教师评价:71页另外教师不断鼓励学生发现、表达、合理解释.
以上主要采用教师启发引导式的方法.
其次,让学生动手折纸完成课后随堂练习第2题,目的是换一种活动方式.本题主要由学生独立完成.
最后,通过以上的`日历、折纸,对学生分组完成做一做.本题采用分组合作的方式进行.
五. 学情预测:
优点:问题的层次递进符号学生的实际情况.
缺点:规律找到但是表达不准或不正确,如去括号问题,另外缺乏验证.
针对缺点采用的弥补方法是:适当布置有关去括号知识的问题,强调规律探索中的验证这一环节的重要性和必要性.
六.总结反思和理念:
探索规律要用到归纳、推理,它是一种重要的数学思维方法,数学史上的一些发现如哥德巴赫猜想等都是通过探索、总结、猜想而得到的,但是要注意猜想的验证。
【数学说课稿】相关文章:
“用数学”数学说课稿03-09
数学活动说课稿07-09
《数学乐园》说课稿07-09
《数学广角》说课稿06-27
数学统计说课稿07-02
数学说课稿11-05
数学说课稿03-25
数学广角说课稿11-07
数学乐园说课稿11-12
小学数学的说课稿01-09