【精品】数学说课稿锦集七篇
作为一位优秀的人民教师,通常会被要求编写说课稿,认真拟定说课稿,快来参考说课稿是怎么写的吧!下面是小编帮大家整理的数学说课稿7篇,仅供参考,大家一起来看看吧。

数学说课稿 篇1
【说教材】
本节是九年制义务教育实验教材小学数学第八册的教学内容,它包括三角形三条边之间的关系以及部分练习。
在此之前,学生已经学习了角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,为学生研究三角形的新的特性——任意两边之和大于第三边做好了知识迁移基础。在平面图形里,三角形是最简单,也是最基本的多边形,它由3条线段围成,但并不是任意的3条线段都能围成三角形,所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验,为进一步学习三角形的内角和、面积、甚至中学的勾股定理等内容打下坚实基础。
教材从学生熟悉的生活场景引发学生对三角形边的关系进行思考,大胆猜想三角形三条边之间可能的关系,呈现的情景图,创设学生熟悉的问题情境,引发学生思考,然后让学生动手实践,探究规律,得出:三角形任意两边的和大于第三边,最后对所学习的知识进行运用。
新课标的基本理念要求“人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”。结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:
1、 使学生知道“三角形中任意两边的和大于第三边”,运用关系解决简单的实际问题;
2、培养学生的观察、分析、比较、操作能力,进一步发展空间观念,提高学生的探索能力。
3、让学生经历数学学习的过程,感受数学与实际的紧密联系,在学习中培养学生数学运用的意识以及团结协助的精神。
本课的重点是:三角形三边关系的实验与探究,这个关系不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用。
本节内容的难点是利用三角形三边之间的关系解决实际问题,在学习和应用这个关系时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”,而学生的错误就在于以偏概全。
【说教法】
杜威先生说过这样一句话:“你可以将一匹马牵到河边,但是你绝不可能按着马头让它饮水。”针对平面几何知识教学的特点、以及小学生以形象思维为主、空间观念薄弱的特点,我打算采用创设情境法、实验法、比较法,以及分组讨论、合作学习的形式,并运用多媒体教学课件辅助教学,让学生在观察、感知的基础上,动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。
【说学法】
苏霍姆林斯基说:“唤醒人实行自我教育,按照我的深刻信念,乃是一种真正的教育。”在学法指导上,我将充分发挥学生的主体精神,留有足够的'时间和空间激发他们主动探索。借鉴杜威“做中学”的思想,在设计课程方案时,将学生分成5人学习小组,同组异质:组内成员分工明确(有组长、记录员、操作员、发言员等),让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
【说教学流程】
问题——在生活中生成
杜威“做中学”理论中有这么一句话:“经验和自然相互联系”,从而可知“做中学”强调从学生已有的生活经验出发,要求创设生活情景,使生活问题数学化,数学问题生活化,以唤起学生已有的经验积淀,产生对数学的亲切感,从而激发学习数学的兴趣。这也就是我这堂课的引入——情境激趣悬念探路。
课一开始我利用多媒体创设了情境:家住白云区广园新村的小明,到外校共有3条路可以走,“哪条路最近呢?”、“这是什么原因?”等引导学生思考交流,这时学生的回答可能是感性的,浅显的,认识上甚至是不科学的,此时教师欣赏的眼神和鼓励性的语言尤为重要。
在交流原因时,教师可以鼓励同学们联系自己生活的实际谈看法,用自己的话来描述,教师不作过多评价,接着教师的话锋一转:我们的想法对吗?用什么方法来验证呢?谁能设计验证的思路。
学生自主设计验证思路。
这样可使学生在数学活动的情境中借助已有的生活经验,去感受,去经历,从而促使学生发现问题,提出问题,和解决问题,极大调动学生探究新知的积极性。
数学说课稿 篇2
一、说教材
本节课教学是探索积的小数位数与乘数的小数位数的关系,教材在编排上体现了以下特点:
1、街心广场教材创设了计算街心广场面积,花坛面积和每块地砖的面积等情景,在活动中引导学生观察三个长方形长、宽、面积之间的关系,使学生初步感知到小数乘法可以先按整数乘法计算,再来确定积的小数点的位置。
2、教材还通过情境图引导学生从不同角度来探索地板砖面积,女少可以从前两个整数乘法算式的得数,推想出小数乘法得数;可以通过单位名称的转换推出得数。
3、教材通过尝试练习:试一试和填一填的活动,使学生归纳出两个乘数一共有几位小数,积就有几位小数的规律,这些都能激起学生独立探索的热情和创新意识。
教学目标:
1、结合三个长方形面积关系,促能学生探索积的小数位数与乘法的小数位数的关系。
2、通过具体情境,发现数学信息。培养观察、收集信息的习惯。
3、能应用这一关系进行简单的`小数乘法计算。
4、培养学生探索精神,提高学生的学习兴趣。
二、说设计意图
俗话说:教学有法,教无定法,贵在得法。根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过小数点搬家情境感知并进行猜想,再通过操作验证,从故事中提取数学问题,自己总结归纳出小数点移动的变化规律,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。
自主探索,发展学习,不断创新课题实验研究,旨在改变教与学的方式,教师的教是为学生的自主学习,主动探索创造条件,是为学生独立思考、动手实践、合作交流引导搭桥在设计这一课时,是让学生真正在探索中发展自主探究和。因此,我对教材进行创造性的处理,努力为学生创设一个广阔的活动空间,探索空间,让学生最大限度地参与探索的全过程,具体设计了以下几个探索活动。
活动 1 :教师给每个学生发一张街心广场的放大平面图,让学生进行讨论三个长方形的长与长、宽与宽有什么关系?它们的面积之间可能有什么关系?
活动 2 :在计算出它们各自的面积时,引导学生观察这些数字特征和小数点的位置,教师板书配合说明。
活动 3 :根据积随因数变化的规律,举出实例让学生探索、解答。
活动 4 :在尝试练习中,师生共同探索、归纳出:积的小数位数与乘数的小数位数的关系。
总之,在教学中,凡是学生自己能发现的都让他们.自己去探索,如果有一定的困难就创造条件让他们合作探索。教师尊重学生自我发现,尊重学生创新思维和方法。
三、说教学流程
(一)回顾旧知识,过渡新知识
1、小数点位置移动引起小数大小变化规律。
2、长方形的面积计算公式。
3、接着教师发给每生一张街心广场放大平面图提出问题。
A 、它们都是什么图形?
B 、三个长方形的长之间,宽之间有什么关系,面积之间可能有什么关系?
板书课题:街心广场
(二)合作交流,解决问题。
1、学生思考,并回答自己的想法。
观察情境图,得知街心广场、花坛和每块地砖的长分别为 30 米、 3 米和 0.3 米,宽分别为 20 米、 2 米和 0.2 米,从这些数据中可以看出,三个长方形长是依次缩小到原来的,宽之间也是如此。那么,面积之间又有什么关系呢?根据长方形面积=长 x 宽,我们先求出三个长方形的面积。
板书: ( 1)街心广场面积为 30 20 = 600 (平方米 )
( 2)花坛的面积为 3 x 2 = 6 (平方米 )
( 3)每块地砖的面积为 0.3 x 0.2 二 0.06 (平方米 )
学生可能对 0.3 0.2 =0.06不大理解,教师引导可以利用单位之间的换算来求。 0.3米 = 3 分米 0.2米=2分米 3 x2= 6 (平方米 ) 6 平方分米= 0.06平方米故 0.30.2=0.06
2、引导探索发现:在乘法中,一个因数缩小到原来的,另一个因数缩小到原来的,积则缩小到原来的。(反之,一个因数扩大到原来的 10 倍,另一个因数扩大到原来的 10 倍,积则扩大到原来的 100 倍)
3、尝试练习,引导提问,归纳。
课本第 43 页试一试,填一填,可以发现,在4 0.3 =1.2 中,两个乘数共有 0 + 1=1位小数,积 1.2 里也有 1 位小数:在 0.40.3 = 0.12 中,两个乘数共有 1 + 1 =2位小数,积 0 .12 也有 2 位小数。在 0.13x2 = 26 中,两个乘数共有 2 + 0 =2位小数,积 0.26 是也有 2 位小数;在 0.13x 0.2 = 0.026 中,两个乘数共有 2十1 = 3 位小数,积 0 . 026 里也有 3 位小数。
归纳:在小数乘法中,两个乘数一共有几位小数,积就有几位小数。
(三)课堂小结
(四)巩固练习
1、课堂作业,完成课本第 43 页的练一练第 1 一 2 题。
2、基础训练上的相关作业。
数学说课稿 篇3
一、教材分析
(一)教材的主要内容和地位
数学是一门来源于生活,又应用于生活的学科。生活实际中,有不少问题的解决都涉及到数学中的分式知识。分式是继整式之后对代数式的进一步研究,是小学所学分数的延伸和扩展。与整式一样,分式也是表示具体问题情境中的数量关系的一种工具,是解决实际问题的常见模型之一。本章内容的学习为今后进一步学习函数和方程等知识起到奠基的作用。苏科版教材将"分式"这部分内容安排在八年级下册。《分式》第1节的内容分两课时来完成,而第一课时的内容则是分式的起始课,它是在学生学习了整式运算、分解因式的基础上进行的,学好本节课,是今后学习分式的性质、分式的运算及解分式方程的前提;其中对"分式有意义的讨论"为以后学习反比例函数作了铺垫。因此,本节内容起到了承上启下的作用,符合学生的认知规律,充分体现知识螺旋上升的特点。
(二)教学理念
本节内容充分体现了数学离不开生活,生活离不开数学,进一步认识到数学的重要性。体现"人人学有价值的数学,人人都能获得必须的数学"的新课标精神。学生的活动交流也会促进他们的合作、探究能力的增长。
二、目标分析
(一)学习目标
根据学生认知发展水平和已有了知识经验基础,结合新课程标准"分式"的目标要求,我从"知识与技能、过程与方法、情感与态度"三个方面确定了本节课的教学目标。
1、知识与技能目标:
知道分式概念,学会判别分式何时有意义,何时值为零,能用分式表示实际问题中的数量关系;明确分式与整式的区别
2、过程与方法目标:
经历分式概念的自我构建过程及用分式描述数量关系的过程,体会分式的模型思想,进一步发展数感;学会与他人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
3、情感和态度目标:
通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造;利用实际情境,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心。体会"人人学有价值的数学,人人都能获得必须的数学"精神。
三、重点、难点
学习重点:本节通过具体的实例引入"分式"的概念,再以三个具体的例题训练本节课的所有内容。因此将重点定为:了解分式的形式(A、B都是整式)并理解分式概念中的"一个特点":分母含有字母;"一个要求":字母的.取值要使分母的值不为零。
学习难点:尽管有分数知识为基础,但是当分母中带有字母时,如何确定一个分式有无意义,怎样使一个分式有意义应是本节课学习的难点。
四、学生情况分析
经过三个学期的学习,八年级下的学生已经养成了良好的数学学习习惯,同时也有了一定的自主探索、合作交流的数学学习意识,学生的表达能力、概括能力都有了一定的提高。从学生已有的知识水平来看,学生已经学习了整式的运算和因式分解内容,而分式与整式一样也是代数式,因此研究与学习的方法与整式相类似,学生可以通过观察、类比、归纳、概括等途经进行分式的学习。
五、教学设备或辅助设备
多媒体(首先,能够生动、形象地反映现实情境,增加课堂的容量,更好地提高课堂教学效率;另一方面,可以使整节课主次分明。还可以让学生感受科技的魅力)
六、教学方法
(一)教法分析
依据本节课的特点,遵循数学中的科学性和思维性结合原则、启发性原则、循序渐进原则和巩固性原则,引导学生阅读、思考,通过类比揭示旧知识与新知识的联系和区别,阐述问题的本质特征,重点知识还是应该以讲解法、谈话法和启发式教学和练习法为主,由浅入深,联系实际引导学生参与教学活动;难点知识启发引导,通过观察、尝试、练习加以突破,帮助学生通过自主探索、合作交流的活动,主动地获取知识,并通过类比、归纳、概括等途径来深化对知识的理解。根据八年级学生的认知规律,让学生多说、多交流、多练习、多总结。整节课体现教师是学习活动的组织者、引导者、参与者的角色,在课堂教学中,尽量为学生提供"自主探索、合作交流"的时空,让学生真正成为学习的主人。
(二)学法分析
正确指导学生阅读、分析,引导学生学习观察、类比、概括、归纳等方法,逐步培养学生会观察问题、思考问题、分析问题及解决问题。并加强同学之间的交流合作,形成良好的学习习惯。
七、教学程序
1、创设问题情境
(1)两个数相除可以把它们的商表示成分数的形式吗?
学生活动:说可以的让他们举几个例子。如等。
(2)一个分数由什么构成?
学生活动:一个分数由分子、分母和分数线构成。
(3)追问:分数线有什么功能?
学生活动:分数线具有除号和括号的功能。
(4)分数的分母能不能为零?为什么?
学生活动:分数中的分母不能为零,因为零不能做除数。
(5)设置疑问:如果用字母a和b()分别表示分数的分子和分母,那么可以表示成什么形式?
设计意图:尽管来自于课本,但在学生已有的知识基础之上,提出新的研究问题,出现任知冲突,使学生产生探究的兴趣。
2、学习新课
(1)板书课题:分式
学生活动:齐读课题2遍
设计:感知本节课要学习的内容
(2)学生阅读课本第40页第三、四、五自然段的内容。
"一块长方形玻璃的面积为2平方米,如果宽是a米,那么这块玻璃的长是()米,通常用米来表示。"
"小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是(元,通常用元来表示。"
"有两块棉田,一块面积为a公顷产棉花m千克;另一块面积为b公顷产棉花n千克,这两块棉田平均每公顷产棉花千克,通常用千克来表示。"
设计意图:让学生从具体的生活事例中感受分式和整式一样都是来源于生活,分式的产生也是为解决实际问题服务的,同时也是为了提高课本的地位,摈弃离开课本数学的观念,让学生从课本中来,也为到课本中去做好铺垫。
(3)你还能结合生活实际,再举出一些类似的例子吗?
学生活动:小组讨论后,交流结果,教师给正确的例子予以肯定。
设计意图:数学学习应该重视知识的迁移,时刻注意与身边事物相联系,体现生活数学的魅力。
(4)教师引导:请同学们观察、、这三个代数式的特点,找出他们的共同特点?
学生活动:这三个代数式都具有分数的形式,并且分母中都带有字母。
设计意图:这样的设计,主要是为了培养学生的观察、总结和概括能力,为分式概念的提出做好准备。
(5)教师带领学生回忆整式的概念?
设计意图:注重抽丝剥茧式的引导过程。
(6)上面的三个代数式中的2、a、m、n、m+n、a+b都是整式吗?
(7)如果用A分别表示2、n、m+n,B表示a、m、a+b,那么三个问题的结果都可以表示成什么形式?
学生活动:都可以表示成。
设计意图:培养学生概括能力,注重同一形式知识的同化。
(8)A、B表示什么?B中含有字母吗?B能不能为零?
学生活动:A、B表示整式,且B中含有字母,.
设计意图:此问题的设计实际是为分式概念的提出以及分式概念中的"一个特点"和"一个要求"做好陈述,具有前瞻意识,也为概念的进一步深化做好前呼的基础。
(9)教师概括并板书:一般地,如果A、B表示两个整式,并且B中含有字母,那么代数式叫做分式,其中A是分式的分子,B是分式的分母。
概念说明:
I、整式
II、B中含有字母
III、B不等于0
IV、与分数类似,分式的分数线同时具有除号和括号的双重功能。
(10)齐读概念。
3、典型例题分析及典型习题练习
(1)例1:下列各式中,哪些是分式,哪些是整式
设计意图:教师引导学生判断,并说出理由。启发学生理解分式概念的关键点:形式、分母中含有字母、分母不为零和分数线的功能,巩固对分式概念的理解。
(2)及时练习,巩固新知
①下列各式中,哪些是整式,哪些是分式,说明理由。
②列代数式,并说明列出的代数式是否为分式
I、某校八年级有学生m人,集合排成方队,如果恰好排成20排,那么每排有 名学生;如果恰好排成a排,那么每排有 名学生。
II、30名工人做1800个零件,x小时完成,平均每人每小时加工的零件个数是 .
III、如果圆的周长为厘米,那么这个圆的半径为 厘米。
IV、国家规定存款利息的纳税方法是:利息税=利息20%,储户取款时由银行代收利息税,如果小丽存入人民币a元,存款利息为b元,那么小丽应交纳利息税 元。
(3)例2:分式表示什么?
针对部分学生对题型可能陌生,教师先要以一两个具体的解释引导学生去说。如:
解:如果a元表示购买笔记本的钱数,b元表示每本笔记本的售价,那么表示每本降价1元后,用a元可购得笔记本的本数。
如果a表示长方形的面积,b表示长方形的宽,那么表示宽减少1个单位长度后,面积仍为a的长方形的长。
及时练习:你还能对分式的意义做出解释吗?
学生活动:同桌两人为一组讨论,讨论后以小组为单位交流讨论结果。
设计意图:启发学生联系实际生活,对分式做出合理的解释。感受分式的产生来自于生活,也是为解决实际问题而服务的。并增强同学们的合作意识。
(4)过渡:用具体的数值代替分式中的字母,按照分式中的运算关系计算,所得的结果就是分式的值。
(5)例3:求分式的值。
①a=3;②a=
解:①当a=3时,分式的值是;
②当a=时,分式的值是
(6)及时练习
填表后观察是如何随x的变化而变化的。
x -3 -2 -1 0 1 2
设计意图:通过练习巩固学生掌握求分式的值的方法,并让他们感受对分式中的字母,当取不同的数值时,分式的值也会产生变化,并初步感知变化的规律,渗透函数思想。
(7)例4:当x取什么值时分式有意义?
分析引导:与分数一样,分式的分母不能为0.如果分母中字母做取的值使分母的值为0,那么此时分式没有意义。
解:由分母2x-3=0,得x=,所以当时,分式有意义。
(8)及时练习:
当x取什么数时,下列分式有意义。
①; ②
学生活动:指名板演,其他同学独立完成。
教师活动:I巡视,并指导学困生解决问题。
II板演结束后,让学生评点
设计意图:对教学中的难点应是课堂上教师和学生交流互动的重点,本练习的设计及教师与学生的互动,主要是针对分式有无意义的分式分母中字母取值问题而设计。通过练习、讨论、交流,巩固学生对这一知识的理解和掌握。
4、能力迁移
(1)当x为何值时,下列分式有意义?
①; ②
学生活动:以前后桌四人为一小组,讨论解决问题。
设计意图:一是适当增加习题的难度,二是纠正已经在学生头脑中形成的前面所有习题的固有印象,认为一题就一个数值符合要求或者一题必有一个符合条件的数值的错误印象,三是增强同学们的合作精神。
(2)选择一个你喜欢的值求下列分式的值
设计意图:避免出现所取的值使分式无意义。
(2)回忆:在表格中,填表后观察是如何随x的变化而变化的。
x -3 -2 -1 0 1 2
这题中当x取什么值时,分式的值为0?
设计问题:当x为何值时,下列分式的值为零?
①; ②
学生活动:讨论后根据老师的引导尝试解决问题。
教师活动:引导学生根据表格中的结果,理解当分式分子A为0的时候,而分式的分母B又不为0的时候,分式的值为0.
设计意图:通过讨论分析到解决问题,使学生意识到分式的值为0的条件。
5、小结与作业
1、学生活动:用自己的语言对本节课所学的知识加以表述。
设计意图:培养学生的归纳和概括能力。
2、教师总结:
①分式来自于生活,服务于生活。
②分式的意义和分式的值的求法是重点。
③如何使一个分式有意义主要是使分式的分母不为0.
3、回到课本。
学生活动:快速扫描课本P40-43的内容。
设计意图:整体感受本节课的内容。
3、作业:
课本P43习题8.1的内容。
设计意图:书面作业的形式,是课堂的延续,巩固学生对新知识的理解和掌握,培养学生的动脑能力。
八、评价
1、本节课在学生已有分数知识基础之上,通过观察、分析、归纳、练习、总结、作业等多种形式,使学生获得新知识。
2、可能出现的问题及处理方法
①分式和分数虽然具有类似之处,但是要使一个分式有意义,必须要做到分式分母中字母的取值使分母不为0.可能极少数学生对这部分知识掌握得还不够透彻。
出现这种情况的原因主要是学生对一元一次方程的解法掌握不够理想或者是对一个新知识的感知、理解、掌握需要过程。
按照新课标准,不能将结果强加给学生,针对这部分学生,一是在课堂巡视的时候给予及时指导,二是课后的个别辅导。
②能力迁移的第(2)题相对复杂,部分同学掌握起来可能有难度。
出现这种情况,主要是考虑的条件更多的原因。
针对此,教师一是要加强引导,二是要培养学生的互帮互学意识,形成合力,共同解决问题,建立新知识的模型。
九、板书设计
8.1分式
如果A、B表示两个整式,并且B中含有字母(),那么代数式叫做分式,其中A是分式的分子,B是分式的分母。
数学说课稿 篇4
一、教材分析
本节课的教学设计力图体现尊重学生,注重发展,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与分数乘法中求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味。
二、学情分析
在学习了分数乘法的基础上,孩子们对分数的运算有了一定的掌握,计算能力的日益提高,也使得孩子们有更深一步探求的欲望,因此,利用孩子们学习的积极性,开展本节课,培养学生发现问题、提出问题、分析问题和解决问题的能力,从而培养学生的基本技能。
三、教学目标
根据上述对教材内容和学生实际情况的分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:
基础知识目标:使学生学会掌握简单分数除法应用题的解法,能熟练地列方程解答这类应用题。
基本技能目标:进一步培养学生解决问题的能力,增强学生的应用意识。
基本思想目标:在充分利用教材情境引导学生学习分数除法的同时,渗透数形结合、建模、迁移等数学思想。
基本活动经验目标:激发学生学习数学的兴趣,让学生树立能够学好数学的'信心。
四、教学重点与难点
根据教材内容和本班学生的实际情况我把弄清单位1的量,会分析题中的数量关系确定为本节的教学重点;把掌握分数除法应用题的解题方法确定为本节的教学难点。
五、教学方法
通过以下的方法让学生亲身体验合作的成功和愉悦。
1.观察发现法,通过观察电脑课件中国王的故事的演示,突出单位1这一重要知识点。
2.尝试发现法,让学生通过小组讨论的方式,互相讲解自己的方法和见解,自己去列式,在尝试的过程中发现问题。
数学说课稿 篇5
各位领导和老师,大家好!我说课的内容是苏教版必修1第1章第3节第一课时《交集、并集》,下面我想谈谈我对这节课的教学构想:
一、教材分析:
与传统的教材处理不同,本章在学生通过观察具体集合得到集合的补集的概念后,上升到数学内部,将“补”理解为集合间的一种“运算”。在此基础上,通过实例,使学生感受和掌握集合之间的另外两种运算—交和并。设计的思路从具体到理论,再回到具体,螺旋上升。集合作为一种数学语言,在后续的学习中是一种重要的工具。因此,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学内容。有了集合的语言,可以更清晰的表达我们的思想。所以,集合是整个数学的'基础,在以后的学习中有着极为广泛的应用。
基于以上的分析制定以下的教学目标
二、教学目标:
1、理解交集与并集的概念;掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合。 能用Venn图表示集合之间的关系;掌握两个集合的交集、并集的求法。
2、通过对交集、并集概念的学习,培养学生观察、比较、分析、概括的能力,使学生认识由具体到抽象的思维过程。
3、通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
三、教学重点、难点:
针对以上的分析我把教学重点放在交集与并集的概念,一些集合的交集和并集的求法上。而把如何引导学生通过观察、比较、分析、概括出交集与并集的概念作为本节的教学难点。
四、教法、学法:
针对我们师范学校学生的特点,我本着低起点、高要求、循序渐进,充分调动学生学习积极性的原则,采用“五环节教学法”。同时利用多媒体辅助教学。
下面我重点说一说教学过程
六、教学过程:
第一个环节:问题情境
通过实例:学校举办了排球赛,08小教(2)56名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛。已知两项都参赛的有6名同学。两项比赛中,这个班共有多少名同学没有参加过比赛?让学生感受到数学与我们的生活息息相关,从而激发学生的学习兴趣。
学生思考后回答,然后老师加以引导,让学生的回答达到这样三个层次:
层次一:发现要求没有参加比赛的人数,首先应该算出参加比赛的人数,并且知道参加比赛的人数是12+20-6,而不是12+20,因为有6人既参加排球赛又参加田径赛。
层次二:老师引导学生利用集合的观点再来研究这个问题。先设利用Venn图来表示集合A,B,C.发现集合A,B的公共部分就是集合C.
层次三:引导学生发现集合C的元素的构成与集合A,B的元素的关系。学生可以发现集合C中的元素是由既参加排球比赛又参加田径比赛的同学构成的,更进一步集合C的元素是由既属于集合A的元素又属于集合B的元素构成的。
通过对三个层次的探究和分析让学生体验数学发现和创造的历程。
数学说课稿 篇6
各位评委、各位专家你们好:
我说课的课题是《分数与整数相乘》,它是小学数学国标本苏教版第十一册第三单元《分数乘法》的第一课时的教学内容,它是在学生已经掌握整数乘法,理解分数的意义和基本性质,能正确计算分数加、减法的基础上进行教学的。通过教学,为学生进一步学习分数除法和分数四则混合运算,以及解决更多有关分数的简单实际问题奠定基础。本课时内容教材安排了一个例题,例1教材以做绸花为素材,引导学生初步理解求几个几分之几是多少,可以用乘法计算,探索并掌握分数与整数相乘的计算方法。安排了配套练习“练一练”以及练习八1-5题,通过各种形式的练习,进一步使学生理解分数乘整数的`计算方法,并形成相应的计算技能以及培养解决问题的能力。
基于以上对教材的理解,以学生我拟定了以下教学目标:
1.使学生通过自主探索、理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。
2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。
3.使学生在积极参与数学的过程中,养成独立思考,主动与他人合作交流,进一步树立学好数学的信心。
本课的教学重点兼难点是:分数乘整数的意义和计算法则。
结合上述我对教材的认识,及学生现有的知识水平。我预设了以下教学过程:
整个教学过程分4个环节:
第一环节:创设情境,引入新知。出示例1中长方形直条图,指导学生弄清题意,知道这根长方形的直条表示1米长的绸带,而把它平均分成10份,其中3份也就是3/10米用来做一朵绸花。出示第(1)小题,组织学生涂色表示做3朵这样的绸花所用的米数。[通过涂色,既激活学生对加法和乘法已有认识,又启发学生列出不同算式解决问题]。指名交流,交流时说说:“解决这个问题可以怎样列式,你是怎么想的?”学生可能列出3/10+3/10+3/10或3/10×3或3×3/10。[通过学生的观察、涂色、交流,使学生初步认识到求几个相同几分之几的既可以用加法计算,也可以用乘法计算]。教师板书课题:分数与整数相乘。
二.自主研究,理解算理。这里分成3个层次指导学生探索。第1层:自主探索,尝试计算。学生尝试计算3/10×3,我将启发学生联系已有知识水平说明为什么3/10×3的积是9/10呢?①学生在联系加法写出3/10+3/10+3/10=(3+3+3)/10=9/10时,进一步启发写成(3×3)/10=9/10。②通过学生尝试,使他们明确3/10是3个1/10,所以3×3/10就是9个1/10是9/10,从而使学生进一步理解分母不变,分子与整数相乘的计算法则。最后请学生小结3/10×3可以如何计算。[阶段小结不仅可以加深学生的知识印象,更能使学生在讨论中进一步掌握分析问题的方法]。
第2层次是及时巩固,加深理解。投影出示问题:小华做5朵这样的绸花,一共用几分之几米绸带?学生各自轻声读题,尝试列式计算。指名板演。在评点学生板演时,适时明确:计算时可以先约分再计算,并规范书写格式[尝试联系、适时点评、规范格式可以使学生进一步完善对分数与整数相乘的计算方法]。
第3层次:尝试比较,深化算理。引导学生比较刚才两道乘法算式的计算过程,找出异同,先独自比较,然后小组交流,最后全班交流。[在比较、交流过程中一方面进一步明确计算方法,同时学生也经历了自我提升的过程]。
第三环节巩固练习,深化理解。首先是基本练习,帮助学生进一步掌握算法,并初步形成技能。练一练第2题,计算4道分数乘法,学生独立完成,展示作业,集体评议并说说计算时要注意什么。练习八第1题,让学生独立完成填空,组织交流:列出哪几道算式?列出的乘法算式与加法算式有什么联系?其次是综合练习,使学生从不同角度丰富对“求几个几分之几相加的和,可以用乘法计算”的认识,培养解决简单实际问题的能力。练习八3-5题学生独立解答,列式计算,投影板演,并说出每题思考过程。突出:求几个几分之几相加的和可以用乘法计算。
四.全课总结,通过学习,你有什么收获,还有什么不明白的地方,集体讨论。
各位评委、各位专家,以上是我的教学设想。根据课堂教学的生成我会做一些适当调整。谢谢!
数学说课稿 篇7
“分数的初步认识”这一单元教材是在学生已经掌握一些整数知识的基础上进行教学的,从整数到分数是数的概念的一次扩展,又是学生认识数的概念的一次质的飞跃。因为无论在意义上,还是在读写方法上以及计算方法上,它们都有很大的差异。分数概念抽象,学生接受起来比较困难,不容易一次学好。所以,分数的知识是分段教学的,本单元只是“初步认识几分之一”。认识几分之一是认识几分之几的第一阶段,是单元教材的“核心”,也是整个单元的起始课,对以后学习起着至关重要的作用。
一节新课,往往是从旧知识引入,关键是要牢牢抓住旧知识与新知识的`切入点,“分数的初步认识”必须在“平均分”的概念上建立。所以教学一开始,我先让学生拍掌回答把4个苹果和2个苹果平均分给2个小朋友,每人分几个?把4个苹果、两个苹果“平均分”成两份后,每一份的个数可以用整数表示。把1个苹果平均分成两份,学生就无法用拍掌回答,就问老师半个怎么拍啊!于是我就抓住机会由此引入新课。从上课的情行来看这方面做的是比较成功的,通过拍手使得学生都参与到课堂上来,而且使课堂的气氛变的很好,对整堂课的教学起了至关重要的作用。
为了帮助学生进一步理解几分之一的含义,教学四分之一时我先确定操作要求,把一张正方形纸对折两次表示出它的四分之一,然后学生操作。由于实践目的明确,方法得当,把学生的认识推向深入,不同的学生有不同的折法,课堂上出现了三种类型正确折法,又请学生观察教师的另一种折法,并提问:所表示的部分是这个正方形的四分之一吗?这时不失时机的引导学生分组进行讨论。为什么折的方法不同,形状不同,但都能用四分之一表示呢?学生按说出:因为把这张纸都“平均分”成了四份,
所以每一份就表示这张纸的四分之一。如果分成四分的大小不相等呢?它不是平均分,就不能用分数表示,这样就突出了分数概念中相当重要的前提“平均分”的概念,为以后学习分数的意义奠定了基础。但是在教学之中也有一些使我感到遗憾的事,在教学四分之三时我把图画成了八分之五,当有学生说老师可以把每个小正方形再平均分成两份,应该是八分之五。我才发现少图了一半,没有对这个聪明的学生加以表扬,而是直接把少图的地方补了上去,错失了一个非常好的机会,说明在实际的教学之中还缺乏一定的教学机智。
【数学说课稿】相关文章:
“用数学”数学说课稿03-09
数学统计说课稿07-02
数学说课稿11-05
《数学广角》说课稿06-27
数学说课稿03-25
数学广角说课稿11-07
数学乐园说课稿11-12
初中数学的说课稿02-16
小学数学的说课稿01-09
数学活动说课稿07-09