有关数学说课稿八篇
作为一名专为他人授业解惑的人民教师,有必要进行细致的说课稿准备工作,借助说课稿我们可以快速提升自己的教学能力。说课稿应该怎么写才好呢?下面是小编收集整理的数学说课稿8篇,欢迎阅读,希望大家能够喜欢。
数学说课稿 篇1
一、说教材
1.教材分析:
本节课是人教版义务教育课程标准实验教科书数学一年级下册第六单元100以内的加法和减法中第一课时的内容。
它是学习多位数加、减法以及乘除法的基础。这部分内容学习的好坏,将对以后计算的正确和迅速程度产生直接影响。所以教材首先安排了整十数加减整十数的口算,它是进一步学习口算的基础,是在10以内加减法的基础上进行的,只是计数单位不同,这里以十为计数单位。例如 20+10,计算时想2个十加1个十是3个十,就是30,这样安排有助于学生加深对相同单位的数可以直接相加减的认识,为后面学习任意两个数相加减打基础。
根据新课标要求,结合本课在教材中的地位和作用,我拟定的教学目标为:
(知识与技能)在情境中发现问题并解决问题的过程中,掌握整十数加减整十数的计算方法,并能正确计算。
(过程与方法)用直观的方式使学生经历整十数加、减整十数的计算方法的概括过程,体验计算方法的多样性。
(情感态度价值观)为学生提供自主探索、合作交流的空间,逐步培养迁移能力、口算能力以及口语表达能力。
3.教学重点、难点
依据以上三维目标,我将本课教学重点定为:学会整十数加减整十数的计算方法。
教学难点为:理解整十数加减整十数的算理,准确计算。
二、说教法、学法
有句话说得好兴趣是最好的老师,六七岁的孩子,刚走进学校开始学习文化知识,还沉浸在童话故事的世界里,根据学生的这一心理特点,我把书上的数学知识和生活实际联系起来,编成猴子摘苹果的故事来创设情境,铺垫引入新知,使学习的主要内容带着愉快的节奏呈现出来。再引导学生根据情境,提出数学问题,并通过想一想、数一数、说一说、摆一摆(摆小棒)等多种形式,引导学生通过自己的学习体验来学习新知,积极开展本节课的教学活动。
使用的教具学具是:多媒体课件、计数器、小棒。
三、说教学程序
合理安排教学过程是教学成功的关键之一,为了更好地完成本节课的教学任务,突出重点,突破难点,我设计了四个环节进行教学。
创设情境,铺垫引入。
(首先呈现猴子摘苹果图)引出话题:
同学们,猴子和小猪在做什么?
要摘下苹果,得完成苹果上附有练习题,让我们一起帮帮小猴子吧?
『设计意图:良好的开端是成功的一半,教学一开始,创设帮猴子摘苹果的情境,引发课堂互动,将枯燥,机械重复的计算复习置于有情节的探索中,也为本节课的学习做好知识铺垫。』
(环节二)自主学习,探究新知
新课标强调,要让学生在实践活动中进行探索性的.学习,根据这一理念,我设计了下面的活动,让学生在体验中学习,在学习中体验。
1、情境引入,提出问题。
2、合作交流,探究算法。
3、多中侧一,优化算法。
谈话:同学们,你们用智慧的大脑帮助小猴子摘了这么多的苹果,真了不起!
1、让学生根据在情景图中获得的数学信息,提出不同的数学问题。
2、先让学生根据问题列出算式,然后着重让学生探讨10+20的计算方法。新课改后,从一年级开始就提倡算法多样化,我会放手让学生独立的列算式,给学生创设自主探索,和小伙伴合作交流的空间,去发现、收获算法。
3、数学是讲究最优化的,有必要着重强调以十为计数单位进行计算的方法。10+20,1个十和2个十合起来是3个十,是30。
『设计意图:学生在摘苹果的情境中,通过观察,发现并提出了多种数学问题,然后组织学生思考计算方法,再相互交流,这种安排让学生在自主探索思考和合作交流中,了解整十数加减整十数的计算方法,留给学生探索、思考、动口、动手的时间和空间,开阔学生思路,培养学生合作精神。』
(环节三)实践应用,发展能力。
(多媒体课件展示)
『设计意图:练习是课堂教学的重要组成部分,我将课本中的习题以逛超市的形式呈现,继续创造孩子们熟悉又感兴趣的场景,让孩子们在愉快的购物活动中,运用计算知识,提高计算能力。这样设计,也让学生感受到数学来源于生活,生活中处处有数学。』
(环节四)总结。
这节课我们学习了什么知识?在口算整十数加、减整十数时怎么想?
『设计意图:引导学生看板书小结(整十数加整十数,想几个十加几个十;整十数减整十数,想几个十减几个十。)立足引导,让学生参与,展现出这节课浓缩后最本质最主要的内容。』
四、说板书设计
整十数加减整十数
10 + 20 = 30 3010 = 20
1个十 2个十 3个十 3个十 1个十 2个十
『设计意图:学会整十数加减整十数的计算方法,理解算理,准确计算这本节课的教学重点难点。这样板书不仅突出教学重点,更有利于帮助学生准确掌握算理。』
探究活动是一个动态的学习过程,在教学中需要教师关注到学生的情绪状态,设法维持他们学习的兴趣和注意力,让学生的思维不断的碰撞出新的智慧火花,因此在整个教学过程中,我会用表扬、赞美的语言和眼神给予学生思维鼓励。
数学说课稿 篇2
一、教材分析
《倒数的认识》是苏教版小学数学第十一册的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打下基础,起着承上启下的作用。因此用分数乘法的知识作为铺垫让学生在观察中去发现,在探索中去找规律,从而切实理解倒数的含义,并能主动地运用所学的知识。
二、教学目标
根据本节课的教材内容以及学生的特点,我确立了以下的教学目标:
1、使学生明确倒数的意义,并能根据倒数的意义判断两个数是否互为倒数。
2、使学生通过观察、交流总结出求一个数的倒数的方法。
3、激发学生的学习兴趣,让学生体验成功的快乐。
三、教学重点与难点
教学重点:知道倒数的意义、会求一个数的倒数。
教学难点:认识“0为什么没有倒数”。
四、教学方法
基于教材内容比较单调,那么只有在教法上体现新、奇、特才能激发学生的学习兴趣,才能让学生想学,要学。首先,我将在教学中联系小学生熟悉的身边的实际,使抽象的内容直观化,同时把要解决的问题通过联系实际,帮助学生架起由感性认识到理性认识的桥梁,可以达到理解掌握新知识,培养学生兴趣的目的,同时也体现了数学的趣味性。其次,在教学中扮演一个引导者,引导学生从事数学活动和交流,引导学生去发现问题,讨论问题,解决问题,帮助他们在自主探索活动中真正理解和掌握本节课的数学知识、技能、思想和方法,培养学生学习数学的能力。比如教材中只是简单的出示几个分数,观察它们的特点,然后就引出倒数的含义、特点,学习怎样求一个数的倒数。其实这样的导入根本不能激发学生学习的.兴趣,还有点牵着学生鼻子走的味道。我在教学中首先让学生观察,初步了解倒数的特点,然后自己再写出等于1的算式,看看自己能写出几种不同类型的式子,然后学生汇报、分类,要让学生自己说出等于1的乘法算式有特色,有怎样的特色。这样学生就对倒数的意义中的“乘积是1的两个数”有了彻底的理解。“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生尝试发现,体验到创造的过程;另一方面,也可以增强学生的合作意识,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,在互动中迸发出智慧的火花。
五、教学过程
在教学中教师是一个引导者,引导学生从事数学活动和交流,引导学生去发现问题,讨论问题,解决问题,帮助他们在自主探索活动中真正理解和掌握本节课的数学知识、技能、思想和方法,培养学生学习数学的能力。学生是课堂的主人,如何体现学生的主人意识,我想在数学课堂教学中,学生应始终在合作中发现问题,在合作中探讨问题,在合作中解决问题。这样才能体现学生在数学课堂上的主人意识。
本节课我是按照四大部分进行教学的:
1、课前谈话,渗透关系
说说生活中、数学中的相互关系,比如8是4的倍数,4是8的因数等等,今天我们要继续研究两个数之间的有趣关系。这样就比较自然的过渡到新课的学习中,渗透“互为”这个倒数概念中的关键词语,帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍,并为学习新课做了很好的铺垫。
2、出示例题,探究新知
(1)出示例题7
观察这几个数,他们之间哪些数关系密切?
这些数之间有什么关系?(有的会说分子、分母颠倒了,有人会说乘积都等于1)
你还能举一些这样的例子吗?
明确:乘积是1的两个数互为倒数。
说明:3/8 和8/3 互为倒数,也就是说3/8的倒数是8/3,8/3的倒数是3/8。强调“互为”的意思
说一说你写得算式中哪两个数互为倒数
(此处在学生观察的基础上,让学生举例说明倒数,积累感性材料。引导学生重点理解“乘积是1”,理解“互为”是指两数的依存关系。)
3、激励求知,掌握方法
提问:同学们,你们会求一个数的倒数吗?
那老师来和大家说倒数,我说一个数,你们马上说出它的倒数,看谁说的快有对!
分数、整数、小数、特殊数(0、1),当说到0时,交流一下0有没有倒数,为什么。
提问:互为倒数的两个数相等吗?
强调: 互为倒数的两个数不能用=表示。
(该环节是让学生寻找求倒数的方法,注意先独立思考,再合作交流,特别是0为什么没有倒数要让学生深入理解后得出结论。这样设计,既突出本课的重点,又有利于突破难点;既有对探究倒数的求法,又使学生产生新的认知冲突,既帮助学生巩固知识,又轻松、顺利地教学了1和0这两个特殊数的倒数。 这样学生在宽松的氛围里,勇于发言、敢于辩论。既分散了教学难点,又让学生享受到了思维的快乐!)
4、巩固练习
(1)练一练
(2)练习十1、2、3、4题
5、课堂小结
通过这节课,你学到哪些知识?先自己想一想,再与同桌互相说一说。
(该环节的设计,是让学生在互动中互相启发,共同发展。“自主探究”意在改变教与学的方式,教师的教是为学生的自主学习、主动探究创造条件,是为学生的独立思考,动手实践,自主探究等合作交流引路搭桥,是让学生真正在探究学习中发展。)
数学说课稿 篇3
教材分析:
这一节的内容包括8,9的认识,有关8,9的加减法 以及8,9加减法的应用三部分,共5课时。
"用数学"是第三课时,其内容分为三部分:一是通过同一情境反映两个不同的数学问题,让学生初步感受数学与生活的联系;二是让学生学会看已知数量和问号之间的关系找到合适的计算方法列式并计算;三。让学生能看图提出简单数学问题,并解决问题。内容对刚入学不久的儿童来说,既有现实性,趣味性,又有一定的挑战性,另外,咯市还通过结合"用数学"的教学过程来对学生进行热爱自然,保护动物的教育
设计理念和思路:
本节课的教学设计力图体现"尊重学生,注重发展"的教学理念。它注重培养和发展学生的思维能力,创设符合其水平的思维情景和条金,使学生思维活跃,兴趣盎然。
本节的"用数学"是让学生能寻找出解决问题的方法并结算出结果。在教学中还应让学生寻找问号的数量时侧重通过计算的出,而不是去数未知数的数量,所以本节的设计意图是在指导学生找出求"一共有几个蘑菇"用加法解决,而求"剩下有几只小象休息"用减法解决。让学生初步知道求整体,用加法,求部分用减法,再通过加减法两个题目的对比,引导学生总结出口诀:求总数,用加法,部分相加是答案;求部分,用减法。总数减另部分是答案。再让学生运用这个口诀,看图提数学问题,层层递进,让学生逐步理解接受。
针对以上的教学设想,却了本节课的教学目标:
1 让学生进一步掌握加,减法的意义,和10以内的加减法的计算方法。
2 培养和提高学生用所学知识解决实际问题的能力。
3 能根据已知量和问号之间的关系,选择合适的计算方法列式计算。
4 能根据图画提出至少三个数学问题,并解决问题。
教学程序:
依据这节课的教材知识结构及小学生认知规律和发展水平,为优化教学过程,实现"尊重学生,注重发展"的课堂教学要求,这节课的程序安排为:
一、创设情境,引新设疑
1(播放录音)
(出示电脑画面,有声音出:嗨,大家好,我是你们的新朋友哈利,小朋友们,今天我要带你们去快乐的森林玩一玩!,
提问:① 你们知道哈利要带我们去哪里玩吗? (快乐的森林)
老师板书题目:快乐的森林
② 你见过的大森林是什么样子的?———————(有美丽的树木,可爱的小动物……)
老师教育学生要爱护大自然,爱护环境,爱护小动物
二、合作探究,体验发现
1,引导学生体验加法的含义
电脑出示动态蘑菇园,导入:哈利首先要带我们去快乐蘑菇园听小蘑菇们唱歌
问题 ①:通过观察,你看到现在在唱歌的是几个蘑菇呢?
(通过观察,现在有6朵蘑菇在唱歌)
师: 你再听听,(有声音出:真好听,真好听,我们也想来一起唱。———————进入两朵小蘑菇)
问题 ②:谁来帮哈利算一算:现在一共有几朵蘑菇在唱歌了呢?并说说你是怎么想的?
①交流算法:6+2=8,一共有8朵蘑菇。把左边的6朵与右边的2朵加起来就是8朵
②引导理解:列式2+6=8对吗?
(求一共有多少蘑菇就是把这里的蘑菇加起来就得出结果了,可以是左边加右边,也可以是右边加左边,所以2+6= 8 6+2=8都对)
小节总结与评价;
小朋友们这么聪明又这么乐于助人,哈利为了感谢你们对他的帮助,特意邀请你们去看看森林里的'节目表演—小象跳舞
2,引导学生体验减法的含义
(电脑出示的一共有9头象的字样。再3头小鹿跳舞的画面和音乐。再出示问题:有几头小象没有跳舞?
①引导观察,组织讨论
教师启发:引导学生弄清问题是:
有9只小鹿,3只小鹿在跳舞,不跳舞的小鹿有几只?
② 引导学生列式解决问题:
因为一共有9只小鹿,3只跳舞,求不跳舞的小鹿就是用总共的9只小鹿减去跳舞的3只小鹿列式为:9—3=6
3、引导学生进行比较分析,再总结方法
(电脑出示蘑菇和小象图的比较图)
①提问:为什么求小蘑菇的题用加法解决,而求小象的题用减法解决
②引导学生明白小蘑菇的题目是求整体的数,即总数,求总数就用加法。小象的题目是求其中的一部分。求部分就用减法
③老师总结口诀:
求总数,用加法,部分相加是答案
求部分。用减法,总数减另部分是答案
三、巩固练习,加深理解
① 出示课件一:(一共有8只小鸭子,水里面有3只,求在岸上的有几只?)
让学生观察,把题意说给你的同桌听听,再把算式填写完整
8-3=5
②出示课件二;(左边有7只小狗,右边有2只小狗,求一共有几只小狗?)
2+7=9
③引导汇报,结合学生回答,电脑演示,进行订正
四、唱歌,休息
五、联系生活、整体感知、加深理解
(出示小鸟图:原来有5只小鸟,后来飞来了4只,)
引导学生提问:① 原来有5只小鸟,后来飞来了4只,现在一共是多少只?
5+4=9 4+5=9
②有一些小鸟在树上,后来又飞来了4只,现在一共是9只,求原来有几只?
9-4=5
③现在一共有9只小鸟,原来有5只小鸟,求后来飞来了几只?
9-5=4
④原来的小鸟比后来飞来的小鸟多几只?
5-4=1
⑤后来飞来的小鸟比原来的小鸟少几只?
5-4=1
六、活动练习,巩固旧知
(用数学)说课稿,标签:一年级数学说课稿,小学数学说课稿,
发给20位小朋友每人一张卡片,每张卡片上都有一道数学题,让学生把得数是“8”的投入到“8”号信箱中,把得数是“9”的投入到“9”号信箱中,还有一些小朋友的卡片得数不是8也不是9,便找不到信箱,就请他们讲讲,自己没有把信送出去的原因。
七、总结收获,渗透联系
①通过这节课你学会了什么?
②回顾并记忆口诀:
求总数,用加法,部分相加是答案
求部分,用减法,总数减另部分是答案
数学说课稿 篇4
一.说教材
(一)教学内容
本节课主要内容是命题的概念,能把命题改写若p则q的形式,渗透由特殊到一般的化归数学思想。
(二)教材的地位作用
命题的概念,若p则q形式的命题是本章的重要内容,是后续学习充要条件的基础,这一章我们在初中的基础上学习常用逻辑用语,体会逻辑用语去表达和论证中的作用,他将成为反证法的理论依据,并为进一步学习,特别是培养学生的思维能力,推证能力打基础
(三)教学目标
1、知识与技能:
(1)理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;
(2)能把命题改写成“若p,则q”的形式;
2、过程与方法:
(1)多让学生举命题的例子,培养他们的辨析能力;
(2)能把命题改写成“若p,则q”的形式;培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.
3、情感、态度与价值观:
通过学生的参与,激发学生学习数学的兴趣。
(四)教学重点:
命题的概念、命题的构成
(五)教学难点:
分清命题的条件、结论和判断命题的.真假
二说教法
教学过程是教师和学生共同参与的过程,是师生多向合作的过程,鼓励学生自主学习,充分调动学生的积极性、主动性。以学生发展为本,有效的渗透数学思想方法,提高学生素质,根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)引导发现法
(2)练习巩固法
三、说学法
教给学生学习方法比教给学生知识更重要,本节课注意调动学生积极思考,主动探索,尽可能地让学生参与到教学活动中,我进行如下学法指导:
(1)由特殊到一般的划归方法:学习中学生在教师的引导下,通过具体的案例,让学生去观察、讨论、探索、分析、发现、归纳、概括
(2)练习巩固法
四、教学过程
学生探究过程:
1.思考、分析
下列语句的表述形式有什么特点?你能判断他们的真假吗?
(1)三角形的三个内角之和等于1800
(2)如果a,b是任意两个正实数,那么a+b≥2(ab)1/2;
(3)如果实数a满足a2=9,则a=3;
(4)中学生目前的学业负担过重;
(5)中国将在本世纪中叶达到中等发达国家的水平
2.讨论、判断
学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(2)为真,(3)为假,(4)(5)的真假需要根据实际情况确定,总是可以确定真假.
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
3.抽象、归纳
定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.
例1判断下列语句中哪些是命题?是真命题还是假命题?
(1)空集是任何集合的子集;(真命题)
(2)若整数a是素数,则a是奇数;(假命题)
(3)指数函数是增函数吗?(不是)
(4)若空间中两条直线不相交,则这两条直线平行;(假命题)
(5)x>15.(不是)
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
练习
判断下列语句中哪些是命题?是真命题还是假命题?
(4)求证∏是无理数
(5)若X是实数,则X2+4X+5≥0
4.命题的构成――条件和结论
上面例1中的(2)(4)具有“若p,则q”的形式.在数学中,这种形式的命题是常见的.
“若p,则q”也可写成“如果p,那么q”“只要p,就有q”等形式.
其中p叫做命题的条件,q叫做命题的结论.
例2指出下列命题中的条件p和结论q;
(1)若整数a能被2整除,则a是偶数;
(2)若四边形是菱形,则它的对角线互相垂直且平分
解:(1)条件p:整数a能被2整除,结论q:整数a是偶数;
(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.
有一些命题表面上不是“若p,则q”的形式,但可以改写成“若p,则q”的形式,例如:
垂直于同一条直线的两个平面平行.
若两个平面垂直于同一条直线,则这两个平面平行.
例3将下列命题改写成“若p,则q”的形式,并判断真假;
(1)垂直于同一条直线的两条直线平行;
(2)负数的立方是负数;
(3)对顶角相等;
解:(1)若两条直线垂直于同一条直线,则这两条直线平行,它是假命题。
(2)若一个数是负数,则这个数的立方是负数。它是真命题。
(3)若两个角是对顶角,则这两个角相等。它是真命题。
5.练习:P4:1.2.3
6.课堂小结
(1)、命题的概念
(2)、能指出命题的条件和结论
7.思考题
一,下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
(2)若f(x)是周期函数,则f(x)是正弦函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数;
(4)若f(x)不是周期函数,则f(x)不是正弦函数;
二,四种命题中任意两个命题之间有关系吗?是什么关系?它们的真假性之间有关系吗?是什么关系?
8.作业 P8:习题1.1A组第1、题
数学说课稿 篇5
一、教材分析
本节课的教学设计力图体现尊重学生,注重发展,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与分数乘法中求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味。
二、学情分析
在学习了分数乘法的基础上,孩子们对分数的运算有了一定的掌握,计算能力的日益提高,也使得孩子们有更深一步探求的欲望,因此,利用孩子们学习的积极性,开展本节课,培养学生发现问题、提出问题、分析问题和解决问题的能力,从而培养学生的基本技能。
三、教学目标
根据上述对教材内容和学生实际情况的分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:
基础知识目标:使学生学会掌握简单分数除法应用题的解法,能熟练地列方程解答这类应用题。
基本技能目标:进一步培养学生解决问题的能力,增强学生的应用意识。
基本思想目标:在充分利用教材情境引导学生学习分数除法的同时,渗透数形结合、建模、迁移等数学思想。
基本活动经验目标:激发学生学习数学的兴趣,让学生树立能够学好数学的信心。
四、教学重点与难点
根据教材内容和本班学生的实际情况我把弄清单位1的量,会分析题中的数量关系确定为本节的.教学重点;把掌握分数除法应用题的解题方法确定为本节的教学难点。
五、教学方法
通过以下的方法让学生亲身体验合作的成功和愉悦。
1.观察发现法,通过观察电脑课件中国王的故事的演示,突出单位1这一重要知识点。
2.尝试发现法,让学生通过小组讨论的方式,互相讲解自己的方法和见解,自己去列式,在尝试的过程中发现问题。
数学说课稿 篇6
一、说教材
1、本节教材是义务教育小学数学(苏教版)六年制第十二册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。
2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重、难点:
⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;
⑵教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教、学具准备:⑴教具准备:等底等高的圆柱、圆锥一对;
⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。
二、说教法
著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:
1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
三、说学法
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法
有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的`圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课我设计了以下四个教学程序:
1、谈话导入
⑴出示圆柱:如果想知道这个容器的容积,怎么办?
⑵出示圆锥:如果想知道这个容器的容积,怎么办?
2、教学例五
⑴引导观察:这个圆柱和圆锥有什么相同的地方?
⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?
⑶讨论:可以用什么方法来验证你的估计?
⑷分组验证;引导学生用适合的方法进行操作验证。
⑸交流:说说自己小组是怎么验证的,得到的结论是什么?
⑹讨论:①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?②那怎么算出这个圆锥的容积呢?③推导出圆锥体积的公式(师板书)。④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?
⑺完成“试一试”。
3、巩固练习
做“练一练”。
4、归纳总结
通过本节课你有什么收获?有哪些问题需要我们今后注意?
数学说课稿 篇7
一、教材分析
(一)教材的主要内容和地位
数学是一门来源于生活,又应用于生活的学科。生活实际中,有不少问题的解决都涉及到数学中的分式知识。分式是继整式之后对代数式的进一步研究,是小学所学分数的延伸和扩展。与整式一样,分式也是表示具体问题情境中的数量关系的一种工具,是解决实际问题的常见模型之一。本章内容的学习为今后进一步学习函数和方程等知识起到奠基的作用。苏科版教材将"分式"这部分内容安排在八年级下册。《分式》第1节的内容分两课时来完成,而第一课时的内容则是分式的起始课,它是在学生学习了整式运算、分解因式的基础上进行的,学好本节课,是今后学习分式的性质、分式的运算及解分式方程的前提;其中对"分式有意义的讨论"为以后学习反比例函数作了铺垫。因此,本节内容起到了承上启下的作用,符合学生的认知规律,充分体现知识螺旋上升的特点。
(二)教学理念
本节内容充分体现了数学离不开生活,生活离不开数学,进一步认识到数学的重要性。体现"人人学有价值的数学,人人都能获得必须的数学"的新课标精神。学生的活动交流也会促进他们的合作、探究能力的增长。
二、目标分析
(一)学习目标
根据学生认知发展水平和已有了知识经验基础,结合新课程标准"分式"的目标要求,我从"知识与技能、过程与方法、情感与态度"三个方面确定了本节课的教学目标。
1、知识与技能目标:
知道分式概念,学会判别分式何时有意义,何时值为零,能用分式表示实际问题中的数量关系;明确分式与整式的区别
2、过程与方法目标:
经历分式概念的自我构建过程及用分式描述数量关系的过程,体会分式的模型思想,进一步发展数感;学会与他人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
3、情感和态度目标:
通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造;利用实际情境,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心。体会"人人学有价值的数学,人人都能获得必须的数学"精神。
三、重点、难点
学习重点:本节通过具体的实例引入"分式"的概念,再以三个具体的例题训练本节课的所有内容。因此将重点定为:了解分式的形式(A、B都是整式)并理解分式概念中的"一个特点":分母含有字母;"一个要求":字母的取值要使分母的值不为零。
学习难点:尽管有分数知识为基础,但是当分母中带有字母时,如何确定一个分式有无意义,怎样使一个分式有意义应是本节课学习的难点。
四、学生情况分析
经过三个学期的学习,八年级下的学生已经养成了良好的数学学习习惯,同时也有了一定的自主探索、合作交流的数学学习意识,学生的表达能力、概括能力都有了一定的提高。从学生已有的知识水平来看,学生已经学习了整式的运算和因式分解内容,而分式与整式一样也是代数式,因此研究与学习的方法与整式相类似,学生可以通过观察、类比、归纳、概括等途经进行分式的学习。
五、教学设备或辅助设备
多媒体(首先,能够生动、形象地反映现实情境,增加课堂的容量,更好地提高课堂教学效率;另一方面,可以使整节课主次分明。还可以让学生感受科技的魅力)
六、教学方法
(一)教法分析
依据本节课的特点,遵循数学中的科学性和思维性结合原则、启发性原则、循序渐进原则和巩固性原则,引导学生阅读、思考,通过类比揭示旧知识与新知识的联系和区别,阐述问题的本质特征,重点知识还是应该以讲解法、谈话法和启发式教学和练习法为主,由浅入深,联系实际引导学生参与教学活动;难点知识启发引导,通过观察、尝试、练习加以突破,帮助学生通过自主探索、合作交流的活动,主动地获取知识,并通过类比、归纳、概括等途径来深化对知识的理解。根据八年级学生的认知规律,让学生多说、多交流、多练习、多总结。整节课体现教师是学习活动的组织者、引导者、参与者的角色,在课堂教学中,尽量为学生提供"自主探索、合作交流"的时空,让学生真正成为学习的主人。
(二)学法分析
正确指导学生阅读、分析,引导学生学习观察、类比、概括、归纳等方法,逐步培养学生会观察问题、思考问题、分析问题及解决问题。并加强同学之间的交流合作,形成良好的学习习惯。
七、教学程序
1、创设问题情境
(1)两个数相除可以把它们的商表示成分数的形式吗?
学生活动:说可以的让他们举几个例子。如等。
(2)一个分数由什么构成?
学生活动:一个分数由分子、分母和分数线构成。
(3)追问:分数线有什么功能?
学生活动:分数线具有除号和括号的功能。
(4)分数的分母能不能为零?为什么?
学生活动:分数中的分母不能为零,因为零不能做除数。
(5)设置疑问:如果用字母a和b()分别表示分数的分子和分母,那么可以表示成什么形式?
设计意图:尽管来自于课本,但在学生已有的知识基础之上,提出新的研究问题,出现任知冲突,使学生产生探究的兴趣。
2、学习新课
(1)板书课题:分式
学生活动:齐读课题2遍
设计:感知本节课要学习的内容
(2)学生阅读课本第40页第三、四、五自然段的内容。
"一块长方形玻璃的面积为2平方米,如果宽是a米,那么这块玻璃的长是()米,通常用米来表示。"
"小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是(元,通常用元来表示。"
"有两块棉田,一块面积为a公顷产棉花m千克;另一块面积为b公顷产棉花n千克,这两块棉田平均每公顷产棉花千克,通常用千克来表示。"
设计意图:让学生从具体的生活事例中感受分式和整式一样都是来源于生活,分式的产生也是为解决实际问题服务的,同时也是为了提高课本的地位,摈弃离开课本数学的观念,让学生从课本中来,也为到课本中去做好铺垫。
(3)你还能结合生活实际,再举出一些类似的例子吗?
学生活动:小组讨论后,交流结果,教师给正确的例子予以肯定。
设计意图:数学学习应该重视知识的迁移,时刻注意与身边事物相联系,体现生活数学的魅力。
(4)教师引导:请同学们观察、、这三个代数式的特点,找出他们的共同特点?
学生活动:这三个代数式都具有分数的形式,并且分母中都带有字母。
设计意图:这样的设计,主要是为了培养学生的观察、总结和概括能力,为分式概念的提出做好准备。
(5)教师带领学生回忆整式的概念?
设计意图:注重抽丝剥茧式的引导过程。
(6)上面的三个代数式中的2、a、m、n、m+n、a+b都是整式吗?
(7)如果用A分别表示2、n、m+n,B表示a、m、a+b,那么三个问题的结果都可以表示成什么形式?
学生活动:都可以表示成。
设计意图:培养学生概括能力,注重同一形式知识的同化。
(8)A、B表示什么?B中含有字母吗?B能不能为零?
学生活动:A、B表示整式,且B中含有字母,.
设计意图:此问题的设计实际是为分式概念的提出以及分式概念中的"一个特点"和"一个要求"做好陈述,具有前瞻意识,也为概念的进一步深化做好前呼的基础。
(9)教师概括并板书:一般地,如果A、B表示两个整式,并且B中含有字母,那么代数式叫做分式,其中A是分式的分子,B是分式的分母。
概念说明:
I、整式
II、B中含有字母
III、B不等于0
IV、与分数类似,分式的分数线同时具有除号和括号的双重功能。
(10)齐读概念。
3、典型例题分析及典型习题练习
(1)例1:下列各式中,哪些是分式,哪些是整式
设计意图:教师引导学生判断,并说出理由。启发学生理解分式概念的关键点:形式、分母中含有字母、分母不为零和分数线的功能,巩固对分式概念的理解。
(2)及时练习,巩固新知
①下列各式中,哪些是整式,哪些是分式,说明理由。
②列代数式,并说明列出的代数式是否为分式
I、某校八年级有学生m人,集合排成方队,如果恰好排成20排,那么每排有 名学生;如果恰好排成a排,那么每排有 名学生。
II、30名工人做1800个零件,x小时完成,平均每人每小时加工的零件个数是 .
III、如果圆的周长为厘米,那么这个圆的半径为 厘米。
IV、国家规定存款利息的纳税方法是:利息税=利息20%,储户取款时由银行代收利息税,如果小丽存入人民币a元,存款利息为b元,那么小丽应交纳利息税 元。
(3)例2:分式表示什么?
针对部分学生对题型可能陌生,教师先要以一两个具体的解释引导学生去说。如:
解:如果a元表示购买笔记本的钱数,b元表示每本笔记本的售价,那么表示每本降价1元后,用a元可购得笔记本的本数。
如果a表示长方形的面积,b表示长方形的宽,那么表示宽减少1个单位长度后,面积仍为a的长方形的长。
及时练习:你还能对分式的意义做出解释吗?
学生活动:同桌两人为一组讨论,讨论后以小组为单位交流讨论结果。
设计意图:启发学生联系实际生活,对分式做出合理的解释。感受分式的产生来自于生活,也是为解决实际问题而服务的。并增强同学们的合作意识。
(4)过渡:用具体的数值代替分式中的字母,按照分式中的运算关系计算,所得的结果就是分式的值。
(5)例3:求分式的值。
①a=3;②a=
解:①当a=3时,分式的值是;
②当a=时,分式的值是
(6)及时练习
填表后观察是如何随x的变化而变化的。
x -3 -2 -1 0 1 2
设计意图:通过练习巩固学生掌握求分式的值的方法,并让他们感受对分式中的字母,当取不同的数值时,分式的值也会产生变化,并初步感知变化的规律,渗透函数思想。
(7)例4:当x取什么值时分式有意义?
分析引导:与分数一样,分式的分母不能为0.如果分母中字母做取的值使分母的值为0,那么此时分式没有意义。
解:由分母2x-3=0,得x=,所以当时,分式有意义。
(8)及时练习:
当x取什么数时,下列分式有意义。
①; ②
学生活动:指名板演,其他同学独立完成。
教师活动:I巡视,并指导学困生解决问题。
II板演结束后,让学生评点
设计意图:对教学中的.难点应是课堂上教师和学生交流互动的重点,本练习的设计及教师与学生的互动,主要是针对分式有无意义的分式分母中字母取值问题而设计。通过练习、讨论、交流,巩固学生对这一知识的理解和掌握。
4、能力迁移
(1)当x为何值时,下列分式有意义?
①; ②
学生活动:以前后桌四人为一小组,讨论解决问题。
设计意图:一是适当增加习题的难度,二是纠正已经在学生头脑中形成的前面所有习题的固有印象,认为一题就一个数值符合要求或者一题必有一个符合条件的数值的错误印象,三是增强同学们的合作精神。
(2)选择一个你喜欢的值求下列分式的值
设计意图:避免出现所取的值使分式无意义。
(2)回忆:在表格中,填表后观察是如何随x的变化而变化的。
x -3 -2 -1 0 1 2
这题中当x取什么值时,分式的值为0?
设计问题:当x为何值时,下列分式的值为零?
①; ②
学生活动:讨论后根据老师的引导尝试解决问题。
教师活动:引导学生根据表格中的结果,理解当分式分子A为0的时候,而分式的分母B又不为0的时候,分式的值为0.
设计意图:通过讨论分析到解决问题,使学生意识到分式的值为0的条件。
5、小结与作业
1、学生活动:用自己的语言对本节课所学的知识加以表述。
设计意图:培养学生的归纳和概括能力。
2、教师总结:
①分式来自于生活,服务于生活。
②分式的意义和分式的值的求法是重点。
③如何使一个分式有意义主要是使分式的分母不为0.
3、回到课本。
学生活动:快速扫描课本P40-43的内容。
设计意图:整体感受本节课的内容。
3、作业:
课本P43习题8.1的内容。
设计意图:书面作业的形式,是课堂的延续,巩固学生对新知识的理解和掌握,培养学生的动脑能力。
八、评价
1、本节课在学生已有分数知识基础之上,通过观察、分析、归纳、练习、总结、作业等多种形式,使学生获得新知识。
2、可能出现的问题及处理方法
①分式和分数虽然具有类似之处,但是要使一个分式有意义,必须要做到分式分母中字母的取值使分母不为0.可能极少数学生对这部分知识掌握得还不够透彻。
出现这种情况的原因主要是学生对一元一次方程的解法掌握不够理想或者是对一个新知识的感知、理解、掌握需要过程。
按照新课标准,不能将结果强加给学生,针对这部分学生,一是在课堂巡视的时候给予及时指导,二是课后的个别辅导。
②能力迁移的第(2)题相对复杂,部分同学掌握起来可能有难度。
出现这种情况,主要是考虑的条件更多的原因。
针对此,教师一是要加强引导,二是要培养学生的互帮互学意识,形成合力,共同解决问题,建立新知识的模型。
九、板书设计
8.1分式
如果A、B表示两个整式,并且B中含有字母(),那么代数式叫做分式,其中A是分式的分子,B是分式的分母。
数学说课稿 篇8
一、说幼儿、说设计意图:
孩子是认知的主体,但作为大班的幼儿,思维特点以具体形象为主并向抽象逻辑思维过渡,其意识、能力还不是很强,尚处于探索的状态。他们在游戏的时候,常常会分不清左右,对自己的身体的左右也不是很清楚,为了引导孩子能够清楚区分左右,特设计此活动,发展幼儿的空间方位知觉和判断力!
二、说活动内容:
科学活动内容的选择,既要以幼儿的生活经验、实际需要、发展能力为基础,又要根据《纲要》的有关精神。本次活动内容的选择首先是根据《纲要》对科学领域目标的要求,即“对周围事物现象感兴趣,有好奇心和求知欲,能利用各种感官,动手动脑,探究问题,能用适当的方式表达交流探索的过程和结果;能从生活和游戏中感受事物的数量关系体验到数学的重要和有趣。”科学目标的`定位使我们强烈地感到:“数学教育的价值取向不再是注重静态知识的传授,而是注重儿童情感态度和探究解决问题的能力,与他人及环境的积极交流与和谐相处。二是考虑幼儿实际能力和发展需要。本班幼儿对空间方位感知经验不一样,为了更好地激发幼儿参与活动的兴趣,在内容的设计上尽可能考虑到寓教于乐中。这样就能让幼儿在积极的游戏活动中体验数学的乐趣。
三、说教学目标:
在确定活动目标时,我的预设目标从幼儿的实际能力和水平进行考虑的,因此,此次活动的目标我预设为:
1、以自身为中心区分自己身体的左右,分清自己的左边和右边,会向左和右移动。
2、知道站的方向变了,左边和右边的方向也会变。
3、初步感知参照物的不同所带来的左右方向的不同。
四、说教法和学法:
本次活动我采用了游戏法、赏识激励法等教学法,我介绍这两种方法。
(1)游戏法:
《纲要》指出:“教育活动内容的组织应充分考虑幼儿的学习特点和认知规律,注重综合性、趣味性、活动性,寓教育于生活、游戏之中,”游戏是幼儿最喜爱的活动,它能激发幼儿的学习兴趣,在欢愉的气氛中参与、体验、感受学习生活中的数学知识。因此,活动中我尽可能地将学习的内容转化为游戏的形式,如一开始,我就采用与幼儿玩肢体游戏进行引入,让幼儿在游戏中不知不觉中有了“左”、“右”的空间概念经验。
(2)赏识激励法:
人需要赏识,作为孩子更不例外。他们常常把教师的赏识看成是对自己的评价,当他们得到赏识时,就觉得自己有进步,能学好,有发展前途,以为自己在教师心目中是好孩子,因而产生自身增值感,增强学习的内部动力。因此在每次的游戏过程中,教师都以激励鼓励的方法请幼儿参与,在参加完游戏之后有相应的反应,若幼儿有错也给幼儿改错的机会,让幼儿大胆尝试,但不挫伤孩子的自尊。
五、说活动的组织过程:
根据本班幼儿的年龄特点和本活动的目标要求,我把此次活动分为四个环节。
(一)感知自身的左右。
《纲要》科学领域目标中指出:能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣;因此,我在本活动第一环节中设计了让幼儿寻找自己身体左右关系的“好朋友”的游戏,幼儿玩的欲望一下子被调动起来,幼儿很有兴趣,迫不及待地想把自己找到的“好朋友”告诉老师和同伴,这样,幼儿不仅主动地与同伴交流了探索的过程和结果,同时也加深了对“左、右”空间方位的认识。
(二)游戏中辨别左右。
这是巩固第一环节中接触到的对左右的区分,让幼儿一起感知左右。
(三) 感知参照物的不同,左右边的方向也变了。
此环节在设计过程中是让幼儿在原有对左右的认知水平上有一个提高,落实第二个目标。
(五)结束:联系生活,应用左右。
此环节是让幼儿利用所学知识应用到幼儿的生活中去,可以看到幼儿的学习程度如何。
反思:
本次活动的引题还是让幼儿比较感兴趣的,在知道了左边和右边之后,让幼儿说一说自己的左边是谁、右边是谁时,幼儿的举手积极性很高。
从目标的把握上,我对第二个目标的把握有所欠缺,在组织过程中,幼儿没有能掌握相应的知识。对于数学活动主要是源自于生活,运用于生活,对于这一点的渗透也不是很到位。教师自身的语言组织还不够精炼,需要进一步加强学习,提升自己的课堂教学水平。
【数学说课稿】相关文章:
“用数学”数学说课稿03-09
数学说课稿03-25
初中数学的说课稿02-16
数学广角说课稿11-07
数学乐园说课稿11-12
数学活动说课稿07-09
《数学乐园》说课稿07-09
数学统计说课稿07-02
小学数学的说课稿01-09
数学说课稿11-05