【精选】数学说课稿范文集锦9篇
作为一位优秀的人民教师,很有必要精心设计一份说课稿,说课稿有助于教学取得成功、提高教学质量。优秀的说课稿都具备一些什么特点呢?以下是小编收集整理的数学说课稿9篇,欢迎阅读与收藏。

数学说课稿 篇1
各位老师、同学:
大家好!
今天我说课的内容是人教版义务教育课程标准实验教科书初中数学七年级下册第八章《二元一次方程组》第一节内容。我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识与理解。
一、教材分析
1、教材的地位
二元一次方程组是最简单的多元(未知数的个数不止一个)方程组,通过对它的学习,可以了解的多元一次方程组的概念和解法的基本思路。一元一次方程的知识是学习二元一次方程组的基础。本节课是在七年级上册已有的“一元一次方程”的基础上进一步讨论方程(组),为学生初中阶段学好必备的代数,几何的基础与基本技能,解决实际问题打下基础,同时提高学生能力,培养他们对数学的兴趣,以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2、教学目标
使学生掌握二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。
3、重点、难点
重点:是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。掌握检验一对数是否是某个二元一次方程的解的书写格式。
难点:理解二元一次方程组的解的含义。
二、教法
启发诱导学生自主探究、充分发挥学生的主体地位、借助多媒体增加课堂容量。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的.灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
1、教与学互动设计:通过“篮球比赛积分问题”让学生感受到用二元一次方程组能够很好的刻画问题中的数量关系,为二元一次方程和二元一次方程组做准备。通过小组讨论的方法,来调动学生学习的积极性。
2、合作交流,解读探究:通过上述的两个方程对新的知识让学生进行讨论交流。呼应新课标理念中让学生“动”起来,教师引导、学生自主学习的理念,进行新课的学习。
3、课堂练习:用幻灯片展示的习题,学生通过习题巩固本节课知识,更加充分的理解二元一次方程组的相关内容。
4、课堂小结及布置作业:通过小结及做习题反馈学生对本节课的收获。
五、教学反思
生命在活动中丰富,为孩子的一生幸福奠定基础,是活动教学的终极价值追求;课堂在活动中精彩,强调通过师生之间丰富多彩的主体活动“唤醒”沉睡的课堂,实现课堂教学的重建;学生在活动中发展,教师在活动中成长。由于我能力有限,还请各位领导、老师和同学批评指正。
附:板书设计
8、1二元一次方程组
xy=222xy=40
二元一次方程二元一次方程组
二元一次方程的解二元一次方程组的解
数学说课稿 篇2
教材分析
教科书《花园》这一情景中蕴含着与“倍”有关的数学信息,既可以提出来乘法问题,也可以提出除法问题,目的是培养学生的数学应用意识。通过绘图,让学生体会几何直观对于解决问题的意义与价值。
学情分析
学生已经熟练掌握乘法,对于除法,有一小部分学生不会熟练应用。通过前几节课的分物以及上节课的逆向思维能力的培养等等,为本节课的学习打下了基础。
教学目标
1、结合具体情境,让学生理解“倍”的意义,以及它与乘除法之间的联系。
2、体会借助几何直观分析数量关系、寻找解题思路的.重要性。
3、体会生活中处处有数学,激发学生学习数学的兴趣。
教学重难点
重点:体会“倍”的意义。
难点:解决实际问题。
课时安排
1课时
教学过程
一、创设情境,导入新课
同学们,花园里的花儿开了,你看,蜜蜂、蝴蝶、蜻蜓、小鸟都来了,花园里可热闹了!
出示
说说你从图中了解到哪些数学信息?
二、自主探究,构建新知
(一)蜻蜓的只数是蝴蝶的几倍?
根据这些数学信息,你能提出哪些数学问题呢?
教师引导学生提出“蜻蜓的只数是蝴蝶的几倍?”
你选用自己喜欢的方式画一画,再列式解答。
学生尝试自己解决、并展示汇报
这里有两幅图,你能看懂什么意思吗?
第一幅图:学生看图讲解
第二幅图:教师一点而过
(二)有多少只蜜蜂?
同学们,老师想知道有多少只蜜蜂,你能从图中找出有关小蜜蜂的数学信息吗(引导学生发现数学信息)?
注意小蜜蜂的话“我们的只数是小鸟的3倍”,你自己尝试画一画,算一算。
学生交流汇报
这是淘气和笑笑画的示意图,你能理解吗?
生:淘气用一个圆表示9只小鸟,蜜蜂的只数是小鸟的3倍,所以用3个圆表示蜜蜂的只数。
生:笑笑用一段直条表示9只小鸟,用3段直条表示3个9只,也就是蜜蜂的只数。
同学们,笑笑说了,9的3倍就是3个9相加,列成乘法算式是怎么样的?
生:3×9=27(只)
9×3=27(只)
(三)什么是“2倍”,深化对“倍”的意义的理解
同学们,圣诞老人现在有一个疑问,什么是“2倍”,你能帮圣诞老人解答一下吗?
你看这是淘气的解释,你能看懂吗?
引导学生读图
引导(同学们,如果把5个Δ看成1份,那么用几个Ο表示这样的2份。)
总结:同学们,其实每一份画几个图形没有关系,关键是画出这样的2份。
你看,笑笑说
我用表示,淘气的是一份我画一个,笑笑的是2份我画2个,所以表示出笑笑收集的画片数是淘气的2倍。
同学们,现在你可以举出例子了吧?在生活中你还能发现哪些事物有“2倍”关系呢?
拓展:那什么是“3倍”呢?“4倍”
三、巩固练习,拓展延伸
处理习题1、2、3、4,加深学生对倍数关系的理解。
四、课堂小结,学会反思
数学说课稿 篇3
各位老师你们好! 今天我要为大家讲的课题是
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1、教材所处的地位和作用:
本节内容在全书及章节的地位是:《 》是___中数学教材第 册第 章第 节内容。在此之前,学生已学习了 基础上,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后高中的地理学习打下基础。
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)、知识目标:
(2)、能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)、情感目标:
通过对 的教学,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,让学生初步认识到地理知识的优越性,同时渗透爱国主义思想,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好地理的思想;通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:
本课中 是重点, 是本课的难点,其理论依据是 .这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二:教学策略(说教法):
㈠教学手段:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1:"读(看)——议——讲"结合法;2:图表分析法;3:读图讨论法;4:教学过程中坚持启发式教学的原则
基于本节课的特点: ,应着重采用 的教学方法。即:
㈡教学方法及其理论依据:坚持"以学生为主体,以教师为主导"的原则,即"以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后"的原则,根据学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式教学法,师生交谈法、图像信号法、问答法、课堂讨论法,引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中要积极培养学生学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
三:学情分析:(说学法)
1 、学生特点分析:
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
2、知识障碍上:
⑴知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述。
⑵学生学习本节课的知识障碍。
知识,学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。
3、动机和兴趣上:
明确的学习目的`。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
最后我来具体谈一谈这一堂课的教学过程:
四、 教学程序及设想:
1、由_________________________________引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为"猜想",继而紧张地沉思,期待寻找理由和证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:
2、由实例得出本课新的知识点是:
3、讲解例题。……我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。课后练习 使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
7、板书。
8、布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和"减负"的目的。
(教学程序:(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置 作业等五个部分。(二):教学简要过程:1:复习提问:(理由是: );2:导入讲授新课: ;3:课堂练习:4:新课巩固:5:作业布置;)
五:作业布置:
数学说课稿 篇4
一、 说教材
1、教材简析
本课是在学生知道了面积的含义,初步认识面积单位和学会用面积单位直接量面积的基础上进行教学的。这部分内容主要是引导学生探索长方形和正方形的面积计算公式,并初步练习运用公式进行面积计算。教材首先安排学生通过操作活动探索长方形的面积计算方式。先用1平方厘米的正方形摆长方形并填写表格,又用1平方厘米的正方形量两个长方形的面积,交流量的方法。再通过“试一试”运用测量面积时的经验思考出一个给出长和宽的长方形的面积是多少,最后讨论长方形的面积与它的长和宽的关系,并归纳出长方形的面积计算公式。教材接着安排学生依据正方形的特征,运用知识迁移直接探索正方形的面积计算公式,并运用公式进行面积计算。练习中先安排看图计算,再安排运用面积计算解决实际问题。练习中重视了面积的估计和测量。
2、教学重点难点和教学关键:
教学重点:掌握公式,会计算长方形和正方形的面积。
教学难点:长方形面积公式的发现过程。
教学关键:借助学具操作,找出长方形的面积与长和宽的关系。
二、 说教法学法
本节课的主要任务是让学生在体验中学习,而不是由老师灌输长方形面积的计算公式。
呆板的机械的学习只能让学生觉得无趣没有生气,所以这节课里我主要是让学生去体验,去感知、去总结,一切都要由学生自己来完成。不断探究的过程就是儿童不断学习自我完善的过程。
1、观察比较,进行猜测
在课的一开始先让学生通过观察比教等宽不等长和等长不等宽的两组长方形的面积大小,让学生运用已有的知识经验、能力水平进行猜测长方形的面积会和它的什么有关,从而引出新课。
2、合作探究,得出结论
通过动手实验,充分发挥学生学习的主体性,培养学生的探索精神,使学生获得战胜困难、探索成功的'体验,从而产生学习数学的兴趣,树立学习数学的信心。
通过小组合作,解决学生自己在学习中提出的各种问题,激发学生联糸实际、分析问题和解决问题的热情,互相启发,互相帮助,共同提高,从而达到解决问题的目的。
3、实际应用,提高估计意识
在练习中设计一些实际应用和估计的题目,使学生学以至用,提高估算的能力。
三、 说教学过程
本课的教学是在学生掌握了面积的含义和面积单位,对面积单位有了一个较深的感性认识,学会了运用面积单位直接度量面积。学好这一部分内容,对于以后的平行四边形的面积的计算方法的探究有着重要的影响。
根据以上教学目标,我设计教学过程如下:
一、导入复习,并提出问题:
提出问题,让学生来猜猜这两张纸面积可能是多少平方厘米?并用摆1平方厘米的小方块的方法来验证。
在学生摆方块的基础上继续提出问题,如果要求一块很大的长方形土地面积或一个长方形游泳池的面积,用数方格的方法就不方便了,甚至是行不通的。有没有更好的方法呢?让学生根据刚才的一次操作猜测长方形的面积可能和什么有关
二、小组合作,探索长方形面积公式。
1.这里利用多媒体课件的灵活多变性,形象直观性,让四人小组合作实验操作。要求:用1平方厘米的小正方形摆一摆,并把结果记录下来,观察表中的数据找一找计算长方形面积的方法。长方形的面积与它的长和宽有什么关系。2.唐老鸭的两个画框中要配面积是多少的照片比较合适?
这一次我先让学生利用刚才寻找到的规律,先在作业纸量出长方形的长和宽,算算有多少平方厘米?再用1平方厘米的正方形量长方形的面积再次验证刚才的结论。学生就会想到“沿着长方形的长摆一排面积单位,然后再沿宽摆,就可以知道能摆几排了”这样的方法。经过两次这样的操作以后,教师再进一步地提出:“不用面积单位去摆,能不能用测量和计算的方法求出长方形的面积”的问题,这样很容易地就能引导学生发现长方形面积与长和宽的关系。最后再总结出长方形面积的计算公式。并感受自己发现的长方形面积=长×宽这个规律的正确性和简便性,进而体验到成功的喜悦。最后小结,那么长方形的面积与它的长和宽有什么关系?怎样求长方形的面积?
三、观察讨论,探究正方形面积计算公式推导。
1.在运动变化中,推导出正方形面积公式
在推导正方形面积公式时,先计算长方形面积,再演示宽不变,逐次缩短,最后变长为宽同样长。问:长和宽怎样?它是什么图形?正方形的边长有什么特点?怎样求正方形的面积?然后小组讨论正方形的面积怎样求?
四、巩固练习。
1.小练习。说说什么形状?用什么公式?怎样计算的。书P84第1,2题。
2.比赛,这9格小格每个都有一道题,做对一题可以看到图片的一个角。看看谁先把题目都做对,看到最后的图片。
3.运用所学数学知识解决实际问题。请各小组选一个自己感兴趣的长方形量一量它的长和宽,算一算它的面积是多少?
4、挑战题,帮奶奶设计游泳池。可以根据自己的能力选择(一种根据面积,拉动画面选择合适的长和宽,一种根据面积和周长,选择合适的长和宽)
数学说课稿 篇5
各位老师大家好,今天我说课的题目是( )
一、 说教材
(教材分析)
根据教材特点和学生的年龄特征、认知规律,我确定了本课的教学目标:
1、
2、
本课的教学重点难点:
二、 说教法
古代教育家孔子指出:“各因其材,小以小成,大以大成,无弃人也!”而目标教学分层递进正是因材施教的最好体现。目标教学分层递进是从各类学生的学习实际出发,明确各自学习目的,使学生在自己的“最近发展区”内独立自主地向知识的广度和深度延伸,能充分发挥学生的学习主体作用。本节课我主要采用目标教学分层递进这以教学方法,在教学中以全班教学为主,小组学习为辅,个别辅导相结合的原则分层教学。我力求做到:努力形成一种各层次学生都争取“递进”的氛围,激发学习兴趣,使学生爱学;揭示知识规律使学生能学,展示知识过程,使学生会学,并利用观察讨论等方法,帮助学生建立相应的知识概念,并引导学生积极探索参与教学全过程。
三、 说学法
学生使学习的主体,要让学生真正成为学习的主人,必须在活动中学习数学。正如荷兰数学家费赖登塔尔所说:“数学使人的一种活动,如同游泳一样,要在游泳种学会游泳。我们也必须在数学活动种学习数学,也就使在创造数学中学习数学。”基于上述思想,本节课我设想:
1、 动手实践,培养学生发现探索能力。
2、 小组合作,培养学生合作意识。
3、 抽象概括,发展学生思维能力。
教学准备:
四、 教学过程
(一)前置补偿,动机内趋
这一环节采用全班教学,复习与新知识有关的旧知,同时设疑置问,激发学生求知欲,产生内趋力,为分层教学打下基础。
(二)分层目标,分层施教
分层目标有效的为教学活动定向,引导教学过程的展开,同时也让学生带着问题去思考去学习,为衡量教学效果提供准确的标尺。分层目标要以学生低中高三各层次的学生学习可能性相适应:A层目标体现于基础性,B层目标着眼于变通性,C层目标着力于发展性,为分层递进注入活力。
(分层次教学)
(三)分层练习,及时反馈
练习是学生掌握知识形成技能,发展智力,培养能力的主要手段,也是评测教学效果的重要标尺。因而,我根据教学的实际情况与学生的可接受能力在课堂中设计如下有坡度有层次的练习。
1、 基础巩固性练习
2、 变通发散性练习]
3、 综合提高性练习
(四)分层总结,不断提高
总结是强化重点,明确关键,揭示规律的重要环节,帮助学生对所学知识进行系统整理,使新知有效地纳入学生原有的认知结构,建立有效的`知识网络。本节课我采用学生自己小结的方法,各层次明确自己学到了什么,肯定每位学生积极探索,发现规律的精神,从而诱发继续学习的积极性。
五、 最后值得强调
目标教学分层递进体现了素质教育的基本思想,使一种重视人本思想的教学组织形式,因此在全体发展,全面发展的基础上并没有固定的模式,因教学内容,班级条件学生题点而异!
数学说课稿 篇6
教材分析:
《量的计量》是人教版小学数学第十二册第四单元的一个教学内容。
本课时的教学是在学生已经学过一些量的计量单位以后进行的教学。教材依次出示了长度、面积、体积(容积)单位,质量单位、时间单位,还穿插讲述了名数的改写。
学情分析:
学生在1—5年级已经学过了长度、面积、体积(容积)单位,质量单位、时间单位,对于这些单位间的进率换算以及名数的改写有一定的知识基础。
设计理念:
1、体现数学与生活的密切联系。在本节课的教学中,力求体现出新的课程理念,联系学生的生活实际来学习这些内容,整节课的教学从学生熟悉的事物出发,加强直观教学,在生活中学习新知、感悟计量单位。
2、改变学生的学习方式,提倡孩子主动探究学习,小组合作学习,让学生对这些常用的计量单位以及他们之间的进率进行梳理、归类,加深认识已经学过的量及相应的'计量单位,认识这些计量单位间的联系和区别。
3、通过设计各个层次的练习活动,让每个学生都积极参与数学学习的过程,体验数学学习的快乐。
教学目标:
1、使学生加深认识已经学过的量及相应的计量单位,认识长度、面积和体积及其计量单位的联系和区别。
2、进一步体会计量单位的实际大小,加深理解各种量相邻计量单位之间进率的大小。
3、能正确地进行名数之间的改写,提高学生的思维能力,体验数学学习的快乐。
数学说课稿 篇7
一、 教材分析:
1、 教材的地位和作用
“平方根”是省编教材初中数学第三册第十章“实数”的第一节内容。由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是今后学习根式运算、方程、函数等知识的重要基础。
2、 教学目标:(依据教材和大纲确定)
⑴、使学生理解平方根的概念,了解平方与开平方的关系。
⑵、学会平方根的表示法和求非负数的平方根。
⑶、通过上述知识的教学,培养学生的“实践第一”的观点;体验数学来源于实践,又服务于实践的思想。
⑷、对学生进行爱国主义的思想教育。
3、 教学重点、难点与关键:
重点:平方根的概念。
难点:平方根的概念和表示。
关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。
二、 教学方法和手段:
根据教材内容结合初二学生的认知特点,采用边启发、边分析、层层设疑、讲练结合的教学方式。同时,利用媒体形象直观地展示引例、例题及练习。帮助学生理解概念,活跃课堂气氛,增大教学密度,提高教学效率。
三、 学法指导:
学生通过动手、动口、动脑等活动;主动探索,发现问题;互动合作、解决问题;归纳概括、形成能力。增强数学应用意识、协作学习意识,养成及时归纳总结的良好学习习惯,使学生的主体地位得以体现。
四、 教学程序:
教学环节 教学程序 设计意图
教师活动 学生活动
创设情境
引入新课
1、出示引例1:(投影片显示)
一艘轮船由A码头出发,朝正东方向行驶3千米至C处,然后朝正北方向行驶2千米至B处,问A、B相距多少千米?
2、提出问题:⑴已知一个数要求这个数的平方,该如何求?
⑵已知一个数的平方,要求这个数,又该如何求?
⑶符合这样条件的数有几个?该如何表示? (依据己有的知识经验估计学生会回答------正方形的面积是边长的平方。)
思考,探索问题解决的途径。
复习己学知识
复习乘方运算法则。
培养学生逆向思维能力。
诱发学生寻找解题途径。
交流对话
探索新知 引例2:(投影片显示)
已知一个正方形的面积等于4cm2,求它的边长。
引导学生观察分析、思考。
强调指出应根据实际情况确定边长的值。
总结:
已知某数的平方要求这个数,用式子来表示就应是:已知x2=a,求x的值。这和我们一开始提出的问题,求一个已知数的平方正好相反。要解决这样一个问题,就须在数学上引进一个新的概念――平方根。
引导学生举例。
简要介绍数的产生与发展。 思考、发现:
逆用乘方运算。深入探究,如设一边长为xcm,依题意有x2=4,∵22=4,(-2)2=4
∴满足x2=4的x的值可以是2,也可以是-2,但正方形的边长不能是负数,∴x=2即这个正方形的边长是2cm。
归纳总结得出平方根的概念:如果一个数的平方等于a,那么这个数叫做a的平方根(也叫二次方根)。
理解并会表示平方根
举例。
了解 培养学生用逆向思维的观点去分析问题,发现问题中蕴涵着的一些相互联系的量(面积与边长),再通过设未知数,从而将实际问题转化为方程与乘方运算问题,体验问题解决的思想方法。
使学生养成及时归纳总结的良好学习习惯
巩固平方根概念
突出教学重点
向学生渗透“实践第一”的辨证唯物主义观点。
课堂练习
比较探究
归纳总结 教材第87页练习,个别口答。
通过练习,引导学生比较探究,寻找规律,得出法则(用投影片显示)。
强调正数有两个平方根,决不能丢掉任何一个。若丢掉了一个,都是错误的。
平方根的表示法。(强调,特别注意的是 ≠± ,其中a是非负数。)
开平方的定义。
求一个数的平方根就是开平方运算,要靠它的逆运算平方运算来进行。 独立思考完成。
共同校对,矫正。
得出法则:一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
共同校对,矫正,使语言精练准确。
理解,掌握。 使学生及时巩固用平方根的概念来解决问题的方法,培养学生的类比能力;提高学生的解题能力和归纳总结能力。
让学生明确平方与开平方是互为逆运算关系。
例题分析
反馈调控
形成能力 出示例一:下列各数有没有平方根?若有,求出它的平方根;若没有,请说明理由。
⑴36 ⑵ 0.16 ⑶ (-4)2 ⑷ -32 ⑸ 0 ⑹ ⑺ -|a|-4 ⑻ 2
引导学生分析比较:⑴、要判断一个数有没有平方根,就要看它是不是负数,若是负数就没有平方根,不是负数就有平方根。⑵求平方根时,要注意利用平方根的定义来求。
板书解题过程:……
指出:在解具体问题时,要灵活运用法则;带分数开平方时,要先把带分数化成假分数 结合平方根的概念与法则,探索思路方法,口述解题思路。
掌握解题过程的书写格式。 培养分析比较能力。
领会解决问题的思路。
渗透比较思想,让学生体验数学来源于实践,又服务于实践的思想。
梳理概括
形成结构 师生一起讨论得出(投影片显示):1、一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
2、正数a的`平方根的表示方法为± 。
3、带分数开平方时,要先把带分数化成假分数。
师生一起讨论得出
突破教学难点。
培养学生的归纳总结能力。
应用新知
体验成功 出示练习(投影片显示):
1、判断正误,并且改错:(用投影片显示题目)
⑴100的平方根是10
⑵非负数一定有平方根
⑶9 的平方根是±3
⑷2的平方根是±
2、教材第89页练习2、3、4
巡视、小组辅导
选取小组代表回答,给予积极的评价,并强调注意点:正数有两个平方根,决不能丢掉任何一个。若丢掉了一个,都是错误的。②正确表示平方根。
③根据实际情况来确定适用的方法。
小组讨论,互相质疑,校对,矫正。共同完成。
书写练习4的解题过程。
培养学生的合作精神。
使学生及时巩固用平方根的定义和法则解决问题的方法,规范解题格式。同时使学生注意解题的关键。
变式练习
扩展新知
深入探究
问题迁移 出示练习(投影片显示)
1、什么数的平方根是它的本身?
2、求下列各式中x的值:
⑴ x2=25 ⑵ 2x2-32=0
⑶ 4(x+2)2-81=0
(这里估计学生会联想到引例2解决过类问题)巡视、小组辅导。
投影有代表性的学生的解答过程,给予积极的评价。 阅读题目
先独立思考后分小组讨论,发现,质疑,达成共识。
书写解题过程。
使学生再深入探索平方根的定义与法则,培养学生的转化思想、发散思维和合作精神。
规范书写解题过程。
知识整理
形成系统 提问:
① 这节课学习了用什么知识解决哪类问题?
②解决问题的一般步骤是什么?应注意哪些问题?
③并学到了哪些思考问题的方法?
④介绍开方最早见于我国的《九章算术》,比国外早一千多年。
出示“想一想”:
( )2 = ? (- )2 =?
(从知识、能力等方面)对所学内容加以概括,相互讨论,回答,补充,共同整理。 加深学生对知识的理解,形成知识系统,为今后继续学习实数性质的应用打下基础。
爱国主义教育。
加深学生对平方根概念及其表示法的理解。
布置作业
巩固提高 ⑴完成作业本上的题目。
⑵兴趣题:已知某数的平方根是x+2和3x-14,求这个数。 课后结合自身水平独立完成相应的习题:
⑴基础一般的学生完成作业本。
⑵基础稍好的学生完成作业本和兴趣题。 让学生巩固所学内容并进行自我评价,但考虑学生基础的差异性,故进行分层次要求。
五、板书设计
10.1平方根
投影学生练习
…… 例一:
解:(板演详细解题过程)…… 平方根概念:……
开平方概念:……
法则:……
六、设计说明:
㈠、 指导思想:
依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。
㈡、教学目标的确定:
根据《教学大纲》的要求(使学生理解平方根的概念,了解平方与开平方的关系;理解并学会平方根的概念和表示。),结合教材内容及学生实际,从知识、能力、情感等方面确定了这节课的教学目标。
㈢、关于教法和学法
采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。
㈣、关于教学程序的设计
在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:
①注重目标控制,面向全体学生,启发式与探究式教学。
②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。
③注重师生间、同学间的互动协作,共同提高。
④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。
数学说课稿 篇8
一、教材分析
1.教材中的地位及作用
本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。
2.教学目标的确定及依据
平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。
(1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、顶点、离心率、渐近线等几何性质;
②掌握双曲线标准方程中的几何意义,理解双曲线的渐近线的概念及证明;
③能运用双曲线的几何性质解决双曲线的一些基本问题。
(2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察能力,想象能力,数形结合能力,分析、归纳能力和逻辑推理能力,以及类比的学习方法;
②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的概念的理解。
(3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。
3.重点、难点的确定及依据
对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。
4.教学方法
这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。
渐近线是双曲线特有的
性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。
例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。
二、教学程序
(一).设计思路
(二).教学流程
1.复习引入
我们已经学习过椭圆的标准方程和双曲线的标准方程,以及椭圆的简单的几何性质,请同学们来回顾这些知识点,对学习的旧知识加以复习巩固,同时为新知识的学习做准备,利用多媒体工具的先进性,结合图像来演示。
2.观察、类比
这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,首先观察双曲线的形状,试着按照椭圆的几何性质,归纳总结出双曲线的几何性质。一般学生能用类似于推
导椭圆的几何性质的方法得出双曲线的范围、对称性、顶点、离心率,对知识的理解不能浮于表面只会看图,也要会从方程的角度来解释,抓住方程的本质。用多媒体演示,加强学生对双曲线的简单几何性质范围、对称性、顶点(实轴、虚轴)、离心率(不深入的讲解)的巩固。之后,比较双曲线的这四个性质和椭圆的性质有何联系及区别,这样可以加强新旧知识的联系,借助于类比方法,引起学生学习的兴趣,激发求知欲。
3.双曲线的渐近线的发现、证明
(1)发现
由椭圆的几何性质,我们能较准确地画出椭圆的图形。那么,由双曲线的几何性质,能否较准确地画出双曲线的图形为引例,让学生动笔实践,通过列表描点,就能把双曲线的顶点及附近的点较准确地画出来,但双曲线向远处如何伸展就不是很清楚。从而说明想要准确的画出双曲线的图形只有那四个性质是不行的。
从学生曾经学习过的反比例函数入手,而且可以比较精确的画出反比例函数的图像,它的图像是双曲线,当双曲线伸向远处时,它与x、y轴无限接近,此时x、y轴是的渐近线,为后面引出渐近线的概念埋下伏笔。从而让学生猜想双曲线有何特征?有没有渐近线?由于双曲线的对称性,我们只须研究它的图形在第一象限的情况即可。在研究双曲线的范围时,由双曲线的标准方程,可解出,,当x无限增大时,y也随之增大,不容易发现它们之间的微妙关系。但是如果将式子变形为,我们就会发现:当x无限增大,逐渐减小、无限接近于0,而就逐渐增大、无限接近于1();若将变形为,即说明此时双曲线在第一象限,当x无限增大时,其上的点与坐标原点之间连线的斜率比1小,但与斜率为1的直线无限接近,且此点永远在直线的下方。其它象限向远处无限伸展的变化趋势就可以利用对称性得到,从而可知双曲线的图形在远处与直线无限接近,此时我们就称直线叫做双曲线的渐近线。这样从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。
利用由特殊到一般的规律,就可以引导学生探寻双曲线(a>0,b>0)的渐近线,让学生同样利用类比的方法,将其变形为,,由于双曲线的对称性,我们可以只研究第一象限向远处的变化趋势,继续变形为,,可发现当x无限增大时,逐渐减小、无限接近于0,逐渐增大、无限接近于,即说明对于双曲线在第一象限远处的点与坐标原点之间连线的斜率比小,与斜率为的直线无限接近,且此点永远在直线下方。其它象限向远处无限伸展的变化趋势可以利用对称性得到,从而可知双曲线(a>0,b>0)的图形在远处与直线无限接近,直线叫做双曲线(a>0,b>0)的渐近线。我就是这样将渐近线的'发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。
(2)证明
如何证明直线是双曲线(a>0,b>0)的渐近线呢?
启发思考①:首先,逐步接近,转换成什么样的数学语言?(x→∞,d→0)
启发思考②:显然有四处逐步接近,是否每一处都进行证明?
启发思考③:锁定第一象限后,具体地怎样利用x表示d
(工具是什么:点到直线的距离公式)
启发思考④:让学生设点,而d的表达式较复杂,能否将问题进行转化?
分析:要证明直线是双曲线(a>0,b>0)的渐近线,即要证明随着x的增大,直线和曲线越来越靠拢。也即要证曲线上的点到直线的距离
|mQ|越来越短,因此把问题转化为计算|mQ|。但因|mQ|不好直接求得,因此又可以把问题转化为求|mN|。
启发思考⑤:这样证明后,还须交代什么?
(在其他象限,同理可证,或由对称性可知有相似情况)
引导学生层层深入的进行探究,从而更深刻的理解双曲线的渐近线的发现及证明过程。
(3)深化
再来研究实轴在y轴上的双曲线(a>0,b>0)的渐近线方程就会变得容易很多,此时可利用类比的方法或者利用对称性得到焦点在y轴上的双曲线的渐近线方程即为。
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精确的画出双曲线。但是如果仔细观察渐近线实质就是双曲线过实轴端点、虚轴端点,作平行与坐标轴的直线所成的矩形的两条对角线,数形结合,来加强对双曲线的渐近线的理解。
4.离心率的几何意义
椭圆的离心率反映椭圆的扁平程度,双曲线离心率有何几何意义呢?不难得到:,这是刚刚学生在类比椭圆的几何性质时就可以得到的简单结论。通过对离心率的研究,同样也可以使学生进一步加深对渐近线的理解。
由等式,可得:,不难发现:e越小(越接近于1),就越接近于0,双曲线开口越小;e越大,就越大,双曲线开口越大。所以,双曲线的离心率反映的是双曲线的开口大小。通过对这些性质的探究,就可以更好的理解双曲线图形与这些基本量之间的关系,更加准确的作出双曲线的图形。
5.例题分析
为突出本节内容,使学生尽快掌握刚才所学的知识。我选配了这样的例题:
例1.求双曲线9x2-16y2=144的实半轴长和虚半轴长、顶点和焦点坐标、渐近线方程、离心率。选题目的在于拿到一个双曲线的方程之后若不是标准式,要先将所给的双曲线方程化为标准方程,后根据标准方程分别求出有关量。本题求渐近线的方程的方法:(1)直接根据渐近线方程写出;(2)利用双曲线的图形中的矩形框架的对角线得到。加强对于双曲线的渐近线的应用和理解。
变1:求双曲线9y2-16x2=144的实半轴长和虚半轴长、顶点和焦点坐标、渐近线方程、离心率。选题目的:和上题相同先将所给的双曲线方程化为标准方程,后根据标准方程分别求出有关量;但求渐近线时可直接求出,也可以利用对称性来求解。
关键在于对比:双曲线的形状不变,但在坐标系中的位置改变,它的那些性质改变,那些性质不变?试归纳双曲线的几何性质。
变2:已知双曲线的渐近线方程是,且经过点(,3),求双曲线的标准方程。选题目的:在已知双曲线的渐近线的前提下
数学说课稿 篇9
一、教学内容
义务教育六年制小学数学第六册——《认识分数》第一课时:分一分(一),教学课本P53—55页的内容及相应的“练一练”。
二、教材分析
1、教材的地位、作用
这部分内容是在学生掌握万以内整数的基础上进行教学的,这部分内容是这一单元的起始课,也是这一单元的核心,对以后学习起着至关重要的作用。
2、学情分析
学生从认识整数发展到认识分数是一次飞跃,学生在生活中听说过1/2,1/3,但是他们并不理解,分数的产生是从等分某个不可分的单位开始的,儿童生活里有这样的经验,但不会用分数来表述。教学中要注意让学生从实际生活出发,在丰富的操作活动中获取知识。
3、教学目标
1、知识与技能方面:初步理解分数的意义,体会学分数的必要性,会认、读、写简单的分数。结合直观操作,会用折纸、涂色等方式表示简单的分数。
2、过程与方法方面:从日常生活实例中抽象出数的过程,通过操作、讨论等学习活动体会认识分数的基本途径和方法。
3、情感与态度方面:感受主动参与、合作交流的乐趣,培养自主探索的学习习惯。
4、教学重点:理解分数的意义。
5、教学难点:让学生初步建立分数的概念,会用折纸、涂色等方式表示简单的分数。
三、说教法与学法
(一)、教法方面
1、注意新旧知识的衔接,以故事创设情境导入,设置悬念,激发学生的学习兴趣,使学生乐学。
2、充分利用直观教具、学具,引导学生观察,适时总结,配合发现法、谈话法、讲授法进行启发式教学。调动学生学习的积极性、主动性。
(二)、学法方面
充分利用学具、让学生动手操作,用眼观察、动脑思考,在实践活动中获取知识,注意同桌互学,集体交流。
(三)、教具与学具准备
1、教师准备:小黑板1块;涂一涂的图;长方形纸3张;正方形纸8张;苹果4个;彩色粉笔1盒。
2、学生准备:彩色蜡笔;长方形纸3张;正方形纸4张
四、教学程序
(一)、创设情境,引入新课
1、故事导入,以旧引新。一节新课,往往是从旧知识引入,遵循儿童的认知规律,抓住“分数的初步认识”必须在“平均分”的概念上建立的。教学一开始我是这样设计的,谈话:有一天,淘气和笑笑到你家做客,妈妈拿出4个苹果来招待他们(教师出示4个苹果),你帮妈妈想一想怎样分苹果才能让两人都满意?
学生:每人分2个苹果。老师:两人得到的苹果同样多,这样的分法叫什么分?学生回答:平均分。板书:平均分。再问:如果妈妈只准备了两个苹果,应该怎样平均分呢?学生:每人分1个。如果只有一个苹果,要把它平均分给淘气和笑笑(老师出示1个苹果),他们每人能得到几个苹果?学生:半个。教师说半个能用一个什么数来表示呢?告诉学生半个可以用1/2来表示,师板书:1/2。这个数我们以前没有学过,这个数叫做分数。
揭题,板书课题:认识分数。通过熟悉的生活情境由整数引入分数。
(二)、动手操作、探究新知
1、认识1/2
①小黑板出示课本53页“涂一涂”中的图,谈话:你能用平均分的方法涂出它们的1/2吗?(也就是涂出它们的一半)。在动手之前,提示学生:先用眼观察,花瓶、脸谱、六边形、圆形、正方形这些都是前面学过的什么图形呢?学生答:轴对称图形。我们只要画出什么就能涂出图形的1/2(只要画出对称轴)。通过涂一涂,让学生体会1/2不仅可以表示半个苹果,还可以表示半个花瓶、半个脸谱、半张纸等,感受数学模型的.作用,还可通过反例进一步突出“平均分”在分数概念中的核心作用。
②折纸游戏:自主参与,让学生拿出一张正方形纸,动手折一折,涂上颜色表示它的1/2。学生动手折、涂好后,老师选出几幅不同的1/2图贴在黑板上,告诉学生它们的折法不同,涂色部分也不同,但都可以用1/2来表示。肯定表扬不同做法的同学,讲清涂色部分是这张正方形的1/2,为今后学习分率埋下伏笔。通过游戏,发挥学生创造不同涂法。
2、认识四分之几
过渡:除了能折出这些纸的1/2,你能不能用这张正方形纸折出它的1/4?(板书:
①让学生分小组合作,每人折出一种1/4,并在1/4部分涂上颜色,动手折后,问:你在正方形纸中深色占几份?你是怎么折的?指名上台演示1/4不同的折法,同桌互相试着说说1/4的意义,老师适时引导说出:把一张正方形纸平均分成4份,取其中的一份就是这张纸的1/4。
②让学生涂出自己折的正方形纸的2/4、3/4、4/4,分别让学生上台说一说,对多种折法给予肯定。
通过折一折,涂一涂活动,认识1/4、2/4、3/4、4/4等分数的意义。
3、创造分数
过渡:在分数王国里有没有其它的分数?有你喜欢的吗?让学生说出自己喜欢的分数,并用长方形纸折出,让学生边折边说。展示作品,如:老师喜欢的分数是2/8,我用长方形纸折出八份,取其中的二份,用分数2/8表示。
通过自己创造,在创作中拓宽知识,认识新的分数。
4、介绍分数各部分名称、分数读、写法及各部分表示的意思。
让学生自学,自学要求:1、看课本54页红色栏的文字内容,互相说一说,你学到了有关分数的哪些知识?
2、学生介绍,老师板书,像1/4、2/4、3/4、4/4……都是分数。
……分子
……分数线 读作:四分之三
……分母
3、老师介绍写法,先写中间的分数线,再写分数线下的分母4,最后写分数线上的分子3。让学生书空写3/4。
4、老师小结:实际上,分数就表示把一个物体平均分成了几份,取其中的一份或几份的数。
三、分层练习、巩固新知
练习是形成技能的基本途径之一,根据大纲要求:练习的设计要有层次、有坡度、难易知度,结合本班学生的学习基础,设计下列练习。
1、模仿练习,完成54页的“说一说”。
先让学生读一读,写一写这三个分数,再让学生说一说每个分数的意义。如:三分之一读作:三分之一,三分之一表示把一根绳子平均分成3份,其中的1份表示这根绳子的三分之一,通过读、写让学生加深对分数的认识,会认、读、写简单的分数。
2、基础学习,完成55页练一练第1题,(出示小黑板)
先让学生仔细观察每个图形平均分成了几份,再用分数表示涂色的部分,练习后,指名回答,集体订正,教育学生仔细审题,养成认真做题的学习习惯。
3、涂色练习,完成练一练第2题。
让学生看清楚每个分数的分数,再结合图涂上准确的格子。指名板演,其余练习。做完后,指名回答,有错让学生纠错,通过动手涂色进一步巩固对分数的认识,强化所学知识。
4、诊断练习:完成练一练第3题
先让学生自己当一回小法官,判断图中的阴影表示是否正确,设计让学生抢答,把课堂推向高潮,要让学生说出一、二小题错误的原因是:没有平均分。
5、对号入座,加深学生对1/2的认识,训练学生的思维及观察能力。
四、全课小结
今天这节课你学到了什么?引导学生结合板书说出本节课认识了分数,如认识了1/2、1/4……等这些分数。会用折纸、涂色表示分数,认识了分数各部分的名称及意义,会读写简单的分数。
五、板书设计
板书设书是课堂教学的重要手段,板书突出教学的生、难点。为学生掌握知识打下基础。我在设计板书时注意以下两点:
1、图文并茂,条理清晰。
2、突出重点与课堂小结相呼应。
认 识 分 数
(平均分)
……分子
……分数线 读作:四分之三
【数学说课稿】相关文章:
“用数学”数学说课稿03-09
数学说课稿03-25
初中数学的说课稿02-16
数学广角说课稿11-07
数学乐园说课稿11-12
数学活动说课稿07-09
《数学乐园》说课稿07-09
数学统计说课稿07-02
小学数学的说课稿01-09
数学说课稿11-05