【热门】数学说课稿范文锦集五篇
作为一位兢兢业业的人民教师,时常会需要准备好说课稿,编写说课稿助于积累教学经验,不断提高教学质量。如何把说课稿做到重点突出呢?以下是小编为大家整理的数学说课稿5篇,希望能够帮助到大家。

数学说课稿 篇1
尊敬的评委老师: 您好!
很高兴能参加这次比赛,下面我就《三角形相似的条件》这节课谈谈我对新教材几点浅薄的认识以及对教材的处理,不妥之处还望指教。《相似三角形的条件》是北师大版数学课本八年级下册第四章第五节第一课时的教学内容。下面我从"教材分析","教学方法","学法指导","教学过程"四部分来说明我对这节课的理解和设计。
一,教材分析
1. 教材的地位和作用
第一,"相似形"是两个图形间进行比较时所产生的一个概念,它的内容是"全等形"的推广与拓展,而"全等形"实质上"是"相似形"的一种特例,两者既有联系又有区别;
第二,"相似形"无论是数学本身还是在实际中,都有着极为广泛的应用,对此,教科书给予了充分的关注;
第三,对本章的学习,是从更一般的角度研究图形之间的关系,这对于进一步发展学生的空间概念,有着十分重要的作用;
第四,本节内容是相似三角形的条件的第一课时,将为其他判定方法的学习打下基础,另外通过本节课的学习,还可培养学生猜想,实验,证明,探索等能力,对掌握观察,比较,类比,转化等思想有重要作用。因此,这节课在本章中占着举足轻重的地位。
2. 学情分析
(1)在学习本节内容之前,学生已经掌握了全等三角形的性质与判定方法,以及相似三角形的定义,并初步体会了化归思想在数学学习中的作用。
(2)本节课的教学内容是循序渐进,逐步深化的。特别是判定两个三角形相似的条件的运用,会给学生的学习带来一定的困难。
3. 教学目标:
根据《数学新课程标准》对这部分内容的要求及本课的特点,结合学生的实际情况,我从"三维" 角度确定本节课的教学目标:
1.知识技能目标:经历两个三角形相似条件的探索过程,掌握两个三角形相似的判断条件,并能够运用三角形相似的判断方法解决一些简单的问题。
2.过程方法目标:进一步发展学生的探究,交流能力,培养学生善于观察,动手操作,研究问题的习惯,以及发展学生的合情推理能力和初步的逻辑推理能力。
3.情感态度目标:能够在数学活动中发挥积极作用,体验数学活动充满着探索性和创造性,培养学生动手与动脑有机结合的良好习惯,发展学生主动探究,合作交流的意识。
以上目标的确定,基于以下考虑:
根据新课程标准和教材内容,为实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展,制定符合学生特点的知识技能,过程方法,情感态度三维目标。目标的确定是建立在学生的认知发展水平和已有的知识经验之上的。
4. 教学重点,难点
这节课的重点是"两角对应相等判定两个三角形相似"的探索与应用。为了激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,我将引导学生用合作交流,自主探究等方法寻求判定两个三角形相似的条件,突出重点;三角形相似的判定方法的运用,即准确找到相等的两组对应角是一个难点,因此,我将注重例题的发展性作用,层层深入,逐步突破难点;
二,教法与学法
根据本节课的教学目标,教材内容以及学生的认知特点,教学上采用"引探精讲式"的教学法。教师着眼于引导,学生着眼于探索。意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过学习伙伴的讨论来深化对知识的理解。其主要流程可以分为"直觉观察——实验探究——讨论交流——应用拓展".
《数学新课程标准》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践,自主探索与合作交流是学习数学的重要方式。为了充分体现这一要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,逐步培养学生学会观察,类比,探索,猜想,论证等。
另外,我校数学教研组就"新课标下的精讲多练"做了大量的研究和尝试,我依然会在这节课中采用精讲多练的教学模式,努力提高数学教学的有效性。
三,教学过程
根据《数学课程标准》中"要引导学生投入到探索与交流的学习活动中"的教学要求,本节课教学过程我是这样设计的:创设情境,引入课题;主动探究,合作交流; 例题示范,扎实基础;变式练习,形成能力;步步为营、及时反馈;应用拓展,知识升华;归纳小结,强化思想;知识延续,课后作业八个教学环节。
(一)创设情境,提出问题
1.复习提问 什么叫相似三角形
复习提问相似三角形定义的目的一方面是为了说明定义具有双面性,既是判定又是性质;另一方面为了说明用定义判定两三角形相似,所需条件太多,证明方法太过繁琐,我们就必须寻求一种更为简单的判定方法,从而引出课题。
2.由身边的事物揭示话题
理性的思考需要感性认识的支撑,从我们经常使用的几何工具——两把三角尺,度数相同的三角尺具有相似的特征进行提问,这样安排是想用身边的事物唤起学生的感觉本能,既创设情境又为进一步研究奠定基础,培养学生的直觉思维能力。
引导学生对彼此的三角尺先从直观上认可相似,再从理论上证明,规范的证明为直觉的猜想搭建了科学的平台,培养了学生严谨的学习态度,此过程顺势引导,我们的猜想只是建立在两角对应相等上,对特殊的直角三角形适用,对一般三角形呢 提出猜想,也渗透从特殊到一般的解题思路。为学生今后研究问题提供方向。
(二)主动探究,合作交流
活动:以同桌为小组,制作三角形。
1.设计理念:设计画三角形这一活动,并且不统一角度,而是采用两人一组规定两个内角度数,这样安排可以避免巧合性,全班30个小组画的三角形各不相同,但只要同桌规定的两个内角相等就可得到相似的三角形,这样研究的`结论更具一般性,更有说服力。不过活动需要教师适时引导,毕竟验证过程误差大小不一,部分学生会得出相悖的结论,而且部分学生根本不知道怎么验证同桌画出的三角形相似。
2.活动目的:从学生自己动力手操作,实验所得出判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。
3.当活动进行到火候适当的时候,学生得出两角对应相等,两三角形相似就变得顺理成章,学生的表述在同学和老师的规范下总结成数学规范语言——如果两个三角形的两角对应相等,那么这两个三角形相似。此过程既促进学生间的交流,又培养学生的总结和表达能力。教师就操作过程中产生的误差略加解释——由于知识所限,不能进行逻辑推理证明。
这样安排是为了体现分层次教学,先给学生时间,部分学生可以独立完成;部分学生可以合作完成;还有部分学生必须加以引导,才能解决,格式的规范也由学生完成。让学生在数学课堂上获得不同的发展。
(三)小试身手,初步运用
(1)判断题:
①有一个锐角对应相等的两个直角三角形相似( )
②所有的直角三角形都相似 ( )
③有一个角相等的两个等腰三角形相似 ( )
④顶角相等的两个等腰三角形相似 ( )
⑤所有的等边三角形都相似 ( )
在刚学完三角形相似的条件之后安排这个练习,是从简单的问题入手,让学生自己初步运用所学的新知识解决问题,培养学生的应用能力,真正做到以练代讲。
(四)例题示范,扎实基础
例 如图,在△ABC中,D,E,F分别为AB,AC,BC边上的点,
且DE‖BC,DF‖AC.找出图中相似的三角形,并说明理由。
教法:先引导学生分析题意,然后由学生独立完成,再由学生总结解题过程,教师板书完善格式。
安排例题的作用旨在规范解题格式和运用新知的格式,放手让学生去完成,教师适当点拨,为了体现把课堂真正还给学生,利用精讲的科学观帮助学生完成其可完成的学习过程。
(五)变式练习,形成能力
通过系列问题的设置和解决,旨在降低难度,使难点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。
实施素质教育的突破口就是创新教育,要培养学生的创新能力,就要有让学生进行创新思维的问题,变式训练就是让学生展开创新思维的主阵地,问题设计的好坏,直接影响到学生思维的训练程度和课堂教学效果,本例通过基本图形的训练,引导学生学习要抓实质,万变不离其宗,学会把复杂问题简单化的方法,并且结合图示,训练学生语言表达能力,这对学生今后的发展更为重要。
(六)应用拓展,知识升华
完成课本67页 习题1,66页练习2
设计不同层次的练习,旨在通过训练,帮助学生进一步理解所学的判定方法,能利用所学知识进行简单的运用。精讲多练的目的是更多的体现学生的活动,关注学生的情感和体验,只有练习安排的有层次性和渐进性,才能使学生得到更好的发展和训练。真正提高课堂有效性。新课标下,我们需要对精讲多练赋予新的内涵,第一线的教师应该科学学习,转变观念,大胆实践,不断反思,只有这样我们的数学课堂才会趋于完善。
练习的变式是希望学生的思维具有迁移性,也是安排的一个反补练习,如果学生掌握的好,应该处理变式题目会非常顺利,如果掌握不好,此练习的安排就具有一定的反补性。
(七)归纳小结,强化思想
学生畅谈自己的感受和体会,师生总结与归纳。
判定三角形相似的条件1
一节课的重点不应该只在课程设计的讲练中,课堂的结尾应该是学生学习的完善与补充,学生的小结不仅仅要有知识的系统小结,还应该有思想方法交流,另外数学语言固有的精炼和美丽也应在学生的表述下得以训练。
(八)知识延续,课后作业
知识的掌握是反复吸收逐渐内化的,作业的层次性和反补性是一节课成功的后续,作业要针对学生的具体情况,预设的作业需满足不 同层次的学生需求,所以会因一节课的教学情况有所改变。
基于以上原因我安排了第一项作业是习题2,3,4,让学生巩固今天的新知。其中2题利用两角对应相等证明两三角形相似,第3题在复杂图形中找相似三角形,进一步强化相似的判定,第3题先判定相似再求线段的长度,提高学生解决问题的能力。第二项作业是预习下一课时,培养学生良好的学习习惯,自主学习,带着问题进课堂。另外,为了部分学有余力的学生有更大的提高,我安排了练习册配套练习。
(九)整体认知,板书设计
一节课的浓缩在黑板,知识的系统,规范的格式全然在板书,所以板书设计的好坏直接影响学生大脑中的知识框架,因此板书要简单醒目,易于记忆,一目了然。所以我的板书分三部分,最左侧是知识内容,中间是例题的规范格式,右侧则安排练习。
(十)教学整理,课后反思
作为一名青年教师,我不希望我的课堂教学墨守陈规,也不希望我的课堂教学程序化,我希望自己在课堂上可以灵活应对学生出现的问题,在解决问题的过程中,学生与教师的同步成长是我要体现的价值。
课程的设计只是一场演出的剧本,真正的课堂不应该是排练的节目,有太多不可预设的情况发生,所以真正的教师能够娴熟的驾驭学生驾驭课堂,做到及时反馈,及时反补,这也是我要努力的方向。
数学说课稿 篇2
一、 教材分析
1、教材的地位和作用
本节教材是初中数学七年级下册第一章第八节的内容,是初中数学的重要内容之一。一方面,这是在学习了整式的加、减、乘、除及平方差公式的基础上,对多项式乘法的进一步深入和拓展;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式” 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
对公式(a+b) 2=a2+2ab+b2的'理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。
难点确定为:从广泛意义上理解完全平方公式的符号含义,培养学生有条理的思考和语言表达能力。
二、 教学目标分析
新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:
1. 经历探索完全平方公式的过程,进一步发展符号感和推理能力。会推导完全平方公式,并能运用公式进行简单的运算。
2.在探索讨论、归结总结中,培养学生语言表达能力、逻辑思维能力。
3. 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生积极参与对数学问题的讨论并敢于表达自己的观点。
三、 教学方法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 复习旧知,温故知新
设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3) 发现问题,探求新知
设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。
(4) 分析思考,加深理解
设计意图:数学教学论指出, 数学概念(定理等) 要明确其内涵和外延(条件、结论、应用范围等) ,通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入下一 环节。
(5) 强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6) 小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验等几个方面进行归纳,我设计了这么三个问题:
数学说课稿 篇3
一、教材分析
1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。
2、教学目标的确定及依据
A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:
1)已知一个角的一个三角函数值能求这个角的其他三角函数值;
2)证明简单的三角恒等式。
B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的'兴趣。
3、教学重点和难点
重点:同角三角函数基本关系式的推导及应用。
难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。
二、学情分析:
学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。
三、教法分析与学法分析:
1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。
2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。
四、教学过程设计
例1、设计意图:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。本题主要利用的数学解题思想是:分类讨论
例2、设计意图:
(1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以 ,将分子、分母转化为 的代数式;还可以利用商数关系解决。
(2)“化1法”,可利用平方关系 ,将分子、分母都变为二次齐次式,再利用商数关系化归为 的分式求值;
五、教学反思:
如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut;教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut;的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。
由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。
数学说课稿 篇4
一.学生状况分析
在初中,学生已经直观的讨论过直线与圆的位置关系,前阶段又学习了直线方程和圆的方程。本节课主要以问题为载体,帮助学生复习、整理已有的知识结构,让学生利用已有的知识,探究直线与圆的位置关系的判断方法。通过学生参与问题的解决,让学生体验有关的数学思想,培养“数形结合”的意识。
二.教学任务分析
1、地位和作用
解析几何的本质是利用代数方法来研究几何问题,这节课我们就要用代数方法来研究直线与圆的位置关系.这样一方面可以巩固前阶段所学的知识,另一方面也显示了用代数方法研究几何问题的优越性,用解析法研究直线与圆的位置关系是从初等数学到高等数学的开始,也为后面研究直线与圆锥曲线的位置关系打好基础,这节课内容起着承前启后的作用。
2、教学重点
能根据给定的直线与圆的方程判断直线与圆的位置关系
3、教学难点
灵活运用“数形结合”思想来解决问题
4、教学目标
知识目标:
(1)能通过点到直线的距离公式和方程组的解判断直线与圆的位置关系.
(2)能够解决直线和圆的相关的问题.
能力目标
通过观察——类比——概括——抽象等思维过程,发展学生自主学习的能力;
情感德育目标:
激发学生学习数学的自主性和积极性,体验获取知识的乐趣;
三、教学过程分析
本节课分为六个教学环节:复习引入、构建新知、例题讲解、拓展提高、应用演练、归纳小结
环节1:复习引入
1、平面几何中,直线与圆有哪几种位置关系?在初中,我们怎样判断直线与圆的位置关系?
平面几何中,直线与圆有三种位置关系:
(1)直线和圆有两个公共点,直线与圆相交;
(2)直线和圆只有一个公共点,直线与圆相切;
(3)直线和圆没有公共点,直线与圆相离.
两种方法,①根据定义②圆心到直线的距离d与圆的.半径r的大小关系。
反过来,直线与圆相交,直线与圆有两个公共点。
直线与圆相切直线与圆有一个公共点
直线与圆相离,直线与圆没有公共点
2、现在,如何用直线方程和圆的方程判断它们之间的位置关系?
先看以下问题,看看你能否从问题中总结来.
(设计意图:以问题为载体,帮助学生复习、整理已有的知识结构,带着问题进入下一个环节,有效的调动学生的学习兴趣。)
环节2:构建新知
分析:根据初中判断直线与圆的位置关系的两种方法,我们可以利用d和r的大小关系或直线与圆的公共点的个数来判断它们的位置关系。
直线与圆的公共点的坐标即满足直线方程又满足圆的方程,把直线方程与圆的方程联立,
(设计意图:由较简单的问题导出这节课的内容,让学生利用已有的知识,探究用坐标法判断直线与圆的位置关系的方法,一方面可以巩固前阶段所学的知识,另一方面也显示了用代数思想研究几何问题的优越性)
3、构建新知
回顾我们前面提出的问题:如何用直线和圆的方程判断它们之间的位置关系?
判断直线与圆的位置关系有两种方法:
几何法:根据圆心到直线的距离d与圆的半径r的关系来判断.如果d 如果d=r,直线与圆相切;如果d>r,直线与圆相离. 代数法:根据直线与圆的方程组成的方程组解的情况来判断.如果有两组实数解时,直线与圆相交; 有一组实数解时,直线与圆相切;无实数解时,直线与圆相离. (设计意图:让学生通过独立的思考,概括出利用直线与圆的方程来判断它们位置关系的两种方法,可以自己把课堂上所学的零碎的知识点连成知识线,从而加深了学习的印象.) 环节3例题讲解 分析:依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系; 分析:根据直线l与圆C的方程组成的方程组解的情况来判断 这里是利用直线与圆的位置关系的性质来解题,已知直线与圆相切,可知圆心到直线的距离等于圆的半径,直线与圆有一个公共点。 求出交点的坐标目的在于认识到方程组解得意义。让学生体会出用何法解题更为方便。例2让学生运用直线与圆的位置关系的性质解题)结合图形,无论m为何值,点(0,2)的坐标恒满足直线方程,直线恒过这个定点, m是直线的斜率,满足题目条件的直线就是图上的这两条直线,左边这条直线的方程 是,右边直线的方程为 (设计意图:例1让学生及时的巩固直线与圆位置关系的判断方法.以期达到强化训练的目的, 环节4、拓展提高 另解:(1)因为l:y=a(x-1)+4过定点N(1,4) N与圆心C(2,4)相距为1 显然N在圆C内部,故直线l与圆C恒相交 (2)在y=ax+4-a中,a为斜率,当a=0时,l过圆心, 显然弦AB的最大值为直径的长,等于6 (设计意图:对学生进行一题多解的训练,有利于提高思维的灵活性,在解决问题过程中,通过利用数形结合的思想,提升对知识的理解,提高分析问题,解决问题的能力。) 环节5、应用演练 练习1、 2、 (设计意图:课堂练习的目的在于及时巩固重点内容,使学生在课堂上就能掌握. 同时强调规范的书写和准确的运算,培养学生严谨认真的数学学习习惯.) 环节6、归纳小结 1、直线与圆的位置关系的判断方法: 几何法: 代数法 : 1、确定圆的圆心坐标和半径r 1、把直线方程带入圆的方程 2、计算圆心到直线的距离d 2、得到一元二次方程 3、判断d与圆半径r的大小关系 3、求出△的值 d>r,直线与圆相离,直线与圆相交 d=r,直线与圆相切,直线与圆相切 d (设计意图:通过小结,使学生对本节所学的知识系统化、条理化,进一步巩固知识,明确方法.) 作业: 3.已知⊙C:(x-1)2+(y-2)2=2,P(2,-1),过P作⊙C的切线,求切线方程。 (设计意图:,第1、2题是基础题,为了复习巩固这节课的内容,第3题是弹性作业,为学有余力的学生提供发展的空间) 环节6、课后反思与点评: 1、新的课标把直线和圆的位置关系作为独立的章节,说明新课标对这节内容要求有所提高。 2、判断直线与圆的位置关系为了防止计算量过大,一般采取几何的方法,但用方程思想解决几何问题 是解析几何的精髓,是以后处理圆锥曲线问题的通法,掌握好方程的方法有利于培养数形结合的思想。 3、直线与圆位置关系的相关问题如:弦长的求法、圆的切线方程求法以后还要补充。 4、用代数法判断直线与圆的位置关系,不必求出方程组的解,利用根的判别式即可。 一、教材 1、说课的内容是《义务教育标准实验教科书》(北师大版)三年级下册36、37页《旅游中的数学》。 2、教学内容的地位和作用 《旅游中的数学》是数学四大领域中“实践与综合应用”这一领域的内容。教材在学生学完“两位数乘两位数”这一单元之后,安排“旅游中的数学”一课,一方面能使学生巩固两位数乘两位数的知识;另一方面,加强了数学与现实生活的联系,能增强学生用数学的意识与能力培养学生对数学的兴趣。 3、教材简析 本课教材的知识结构呈现为:(1)租车,教材首先出示一幅租车情境图,师生组成了40人的一个旅游团,有大车和小车,老师提出问题怎样租车最省钱?学生通过讨论这一问题渗透列表解决问题的策略。(2)用餐,学生通过为自己安排饮食,复习小数加减法,体会合理搭配。(3)制订旅游计划。这部分内容分两课时完成,我所说的是第一课时,解决旅游中的数学问题。针对三年级学生的身心特征,他们对旅游非常感兴趣,而且又有一定的旅游经验,所以我将教材进行加工和整理。首先为学生创设去本地风景区“瀛湖”旅游,这样一个情境,然后在模拟情境中解决“租车、买门票”、“用餐”的费用计算问题。这样充分利用了学生的生活经验,加强了数学生活的密切联系,激发了学生的学习兴趣,同时也为下节课制订旅游计划作了铺垫。 4、学习目标 基于以上对教材的认识,按大纲的要求,确定目标如下: (1)知识与技能:①使学生进一步巩固所学知识;②能运用所学知识与技能,解决日常生活(旅游)中的一些简单的数学问题。 (2)过程与方法 ①经历运用数学符号来描述现实世界的过程,发展学生的抽象思维。②经历观察、思考、运算等数学练习的过程,发展实践能力与创新精神。③结合具体情境,学会从数学角度提出问题,解决问题,发展应用意识。 (3)情感、态度与价值观 ①结合具体情境,再联系生活实际,深刻感受数学与生活的密切联系,体会数学的价值。 ②通过练习活动,感受数学的严谨以及数学结论的确定性。 5、教学重点、难点、关键。 激发学生创造性思维,运用所学知识解决生活中的简单问题问题,提高学生的实践能力。 二、教法、学法 1、教法:教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课的内容特点和学生的思维特点,我选择了以多媒体课件演示、辅以启发谈话,尝试法,引导发现法等方法的优化组合,充分发挥教师的点拨作用和现代信息技术的辅助作用,调动学生的能动性,引导他们去发现问题,分析问题,解决问题,获取知识,从而达到训练思维、培养能力的目的。 2、学法:“由教材定学法,以学法定教法”教学策略告诉我们,教法和学法是和谐统一的。教学时要注意发挥学生主体的作用,充分调动各种感官参入学习,诱发其内在潜力,独立主动地探索知识,使他们不仅学会,而且会学。本节课学生以小组为单位,自主探索,合作交流,依次解决“租车、买门票、用餐”等问题。培养了学生主动探索的精神,增强了应用数学的意识,提高了解决问题的能力。 三、教学程序 具体教学过程如下: (一)激趣导入:先问学生是否喜欢旅游,再谈一谈自己曾去过哪些地方?然后出示本地有名景点的.图片,并作简单介绍,从而顺其自然的导入新课,今天我们模拟去瀛湖旅游,来解决在旅游中遇到的数学问题。板书:旅游中的数学。这一环节的设计主要是想体现数学就在我们的身边和生活中。通过提问,唤起学生对以前旅游美好经历的回忆,为后面旅游活动作铺垫,出示本地风景图片,吸引了学生的注意力,调动了学生参入学习活动的积极性,同时也激起了他们对家乡的热爱之情。 (二)合作探究 本环节分为三个活动来完成:活动一是租车,去瀛湖旅游我们得先坐车,课件出示信息“我们40人去旅游,大车限乘18人,每辆70元;小车限乘12人,每辆60元,接着出示问题有几种租车方案”?在学生弄清交流规则后开始小组讨论,将讨论结果填写在租车方案表里,然后,学生代表展示汇报结果,老师出示填写好的租车方案表和学生一起小结列表方法,渗透有序列表的思想;最后出示问题,假如派你前去租车,你准备怎样租车?为什么?从而得到最佳方案。这样通过小组合作讨论得出不同的租车方案,充分尊重了学生的主体地位,体现了小组合作的优越,培养了学生自主探索与人合作的能力;假如派你前去租车,你准备怎样租车?给足了学生的思考空间,鼓励学生从不同角度思考问题,有利于培养学生的创新意识。 活动(二)买门票。出示信息:全天开放时间,早上8:00~下午7:00,个人票每人20元,团体票每人16元(45人及以上)人数40人,先让学生根据这些信息提出数学问题,主要问题有①今天开放多长时间?②怎样买票省钱?第一个问题学生独立解决。第二个问题通过小组合作解决。要引导学生发现这里我们买团票比买个人票省钱。这一环节主要是培养学生发现问题、分析问题、解决问题的能力,增强学生“用数学”的意识。 活动(三)用餐:旅游完后去农家乐用餐,让学生根据菜谱,为自己点菜,并计算花了多少钱?个别同学回答、他人评价,提出建议,引导要荤素搭配,主食搭配,同时要节俭,不要浪费。接下来再每个组一起点菜;这一环节从单独点菜用餐,再到小组内集体点菜,使学生体验到与人合作的优越,对别人点菜进行评价,增强了生与生之间的交流,提高了学生的判断能力,充分调动了学生学习的热情。 (三)实践应用 课堂小结后,我安排了这样两个实践练习:①估计去瀛湖你至少要花多少钱,为自己本次旅游作一次费用的预算;②制完一份旅游计划。 本环节将学生的学习活动,从课内延伸到了课外,拓宽了学生的视野。预算旅游费用培养了学生的结算意识,制订旅游计划,学以至用,体现了数学的严谨,逻辑性。 【数学说课稿】相关文章: “用数学”数学说课稿03-09 数学说课稿03-25 初中数学的说课稿02-16 数学广角说课稿11-07 数学乐园说课稿11-12 数学活动说课稿07-09 《数学乐园》说课稿07-09 数学统计说课稿07-02 小学数学的说课稿01-09 数学说课稿11-05数学说课稿 篇5