《分数除法》说课稿
作为一名教师,就有可能用到说课稿,说课稿有助于学生理解并掌握系统的知识。那么说课稿应该怎么写才合适呢?下面是小编帮大家整理的《分数除法》说课稿,仅供参考,希望能够帮助到大家。
《分数除法》说课稿1
一.说教材。
我说课内容是人教版课程标准实验教科书六年级上册分数除法单元中例1和例2。例1是分数除法意义认识,例2是分数除以整数计算。在这之前学生已经掌握了整数除法意义和分数乘法意义及计算,而本课学习将为统一分数除法计算法则打下基础。
例1先是整数除法回顾,再由100克=1/10千克,从而引出分数除法算式,通过类比使学生认识到分数除法意义与整数除法意义相同,都是已知两个因数积和其中一个因数,求另一个因数运算。例2是分数除以整数计算教学,意在通过让学生进行折纸实验、验证,引导学生将图和式进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合思想方法。
根据刚才对教材理解,本节课教学目标是:
1.理解分数除法意义与整数除法意义相同。
2.理解分数除以整数计算原理,掌握计算方法,并能正确进行计算。
3.经历观察、猜测、实验、验证和归纳过程,感受数形结合思想方法,并从中发展抽象思维能力。
本课重点是理解分数除法意义和分数除以整数计算方法;
本课难点是分数除法一般算法理解。这是因为要将除以一个数转化为乘以它倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维定势,一时不容易接受。所以本课关键是如何引导学生在实验和验证中自主体验和感悟。
二.说教法、学法。
为了达成教学目标,本课教学必须贯彻以学生为主体,坚持启发与发现法相结合教学方法,引导学生大胆猜想,动手实践,在体验中、在交流中发现规律。
学习方法上强调以探究学习法为主。认知结构理论告诉我们,学习是学生积极主动内化过程。只有通过主动参与获得知识,才是有意义。因此,在重难点学习上,通过折纸实验与验证,数形结合,从而实现真正理解。
三.说教学过程。
(一)类比迁移,理解分数除法意义。
1.乘法意义对照。
(出示3盒标注100克水果糖)问:共重多少千克?
这个问题提法比教材中略有不同。教材中是先提问:共重多少克?借此引出整数乘法、整数除法算式,然后通过100克=1/10千克引出相应分数乘除法。根据我以往教学经验,这样处理不少学生在类比迁移时有一定障碍,并不容易实现。
而在问题中直接以千克为单位,首先因为问题更有挑战性而能更有效激发学生兴趣,其次还能引出三种形式算式:
○1整数形式:1003=300(克)=0.3(千克)
○2小数形式:100克=0.1千克 ;0.13=0.3(千克)
○3分数形式: 100克=1/10千克 ;1/103=3/10(千克)
这样处理不仅有利于学生系统建构整个乘法意义,而且,还能促使学生自然而然把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去理解就显得水到渠成啦。
2.除法意义对照。
在改编成求每盒重多少千克问题情境下,引出相应三个除法算式:
○13003=100(克)=0.1(千克)
○20.33=0.1(千克)
○33/103=1/10(千克)
并进一步引导学生进行比较,从而理解分数除法意义与整数、小数除法意义相同。
3.练习:
1217= 204 2.81.5= 4.2 2/34=8/3
20412=( ) 4.21.5=( ) 8/34=( )
20417=( ) 4.22.8=( ) 8/32/3=( )
在前两步理解意义基础上,及时安排相应巩固练习。分别是已知三种形式乘法算式,不计算直接写出相应除法算式商。如:2/34=8/3,8/34=( ),8/32/3=( )
(二)自主探究,掌握算法。
第一步:教学4/52
1.创设问题情境:没有已知乘法算式,你还会计算4/52这道分数除法吗?
○1鼓励尝试计算;
○2组织全班交流;
(预设学生反馈):
方法A.因为22/5=4/5,所以4/52=2/5
这是受刚才所学除法意义影响,迁移而来;
方法B.4/52= 42/5=2/5
大部分是看到4与2倍数关系,想当然在计算;可能小部分能从数组成进行解释。
方法C.4/52=4/51/2=2/5
课前预习过;但能说清为什么恐怕很少。
2.引导理解方法B和C。
○1师:4/5里面有()个()/(),2表示平均分成两份,每份有()个()/();
○2师:在长方形里折一折,涂一涂,再来解释两种方法。
○3师:还有不同分法吗?
在先请学生进行解释基础上,引导思考: 4/5里面有()个()/(),2表示平均分成两份,每份有()个()/();在部分学生有所感悟基础上,引导学生进一步验证,根据课前提供五等分长方形纸片,要求学生折一折、涂一涂,再来进行解释。
由于已经将长方形纵向五等分,因此从直观上很容易理解方法B。再进一步启发:还有不同折法吗?鼓励学生寻求不同方法,比如说横向折,沿对角线折等等;
通过这些折法体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它12,也就是说始终可以将2转化为乘以1/2。
第二步:教学4/53
1.初步比较:你觉得哪种方法好?
2.尝试计算4/53;
(要求先折一折,涂一涂,再计算) (课前提供五等分长方形纸片)
反馈,追问:
○1 平均分成3份,每份是( )1/3? 求一个数几分之几怎么计算?
○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?
首先请学生对两种方法进行初步比较:你觉得哪种方法好?这时并不急于统一思想,转而请学生计算4/53。也要求根据课前提供五等分长方形纸片先折一折,涂一涂,再计算。
然后进行反馈,并引导思考:
○1 平均分成3份,每份是4/5(1)/(3)? 求一个数几分之几怎么计算?
○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?
此时通过对比和思考,应该说对方法C已经有了较为深刻认识。
建构主义理论认为:学习不是学生被动接受老师授予知识,也不是知识简单积累,它是学习者认知结构组织和重组,是学生主动建构知识意义过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/53求解过程,使学生自觉在心里进行了比较,也就是主动开始建构认识,这时理解是较为深刻理解。
第三步:实验与验证
1.师:其它这样分数除法计算是不是也和刚才两题一样呢?
在理解例题基础上,抛出一个疑问:其它这样分数除以整数计算是不是也能将除数转化为乘以它倒数呢?从学生思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证动机。然后根据课前提供空白长方形纸条组织学生开展研究,并组织开展同伴间交流。
现代认知理论认为:感知只有经过一般化检验,才能上升成为知识。开展实验与验证符合从特殊到一般需要,而且还是学生主动、内在需要,这无论是对理解掌握算法、还是对培养良好数学思维习惯,都有积极意义。
2.反馈交流。
归纳:(一般化计算方法)用符号表示: AB=A1/B
观察: (形式上看)什么变了,什么没变?
最后,组织进行反馈,得出最后结论,并引导学生将一般化计算方法用符号化表示。这里不仅是为了培养学生符号意识,包括之后引导学生观察,(形式上看)什么变了,什么没变?其目在于培养学生概括能力,促进更好理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识客观性及其本质更为深刻理解,从而形成科学态度和严谨思维。
《分数除法》说课稿2
一、说教材
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法解决问题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的解决问题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的解决问题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的解决问题。这类解决问题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法解决问题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类解决问题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数解决问题的`能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
(一)教学目标
1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法解决问题,并掌握检验的方法。
2、能力目标:培养学生的观察尝试、创新的能力。
3、情感目标:让学生通过两种方法解答解决问题的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。
(二)教学重点
用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法解决问题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的解决问题。掌握这类解决问题的结构特征,能用方程和算术方法解决,是难点所在。
三、说教法、学法。
为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。
四、说教学过程
(一)引出新知
第一个环节:复习旧知,促进迁移
该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:
1、解方程
2、出示与例题有关的分数乘法解决问题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?
第二个环节:创设情境,探究新知
对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:
第一层次:独立探索
出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数X帮助自己解这道题。
第二层次:合作探索
在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?
在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。
第三层次:尝试练习
让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。
第三个环节:变式练习,巩固深化
练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:
1、定位练习。
仿照例3出示类似的两道解决问题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。
2、提高题:同来互相编题,互相解答。
通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。
第四个环节 课堂作业 反馈信息
完成课本练习二十三第4-7题
(三)说“诱思探究”在本节课的具体体现
1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。
2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。
教学追记:
本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例(1)的2个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。
《分数除法》说课稿3
一、教材分析
各位老师,你们好!今天我说课的内容是:人教版义务教育课程标准实验教科书,六年级上册的第三单元,分数除法的意义和分数除以整数。分数除法的意义及计算方法是本单元的重要内容。是在学生学习了分数乘法和求倒数的基础上进行教学的,是分数除法教学的起始课,为学生以后学习分数四则混合运算和分数除法应用题打下坚实的基础。
二、学情分析
六年级学生在二年级时已经知道了整数除法的意义,在本册知道了分数乘法的意义、计算方法和求一个数的倒数的方法,这些已有的知识为学生探索本课新知打下了坚实的基础。学生在学习分数乘法的过程中,通过折一折、涂一涂等活动探索出了分数乘法的意义和计算方法,学生可以运用同样的方法探索分数除以整数的计算方法。学生对于折纸活动很感兴趣,在“玩”的过程中能够感知分数除以整数的基本算理,可以归纳出分数除以整数的计算方法。
三、教学目标
根据新课标的要求和教材的特点,结合六年级学生的认知能力,本节课我确定如下的教学目标:
1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。培养学生动手能力及发现问题、解决问题的能力。
2、通过富有启发性的问题情景和折一折、图一图等探索性的学习活动,引导学生主动参与,独立思考,合作交流,形成计算技能。
3、在教学中渗透转化的思想,让学生充分感受转化的美妙与魅力。体验其中的成就感,增强学生学习数学的自信心。
根据本节教学内容的特点,结合我班学生的实际情况。我把本节课的教学重点和难点确定为:
四、教学重、难点
重点是理解分数除法的意义和分数除以整数的计算方法;
难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。
五、教学流程
为此,我设计了一下的教学环节,并采取了相应的教学方法、指导学生学习。
旧知铺垫—知识迁移—自主探究—巩固提高—完善总结。
六、教学准备
课件、5等份长方形白纸、直尺、彩色笔。
七、说教学流程
(一)旧知铺垫
复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。
先复习倒数,由同桌两人互相出题,其中一人报数,另一个人说出它的倒数。再完成分数乘法两道题,3个1/4是多少?3/7的1/3是多少?让学生说一说意义和计算方法。
【设计意图】本节课的内容是以倒数和乘法计算为基础的。分数除以整数的计算方法与倒数紧密联系,因此,在引入新课之前,带领学生系统深入地复习倒数和分数乘法的相关知识是很有必要的。
(二)知识迁移
1、复习整数除法的意义
(出示3盒标注100克的水果糖)问:共重多少克?先请学生列出乘法算式,借此改编成两道整数除法应用题,并列出两个除法算式。这时引导学生观察两个除法算式与乘法算式的关系,学生发现除法是乘法的逆运算,同时得出整数除法的意义。已知两个因数的积和其中的一个因数,求另一个因数的运算。
2、引出分数除法的意义
如果以千克作单位又该怎样做呢?先请学生先独立思考,再试着写一写,接着汇报列式。
预设学生回答有两种形式的算式:
(1)整数形式:100×3=300(克)=0.3(千克)
(2)小数形式:100克=0.1千克;0.1×3=0.3(千克)
(3)分数形式:100克=1/10千克;1/10×3=3/10(千克)
【设计意图】这样的处理不仅有利于学生系统建构整个乘法的意义,而且,还能促使学生自然而然的把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去的理解就显得水到渠成啦。
3、除法意义对照
进一步引导学生对这三种形式进行观察比较,请学生说一说他的发现,从而理解分数除法的意义与整数、小数除法的意义都相同。并试着用自己的语言小结分数除法的意义。同时板书课题。
4、进一步理解分数除法的意义
完成数学书第28一页的做一做和练习八的第一题。目的是更好的理解分数除法的意义,为后面的学习做好铺垫。
(三)自主探究
1、创设问题情境:没有已知的乘法算式,你还会计算(4/5)÷2这道分数除法吗?
学生两人一组,先独立思考,在互相交流,然后折一折、图一图,动手操作研究问题。
预设学生回答:
学生甲.因为2×(2/5)=4/5,所以(4/5)÷2=2/5
这是受刚才所学除法意义的影响,迁移而来;
学生乙.(4/5)÷2=4÷(2/5)=2/5
大部分学生是竖着对折,将4/5平均分成2份,其中一份是这张纸的'2/5,看到4与2的倍数关系,想当然的在计算。
学生丙.(4/5)÷2=(4/5)×(1/2)=2/5
学生将长方形纸横着折,有部分学生能说出用(4/5)×(1/2),就是求4/5的1/2是多少。
2、接着引导学生理解、比较学生乙和学生丙的方法。
师:乙的方法:4/5里面有()个()/(),(4/5)÷2表示平均分成几份,每份有()个()/();(课件演示)丙的方法:把4/5平均分成几份,每份就是4/5的()/(),就是(4/5)×()/()。(课件演示)
【设计意图】通过这个折法的体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它的1/2,也就是说始终可以将÷2转化为乘以1/2,再利用课件动画演示,横着平均分,其中的一份占4/5的1/2,就是求出4/5的1/2是多少?根据一个数乘分数的意义就用4/5乘1/2,就可得其中的一份是这张纸的几分之几。然后在黑板上板书计算过程。
第二步:教学4/5÷3
结合上面几种算法,你认为分数除以整数的计算方法可能是怎样的?学生乙和学生丙这两种方法学生都可能选择。我们进一步往下研究。这时并不急于统一思想,转而问学生把一张纸的4/5平均分成3份,每份是这张纸的几分之几?要求先折一折,涂一涂,再计算
当再次折纸时,学生采用自己刚才的算法计算4/5÷3的商,有的学生可能会发现自己刚才的的算法不适合本题。他们就会倾向于感知“把一张长方形纸的4/5平均分成3份,图出其中的一份,就是图出4/5的1/3”。当学生确定了这种观点后,离分数除以整数的计算方法就又进了一步。
然后进行反馈,并引导思考:
(1)平均分成3份,每份是4/5的1/3?求一个数的几分之几又应该怎么计算呢?
(2)为什么不选学生甲或学生乙这两种方法?通过验证说明丙比甲和乙方法更实用。
此时通过对比和思考,应该说对学生丙的方法已经有了较为深刻的认识。
【设计意图】苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”学习不是学生被动接受老师授予的知识,也不是知识的简单积累,它是学习者认知结构的组织和重组,是学生主动建构知识意义的过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/5÷3的求解过程,使学生自觉的在心里进行了比较,也就是主动的开始建构认识,这时加深了学生对分数除以整数意义的理解。
第三步:实验与验证
1.这时问学生,其它这样的分数除法的计算是不是也和刚才两题一样呢?请学生用4/5分别除以4或5等几个整数,来进一步实验和验证分数除以整数的计算方法。然后统一看法后,一起来总结分数除以整数的计算方法
【设计意图】在理解例题的基础上,抛出一个疑问:其它这样的分数除以整数的计算是不是也能将除数转化为乘以它的倒数呢?从学生的思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证的动机。
2.反馈交流。
归纳:一般化计算方法用符号表示:A÷B=A×(1/B)(B不为0)
引导学生观察:形式上看什么变了,什么没变?
【设计意图】这里不仅是为了培养学生的符号意识,目的在于培养学生的概括能力,促进更好的理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识的客观性及其本质的更为深刻的理解,从而形成科学的态度和严谨的思维。
(四)巩固提高
1、形式训练
(7/15)÷4=(7/15)×()
(5/16)÷6=(5/16)(1/6)
(3/10)÷5=()()
这样的图式训练对正确掌握分数除法的一般化算法是很有效的。因为小学生的思维毕竟还具有很大的直观性,图式的强化将促使学生在理解算法时有一个直观的支撑,这样的理解也就愈深刻。
2、计算训练。(要求写出过程)
(2/3)÷4(5/6)÷5(3/8)÷6(4/9)÷7
3、应用:
(1)将2/3米长的丝带剪成同样长的5段,每段有多长?
(2)小红3天看了一本书的1/5,照这样计算,看完这本书要多少天?
整个练习的设计突出分数除法计算方法的巩固,同时也安排了应用练习,尤其是第二题,还注意了学生逻辑推理能力的培养。
(五)完善总结
总之,本节课始终以‘落实学生主体地位、发挥教师主导作用’为指导思想,不断引导学生进行类比、比较、探究、实验和验证,从特殊到一般,由除法到乘法,促使学生积极主动的构建认识,发展思维,形成有效课堂。
以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、验证解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,使课堂焕发了活力。
板书设计
我设计的板书,目的是突出教学的重点和难点,让学生对新知识的生成一目了然,加深印象。
分数除法的意义和分数除以整数
例1每盒水果糖重100g,3盒重多少g?(kg)?
100×3=300(g)0。1× 3=0。3(kg)(1/10)×3=3/10(kg)
300÷3=100(g)0。3÷ 3=0。1(kg)(3/10)÷3=1/10(kg)
300÷100=3(盒)0。3 ÷0。1=3(盒)(3/10)÷(1/10)=3(盒)
分数除法的意义与整数除法和小数除法的意义相同:都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
例2把一张纸的4/5平均分成2份,每份是这张纸的几分之几?
方法A。2×2/5=4/5,所以(4/5)÷2=2/5
方法B.(4/5)÷2= 4÷(2/5)= 2/5
方法C.(4/5)÷2=(4/5)×(1/2)= 2/5
分数除以整数(0除外),等于分数乘这个整数的倒数。
《分数除法》说课稿4
我今天说课的内容是分数与除法中的第一课时。我将就“教学内容和教学要求、教学目的、重点、难点的确定、教学方法的选择、教学过程的设计”等四方面进行说明。
(一)、关于教学内容和教学要求的认识
“分数与除法的关系”这一教学内容,是小学教学第十册第四单元中第一小节的授课内容,这部分内容是在学过分数除法的意义和计算法则、分数乘法应用题、用方程解已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节教学的一个数的几分之几是多少求这个数的应用题,也是由于分数乘法意义的扩展,相应地除法意义的具体含义也有了扩展而产生的新的应用题。本节课承接了分数的意义等知识,又为今后学习单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。
(二)、关于教学目的、重点、难点的确定
根据对教学内容和教学要求的认识,针对学生的学习水平,我确定本节课的教学目标如下:
1、知识目标:理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。
2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。
3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。
本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。在教学进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的'数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。
(三)、教学方法的选择
贯彻“以学生为主体,教师为主导,训练思维为主线”的原则。
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2、设计教法体现主体
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
(四)、教学过程的设计
一、激情引入,自主建构。
这一部分的目的是在已有的知识上学习新知识,让学生感知知识产生和发展的过程,为重点的落实,难点的突破铺路搭桥。
(1)(课件展示)
1)6块月饼分给3人,每人分多少块?
2)1块月饼分给2人,每人分多少块?
3)1块月饼分给3人,每人分多少块?
(2)问一问他们怎样计算每人分得的块数?
(3)当他们发现不能得到整数的商时,引导他们讨论应该怎样表示他的结果。
从而板书课题——分数与除法。
(4)介绍分数表示除法的商的由来。
二、在目标的递进中,获得积极的数学学习情感。
这一部分的目的是在学生已初步建立了分数与除法的关系时,将数学活动变成师生之间,生生之间交往互动与共同发展的过程,遵循学生认知的特点,进一步发展思维能力,创造有现实性,挑战性和趣味性的数学活动。
(1)出示例1:例1:把1个蛋糕平均分给3人,每人分得多少个?
1)生讨论
1在讨论过程中,启发学生用一个数表示
2在小组中说一说,你是怎么想的。
2)生汇报讨论结果
生1:从图上我可以知道每人分得这块蛋糕的
生2:求每人分得多少个,要算1÷3得多少?
师:1÷3得多少呢?
(2)出示例2:把3块饼平均分给4个孩子,每人平均分得多少块?
——首先请他们估算一下每个人应分得多少块?
参考答案:
A、半块B、半块多c、一块
——其次,小组合作动手操作。
——最后展示分法
(3)列出完整的算式,并用分数来表示具体的结果。
(4)在教授完例1和例2后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。那么教学设计为请他们观察黑板上的算式和结果,猜测分数与除法之间有什么关系,根据学生不同的认知情况,安排模仿练习,感性体验数学活动。
把1米长的钢管平均分成3份,每份长多少米?
体会当得不到整数结果的时候,用分数来表示他们的商,发现分数的分子是除法里的被除数,分母是除法里得出术,在总结完各部分关系与分母公式后,请他们推理一下,除法理由具体要求吗?(除数不能为零)那分数有没有要求呢?说一说理由,教师板书b≠0,引导进行验证从分母所表示的意义说明没有意义。
三、掌握知识技能,实现数学思想的深入。
结合本书的重点,难点,这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。
练习设计主要分为以下几个层次:
①强化分数与除法的关系:
4÷5=5÷12=7÷8=
让学生叙述一下你观察到了什么?发展学生的口头表达能力。然学生想一想,你都可以知道什么?发展学生的空间想象观念训练知识的迁移能力。怎样解答?进一步巩固所学的知识。
②用分数表示商的意义的总体认识。
单位换算:9cm=()dm3cm=()m7dm=()m
11秒=()分5分=()时8时=()天
四、画龙点睛,留下个性发展的空间。
课程的最后以学习目标进行提纲式小结,便于学生形成知识的网络,再次重申本节的重点和难点,培养学生质疑问难的好习惯教师引导思考练习一中每段的长度都不一样,要将分数与除法之间的关系从认识上、意义上、联系上进行一次升华。给学生一个完整的认识,为今后的继续学习留下个性发展的空间,释放无穷的潜能。
五、板书设计。
第一部分为新授例题。
第二部分为总结的分数与除法的关系知识。
第三部分为分层次的发展思维。
这样设计的目的再现了知识产生和发展的过程,体现了一切事物发展的本质特点,更重要的是渗透给学生,从实践中上升为理论,又用于指导新的实践,在实践中检验理论的真实性,从而树立从小爱科学的唯物主义世界观。
《分数除法》说课稿5
一、说教材:
1、教材分析:
《分数乘、除法应用题对比》是人教版九年义务教育六年制小学数学第十一册的内容。它是在第十册教学“求一个数是另一个数的几分之几”,以及本册教学“求一个数的几分之几是多少”,以及“已知一个数的几分之几是多少求这个数”的基础上进行的,目的使学生对乘、除法应用题的数量关系和内在联系有进一步的认识,提高分析和解答分数应用题的能力,为进一步学习稍复杂的分数应用题做好准备。
2、教学目标:
(1)认知目标:
①明确分数乘法应用题和分数除法应用题的相同点和不同点;
②掌握解答分数乘、除法应用题的方法。
(2)能力目标:
①提高分析和解答分数应用题的能力。
②培养学生的比较能力。
③培养学生分析和处理数据的能力。
(3)情感目标:
①体验数学与日常生活的紧密联系。
②培养学生团结协作的优良品质。
3、教学重、难点:
教学重点:掌握解答分数乘、除法应用题的方法。
教学难点:分析分数乘、除法应用题的异同点。
二、说教法和学法:
小学生年纪不大、经验不多,但他们天真、好动,乐于接受新事物,思维活跃,因此,本节课在教法、学法的采用上突出了以下特点:
1、联系实际,从生活中学。
在我们的生活中,到处充满着数学。本节课教师注重把数学知识与实际生活联系起来,为学生提供丰富的感性认识和生活经验,使学生感到学习数学并不是很难,从而激发他们学习数学的乐趣,为实施创新教育打下良好的基础。
2、 分析问题,从思考中学。
只有思考,才会有所得。本节课教师为学生提供了丰富的素材,让学生有所想,给学生提供充足的思考时间,让学生展开思维的翅膀,在知识的海洋里遨游。
3、促进参与,在交流中学。
交流与合作是知识经济时代社会发展的需要。现代社会,人与人之间越来越需要沟通与互助,越来越需要交流与合作。本节课教师注重让学生通过小组的合作和讨论来发现问题、研究问题和解决问题,培养他们团结协作的优良品质。
三、说教学过程:
教学流程
一、谈话导入,分析问题:
1、现在比原来降价 。
想:这句话把( )看作单位“1”。
( )是( )的 ;
也就是( )是( )的 。
数量关系式:原来的价格×(-)=现在的价格。
2、今年产量比去年增产 。
想:这句话把( )看作单位“1”。
( )是( )的 。
也就是今年产量是( )的( - )。
数量关系式;( )×(-)=今年的产量
学生运用分数的有关知识,根据以上条件说出是以哪个数量为单位“1”的。在学生说话的过程中,很自然地复习了分数及单位“1”的有关知识,为学生进一步组合应用题及进行分数乘除法应用题的对比打下基础。并且使学生感受到数学就在自己身边,数学并不难。
二、导入新课
我们复习了分数乘、除法应用题的数量关系。通过上题发现,有很多题的叙述形式很相似,但解题方法却大不相同。为什么不相同呢?今天我们就来研究稍复杂的分数乘除法的应用题,对比、区别它们之间的异同点。(板书课题)
三、学习新知
(一)出示例题。(板书在黑板上)
1、学校有20个足球,篮球比足球多 ,篮球有多少个?
2、学校有20个足球,篮球比足球少 ,篮球有多少个?
3、学校有20个足球,足球比篮球多 ,篮球有多少个?
4、学校有20个足球,足球比篮球少 ,篮球有多少个?
(1)学生以小组为单位,分组自己分析解答。
在这里为学生创设了一个开放的情境,学生可根据自己的喜好对条件进行组合,培养他们分析和处理数据的能力。学生通过小组的合作,集思广义,在组合应用题的过程中,初步感知到各种分数应用题的不同的解题思路。为分数乘、除法应用题的比较打下基础。
(2)学生汇报。让学生自己说解答过程。
(3)学生观察这些应用题,小组讨论:哪些应用题的解题思路是一样的。
通过讨论,使学生进一步感受分数应用题的不同解题思路。
(二)。分析比较。
1、比较1、3题。
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论。
(2)全班交流。
(3)师生归纳。
这两道题都是把足球看作单位“1”,单位“1”的量是已知的,求篮球有多少个?就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(2)题是篮球比足球少 ,计算时一个要加上多的数,一个要减去少的数。
2、比较2、4题。
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论。
(2)全班交流。
(3)师生归纳。
这两道题都是把篮球看作单位“1”,而且单位“1”的量是未知的,因此要设单位“1”的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答。熟练之后也可以直接列除法算式解答。
3、教师小结。
这是本节课的重点,也是本节课的难点。在这里,让学生通过小组讨论,自己进行对比,学生之间既要各抒己见,敢想敢说,敢于问出心中的.疑惑;又要认真倾听对方的思路和想法,学会比较、分析。这样,数学课堂就成为全体学生之间进行交流、合作的活动中心。课堂上学生之间的交流与合作,是体现学生主体性的一个重要标志,也是形成信息多向交流和反馈的新型课堂教学结构的重要活动方式。就学习而言,已有认知结构是学生学习的出发点,每个学生总是以自己的认知方式和在已有经验的基础上进行学习的。因此,在数学课堂上学生与学生之间的交流与合作,既可使学生从多角度看问题,也可使学生通过对比发现自己存在的问题。合作与交流,能让所有的学生都体验到成功的喜悦。
三、应用拓展,巩固提高。
分析下面的数量关系,并列式或方程。
1、校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?
2、校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?
3、校园里有杨树25棵,杨树比柳树多 ,柳树有多少棵?
4、校园里杨树有25棵,柳树比杨树少 ,柳树有多少棵?
通过学生对条件的选择,培养了学生处理数据的能力,并在分析数据的过程中,培养学生分析数据的能力,渗透思想教育。
四、小结知识,概括方法。
小结本节课的知识及学习方法。
通过本节课知识的小结,回顾本节课所学的知识,加深印象。通过本节课学习方法的小结,使学生掌握科学的学习方法,不仅有现时的价值,而且对学生将来的发展,也有长远的价值。
五、课堂作业。
教材第39页练习十第3~5题。
六、说教学效果。
本节课在例题4小题的贯穿之下,力求遵循知识的发展规律和学生的认识主动性,密切联系数学与实际的生活,充分调动学生的学习主动性,让学生参与到学习的全过程之中,使学生在观察、思考、讨论中总结规律,培养思维能力。教学过程开放,使学生的潜能得到发挥,知识、能力和良好的心理品质得到和谐地发展。
《分数除法》说课稿6
一、说教材
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的应用题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的应用题。这类应用题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
(一)教学目标(出示多媒体)
1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法应用题,并掌握检验的方法。
2、能力目标:培养学生的观察尝试、创新的能力。
3、情感目标:让学生通过两种方法解答应用题的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。
(二)教学重点(出示多媒体)
用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法应用题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的应用题。掌握这类应用题的结构特征,能用方程和算术方法解决,是难点所在。
三、说教法、学法。
为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的`方法进行教学,从而达到教是为了不教的目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。
四、说教学过程
(一)引出新知
好的开始是成功的一半。新课的引入是课堂教学的重要环节,是一堂课成功的起点。
第一个环节:复习旧知,促进迁移
该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:
1、根据题意写出下面的数量关系。
共三个小题,让学生思考后口答,教师板书数量关系。
2、出示与例题有关的分数乘法应用题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?
第二个环节:创设情境,探究新知
对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:
第一层次:独立探索
出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数x帮助自己解这道题。
第二层次:合作探索
在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?
在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。
第三层次:尝试练习
让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。
第三个环节:变式练习,巩固深化
练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:
1、定位练习。
仿照例3出示类似的两道应用题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。
2、提高题:同来互相编题,互相解答。
通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。
第四个环节课堂作业反馈信息
完成课本练习二十三第4-7题
(三)说“诱思探究”在本节课的具体体现
1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。
2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。
《分数除法》说课稿7
教材分析:
《分数除法解决问题》这节课是人教版教材六年级上册第37、38页的内容,属于“数与代数”的知识领域。是在学生已掌握分数除法的意义,分数乘法应用题以及分数乘、除法方程的基础上进行教学的。教材中的例1以人体生理常识为内容载体,引导学生找出等量关系,培养学生列方程解答比较简单的分数除法应用题的能力,也有助于发展学生思维的广度,为今后用方程解答更复杂的应用题奠定基础,因此这部分知识在整个知识领域起到了承上启下的作用。
为了帮助学生分析、理解数量关系,教材分别画出了线段图。其中小明的体重与小明体内水分的质量,是部分与整体之间的关系,可以在一条线段上表示,也比较容易理解;爸爸的体重与小明的体重,是两个相对独立的数量之间的关系,理解难度稍大一些,需要画出两条线段加以表示。从中不难看出,教材在一道题里设置两个问题,并非简单重复,而是由易到难地提示这类数量关系的两种情况。用同一个问题情境把它们串联起来,比较自然,便于教学的展开与学生的理解。第38页的“做一做”,安排了一道与例1相仿的习题,同样包含涉及数量关系两种情况的两个问题,学生比较熟悉,也比较容易理解。
学情分析:
虽然学生在第二单元“分数乘法”解决问题中,已经学会了“求一个数的几分之几是多少做乘法”。但小学生只具备初步的逻辑思维能力,在本单元“分数除法”解决问题,如果用算术方法解题的话,需要逆向思考,即从“已知一个数的几分之几是多少,求这个数”的角度去理解数量关系和算理。用方程解,只要根据分数乘法的意义,顺向思考,就能找到等量关系并列出方程。所以教材中只给出了用方程解题的全过程,打破了老教材中“单位1”已知做乘法,单位“1”未知做除法的教学模式,对分数除法的教学更加突出用方程解,把新知转化成旧知,起到了化难为易的作用,这是学生认知上的一个飞跃,这对学生是非常重要的。
鉴于以上教材分析和学情分析,我确定了以下教学目标:
教学目标:
1、使学生学会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题,提高列方程解决问题的自觉性和积极性。
2、通过对比,发现“求一个数的几分之几是多少”和“已知一个数的几分之几是多少,求这个数”实际问题间的内在联系,激发学生学习的兴趣。
3、让学生对生活中的有关数学信息予以选择、加工,进而解决现实生活中的一些简单问题,培养学生的分析、判断能力。
教学重难点:
根据分数乘法的意义找到等量关系,正确列出方程。
教学过程准备:课件、尺子、纸黑板
教学过程:
一、复习辅垫,引入新课
1、找出下面各题的单位“1”,并写出等量关系。
(1)男生人数占女生人数的10/11 。
(2)已经行了的路程是全程的3/8 。
(指名口答,师同时出示课件)
2、爸爸体重75kg,小明的体重是爸爸的7/15
(1)小明的体重是多少千克?
(2)小明体内水分的质量约占小明体重的4/5,小明体内有多少千克的水分?
①学生独立完成,写出等量关系,并列式解答,师巡视。
②反馈:指名口头汇报,师板书解答过程。
3、小结:刚才我们做的几道题目,就是第二单元学的用分数乘法解决问题,“求一个数的几分之几是多少做乘法”。今天这节课,我们要继续学习有关“解决问题”的知识。(揭题板书)
二、合作探究,学习新知
1、谈话:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)同学们知道的可真多,水是构成我们人体组织的重要成分。那我们体内的水分占体重的几分之几吗?老师查到了一些资料,我们一起来看看吧。(课件出示)
2、分析:从医生的话中,她告诉了我们哪些数量关系呢?(指名说,师板书:成人体重×2/3 =成人体内水分的质量,儿童体重×4/5=儿童体内水分的质量)观察一下,这两个数量关系和刚才做的2道复习题,你发现了什么相同的地方?(复习题中求小明体内水分的质量,用到了第2个数量关系:儿童体重× 4/5 =儿童体内水分的质量)
思考:(1)小明的这句话中有几个条件?如果要求“小明的体重是多少千克?”应该选择“我体内有28kg水分”与“我的体重是爸爸的7/15 ”这两个条件中的哪一个呢?为什么?(应先第一个条件,因为第二个条件中,爸爸的体重还是个未知数。)
(2)现在已经知道了小明体内有28kg的水分,要求小明的体重,还要用到医生说到的'哪个数量关系呢?(指名答:儿童体内的水分占体重的4/5 。)
(3)指名说出完整的数学问题,师出示纸黑板:“小明体内有28kg的水分,儿童体内的水分约占体重的4/5,小明的体重是多少千克?”接着,全班齐读。
(4)条件已经找到了,我们一起来画图分析一下。(指名说,师生共同完成线段图)接着指导学生看图。(小明的体重是单位“1”,把它平均分成5份,取其中的4份是小明体内水分的质量,也就是4/5,而小明体内水分的质量是28kg,是个已知条件,这道题要求的是小明的体,打一个问号“?”。)
(5)引导学生看图,说出等量关系:儿童的体重×4/5 =儿童体内水分的重量(板书),然后代入数据,就会发现儿童的体重是未知数。观察数量关系,引导学生思考:儿童的体重是未知数,我们该用什么方法计算呢?(根据以往的学习经验,学生会想到用方程解答。)接着,生独立列方程解答,师巡视指导
(6)、比较例(1)和复习题2(2),有什么相同点和不同点?(同桌进行讨论交流)
汇报:相同点:数量关系都是一样的。不同点:这两道题的已知数和未知数交换了位置,复习题中单位“1”是已知的,例1中单位“1”是未知的。(板书:单位“1”是未知数,用方程解答)
(7)、小结:当单位“1”是未知数时,用方程解题,思路统一,便于理解,等以后我们学习更复杂的应用题,你会发现用方程解题是非常简便的。
(1)思考:要求爸爸的体重,又要用到哪两个条件呢?(指名说)然后请学生说出完整的应用题,师出示纸黑板:小明的体重是35千克,小明的体重约占爸爸的7/15,爸爸的体重是多少千克?
(2)“我的体重是爸爸的7/15”这句话中,是把谁的体重看作单位“1”,平均分成多少份?(指名说,师边画图板书)
(3)在此基础上,让学生接着把图画完整。(指名一人上台画,其他人在本子上画)
(4)引导学生观察线段图,写出等量关系,并列方程解答。然后指名上台板演,全班讲评。
(5)引导学生观察,黑板上的第一个等量关系:成人的体重×2/3 =成人体内水分的质量,其实是个多余的条件,解决这2题时根本用不上。但是你可以根据这个条件,提出什么问题呢?(成人体内水分的质量是多少千克?)接着学生独立列式解答,指名口答,师板书。
三、联系实际,巩固提高
1、完成第38页的“做一做”。
(1)学生独立完成,教师巡视指导。
(2)指名利用展台汇报,重点说说两题的数量关系及画图时应注意什么?接着全班评价。
四、全课小结畅谈收获
今天这节课我们学了什么?(指名说)
教师小结:做应用题时,分析数量关系是非常重要的,因此在解答分数应用题时,可以借助线段图来分析题目中的数量关系,单位“1”是未知数,可以用方程来解答。
教学反思:
《分数除法解决问题》是人教版小学数学六年级上册的内容,也是本册的重点、难点。也是整个小学阶段应用题教学的重、难点之一。为了激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量,我是这样设计教学过程的:
一、贴近学生生活,让学生感受学习乐趣
“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。”在复习环节,我出了2道练习题,第1题先让学生找单位“1”,再写出数量关系。第2题是学生比较熟悉的体重与体内水分质量的应用题,写出数量关系后,再殘解答。以此引发学生参与的积极性,向他们提供充分的从事数学活动和交流的机会。
二、参与学习过程,让学生获得亲身体验
教学中,为让学生认识解答分数乘法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是找到数量关系。
教学中,我力争把“自主、合作、探究”的教学方式和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。学生毕竟是初学者,他们的自主、合作、探究肯定是不全面的,各种水平的学生在自主、合作、探究中所学的层次也是不一样的。所以教师的讲解是必要的,尤其是概念性的知识,可以为学生节约许多时间,发挥学生的主体地位以及教师的主导地位。
三、注重新旧知识联系,让学生感到新知不新
在分析应用题的时候,我通过2次将复习题与例题对比,让学生感受到,例1与复习题的数量关系是一样的,只是这两道题的已知数和未知数交换了位置,复习题中单位“1”是已知的,例1中单位“1”是未知的。而通过画图分析,写出数量关系,代入,学生发现单位“1”是未知数,就可以用以前学过的方程来解答,思路统一,学生理解起来非常简单,不会觉得做应用题很难。
学生的数学学习活动是一个生动活泼的、主动的和富有个性的过程,学生的一些个性化的思维成果,我们应当给予学生充分表达的机会,鼓励他们将思路说给大家听。这样学生的思维才能迸发出创新的火花,学生的个性特征得到了充分展示。
《分数除法》说课稿8
一、说课内容
人教版小学数学五年级下册6~66页——分数与除法。
二、教材分析
(一)教材、教学的分析与思考
对于分数,学生并不陌生。在三年级的时候,他们已经初步接触了分数,通过直观和动手操作,初步理解了分数的含义,知道了分数各部分的名称;在这节课内容之前,又进一步学习了分数的产生和分数的意义,这些都是学生学习本节内容的基础。
教材安排了两个例题。例1初步沟通除法和分数的关系;例2明确指出可以用分数表示两个数相除的商。例题后通过适当的练习,在学生应用知识,解决问题,巩固关系的同时,培养他们的探究能力。本课时内容,为学生进一步学习分数的有关知识奠定基础。
分数是一个内涵丰富的数学概念,它的意义是多层次的。在本节课之前,学生是从“行为”(平均分物体)入手认识分数的;本节学习分数与除法的关系,则是对分数的进一步的理解——分数可以表示除法运算的结果。在本课教学中,我力求从这样一个角度去突出这一点。
(二)教学目标
在具体的问题情境中,探索和理解除法与分数的关系,会用分数表示除法的商,并从中体会到用分数表示除法商的优越性。
能在几组例证的探索过程中,初步感受数学建模思想,培养观察、比较、归纳等探究的能力。
在对分数意义的理解中感受数学知识的发展变化规律,激发学习数学的积极情感。
(三)重点、难点
本课的教学重点是发现、掌握除法与分数的关系;难点是理解两个数相除商用分数表示。
三、教法、学法
在这一节课中,我以学生熟悉的平均分问题和分数的意义作为学生学习的基点,借助实验操作、数形结合的方法,让学生自主探索,在经历
(b≠0)这一知识的形成过程中,逐步构建除法和分数之间关系的模型,学会用分数这个新的数表示除法的.商。
四、教学过程
开门见山,抛砖引玉。
1、把6颗糖,平均分给3人,每人分得()颗。
2、把3颗★平均分给3人,每人分得()颗。
3、把1块月饼平均分给3人,每人分得()块。
【设计意图:虽然只是简单的3道题目,但却复习了旧知识,同时又巧妙地引出新知识,抛砖引玉,为下面的研究埋下伏笔。】
承上启下,初步建模
1、承接前一个问题:把1块月饼平均分给3人,每人分得多少块?
根据整数乘法的意义,列出除法算式1÷3;根据分数的意义,每人可得这块月饼的,借助月饼图可知,1块月饼的也就是块月饼。因此1÷3的商可以用分数表示。
[设计意图:在老师的启发下,学生根据整数除法的意义列出除法算式;根据分数的意义,直接用分数表示结果;其次借助数形结合,巧妙地把除法计算与分数初步联系起来。]
2、把题目改为:把1块月饼平均分给4名、5名、6名同学,每人分得多少块?
3、追问:如果平均分给7名、8名、9名同学,每人分得多少块?如果是b名同学呢?
[设计意图:通过具体的问题情境,初步理解:如果被除数是1,不管除数是几,都可以用几分之一的分数表示1÷几的商。初步建立的数学模型,为下面的研究奠定基础。]
深入探究,理解含义
出示例2:把3块月饼,平均分给4名同学,每人分得多少块?
通过“估算——猜想——验证——汇报反馈———小结”这几个环节,明确:可以用分数表示3÷4的商。
我利用多媒体课件设计两个预案,结合学生的汇报演示。
预案1:先把1块月饼平均分成4份,每人分1份,就是块;再用同样的办法平均分另外2块同样大小的月饼。这样每人分得3个块,就是块。
预案2:把3块月饼叠在一起平均分成4份,每人取其中的1份,就是3块饼的。1份有3个块,拼起来就是1块饼的,即块。
归纳类比,发现规律
1、把3块月饼,平均分给10名同学,每人分得多少块?
2、把7块月饼,平均分给10名同学,每人分得多少块?
3、把x块月饼,平均分给15名同学,每人分得多少块?
列出算式,观察比较,发现规律:
检测反馈,拓展提高
1.用分数表示下面各题的商
7÷8=9÷13=9÷8=11÷10=
2.想一想,填一填
完成书本课后做一做第2题,并添加这一道题目
通过=()÷(),说明除法和分数之间的互逆关系;通过
提问,“()可以是任何数吗?”引导学生思考并得出:因为除数和分母都不能为0,所以。
3.计算下面各题的商
4÷7=1÷2=5÷3=45÷5=
9÷3=4÷5=2÷3=1÷6=
4.解决问题
(1)一位火炬手跑1千米要15分钟,平均每分钟跑几分之几千米?1÷15=(千米)
(2)如果要重新铺设一块15平方米的主席台,需要41块砖,平均每块砖占地多少平方米?15÷41=(平方米)
5.思考提高题:0.7÷2的商也能用分数表示吗?
五、教学预评及板书设计
本节课通过营造宽松的学习氛围,通过“抛——承——探——引”这几个环节,使学生经历了(b≠0)这一知识的形成过程,较好地构建了除法与分数关系这一新的数学模型,明确可以用分数表示两个数相除的商。而且板书简明扼要,重点突出,能有效地突出教学的重点和突破教学的难点,使本课教学目标能有效达成,使课堂教学充满生命的活力。
《分数除法》说课稿9
尊敬的各位专家老师:
大家好!
我今天说课的题目是《分数除以整数》。下面我将从说教材、说学情、说教法学法、说教学过程、说板书设计等方面进行我的说课。
一、说教材
1、教材的地位与作用
《分数除法》是人教版《小学数学义务教育教科书》六年级上册第3单元的第2节“分数除法”第1课时的内容。它是在学生学习了整数除法计算的基础上进行教学的。学好本课知识,既是对分数以及除法的认识的深化,又为进一步的学习打下坚实的基础。
2、教学目标
新的课程标准的根本目的在于为个体的发展服务。个性的和谐,理性的培养,情操的陶冶,身心发展的平衡等都是新课标所追求的目标。
基于此,我确定了3个层面的教学目标:
层面1是知识目标:学生能理解分数除法的概念及意义,能掌握分数除法的计算方法。
层面2是技能目标:通过对分数除法的研究,学生观察、分析、归纳、表达等方面的能力能得到相应的发展。
层面3是情感目标:学生能体验获得成功的乐趣,体会数学和生活的紧密联系的同时,锻炼克服困难的意志,养成认真好学、乐于交流、勇于思考的学习习惯。
3、教学重点与难点
根据教材内容并结合新课标以及学生具体情况,我确定本课的教学重点为掌握分数除法的计算方法;教学难点是分数除法的计算法则的推导过程;关键点是理解分数除法的意义。
二、说学情
学生是学习的主体,对学生情况的分析是教学工作的关键环节。因此,我将从以下两方面进行分析:
1、小学生的心理特点:小学生年幼好动,有强烈的好奇心,注意力分散,因此,我采用形象生动、形式多样的教学方法,激发学生的学习兴趣,培养学生的能力、
2、小学生的知识结构:学生已经完成了整数除法的学习,积累了一定的有关分数的知识。这时,水到渠成的学习“分数除法”,能让学生对除法有一个比较完整的认识。
三、说教法学法
关于教法。根据教学内容的特点,为了更好地突出重点、突破难点,按照学生的认知规律,遵循教师为主导、学生为主体、训练为主线的指导思想。我在教学中采用以情景教学法、观察发现法为主,以多媒体演示法为辅的教学方法,使学生始终处于主动探究问题的积极状态,更高效率地学到知识。
关于学法。我们不仅要教给学生知识,更要教会学生如何去学。新课标指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。为此,在本节课的教学活动中我将尊重学生的主体地位,让学生自主、合作、探究,通过迁移已有的知识和学习经验获取知识。
四、是我本次说课最重要的部分——说教学过程。
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为:情境导入、讲授新课、巩固练习、归纳总结、布置作业5个阶段。具体过程如下:
第1阶段:情境导入。
我将使用多媒体播放“分生日蛋糕”的情境,提出“假设只剩下的生日蛋糕,但需要分给5个人,每个人能分得多少蛋糕?”通过现实生活中的情境,自然而然地引出分数除法的主体。
“兴趣是最好的老师”,而对小学生来说,在学习中培养他们的学习兴趣,激发学习的热情尤为重要。教育学和心理学的研究表明,当学习材料与学生已有的.知识和生活经验相联系时,学生对学习才会感兴趣。本节课开始由分蛋糕的场景引入,引起了学生的兴趣,紧紧抓住了学生的注意力,同时紧密联系学生的生活实际,让他们感到数学并不神秘,数学就在自己的身边,更激起了他们探索新知的欲望。
第2阶段:讲授新课。
我将使用多媒体展示问题情境:“把一张纸的平均分成2份,每份是这张纸的几分之几?”让学生自己试着折一折涂一涂。学生利用事先准备好的纸,先把纸平均折成5份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。在学生汇报反馈时,将学生的思维过程展示出来,即分、涂的过程。使每位学生都能在清晰地展示中分享他人的思维方法。通过思考操作,学生达成共识:里有4个,平均分成2份,每份就是2个,是。接着让学生列出算式÷2=,在探究过程中,学生同时理解了分数除法的意义。
学生通过操作,明白是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。这种方法是否具有普遍性呢?教师让每位学生举例验证,通过分一分,涂一涂证明结论。
学生很快发现有些算式是无法用以上结论计算出来的,如÷3,分子4除以3是除不尽的。矛盾的引发,说明“分母不变,被除数的分子除以整数得到商的分子”这样的计算方法不具有普遍性。我引导学生再一次进行探究。为了便于全班统一交流,我选取学生举例中的一道典型算式进一步研究,如÷3,此时,先让学生动手分一分、涂一涂,然后再让他们进行小组交流。
根据学生的小组讨论,学生发现把平均分成3份,每一份就是这张纸的。得到的算式是÷3=。此时我还引导学生发现:把平均分成3份,这其中的一份实际上就是的,而求一个数的几分之几可以用乘法来计算,算式是×=。比较两个算式,学生很快发现它们是相等的。由此,引导学生得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。
这一环节我将尽量放手,给学生广阔的空间,把学生置身于探索者、发现者的位置,从而给学生创造一个观察思考、自由讨论、发现创新的机会,使学生从感性认识上升到理性认识,从被动接受知识为主动探索,学生学习的过程变得精彩而不在枯燥无味。
第3阶段:巩固练习。
为了让学生深刻认识分数除以整数,我将要求学生在课堂上独立完成教材P32做一做的第1题第1小题和第2题前面3个小题。我将通过抽个别学生上黑板作答,巡视其他学生的草稿本作答的方式,了解学生对本课知识的掌握情况,对学生的闪光点给予表扬,对学生的不足之处加以点拨,以此让学生充分消化本课内容,并学会学以致用。
第4阶段:归纳总结。
我将让学生自主小结,畅谈这节课的收获,说说学了这节课你又哪些新的收获?同时,我将对学生的总结加以评价与鼓励,查漏补缺,使学生对本课知识结构有一个清晰而系统的认识。帮助学生梳理自己所学的知识的同时,还可以进一步激发学生学习的热情,发展学生的能力。
第5阶段:布置作业。
作业是课堂的有效延伸。根据作业的巩固性和发展性原则,我将对作业进行分层设置,其中必做题为:教材P34练习7的第3—4题;选做题为:教材P34练习7的第11题。
这样既让学生及时巩固本课知识,又为学有余力的学生留有自由发挥的空间,弥补了课堂缺陷,照顾了学生的个别差异,进行了因材施教。
五、说板书设计。
我的板书分为3板块,黑板的正中央是我本节课的主题《分数除法》,左边引入情境,中间板块呈现教学重点与难点;右边是练习讲解。这样设计直观大方,很直观地展示教学内容,让学生一目了然,能够引起学生的注意和兴趣,最终达到概括、巩固、提高的教学目的。
六、教学反思。
总之,本课我努力为学生提供具体的实践活动,创设出引导学生探索、操作和思考的情景。整节课大部分时间学生都在动手实践:有独立探究,有合作交流;有猜想,有验证;有观察,有分析,有想象。我力求让学生在尽可能大的活动空间中切实体验到数学就在自己的身边,数学对解决实际问题是有用的。
整节课的教学,我和我的孩子们在轻松的活动中获得了发现,在激烈的讨论中明白了道理,在愉悦的合作中享受了成功!以上就是我说课的全部内容,谢谢各位专家老师的耐心聆听!
《分数除法》说课稿10
一、说教材
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的应用题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的应用题。这类应用题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
(一)教学目标(出示多媒体)
1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法应用题,并掌握检验的方法。
2、能力目标:培养学生的观察尝试、创新的能力。
3、情感目标:让学生通过两种方法解答应用题的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。
(二)教学重点(出示多媒体)
用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法应用题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的应用题。掌握这类应用题的结构特征,能用方程和算术方法解决,是难点所在。
三、说教法、学法。
为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的.过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。
四、说教学过程
(一)引出新知
好的开始是成功的一半。新课的引入是课堂教学的重要环节,是一堂课成功的起点。
第一个环节:复习旧知,促进迁移
该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:
1、根据题意写出下面的数量关系。
共三个小题,让学生思考后口答,教师板书数量关系。
2、出示与例题有关的分数乘法应用题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?
第二个环节:创设情境,探究新知
对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:
第一层次:独立探索
出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数x帮助自己解这道题。
第二层次:合作探索
在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?
在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。
第三层次:尝试练习
让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。
第三个环节:变式练习,巩固深化
练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:
1、定位练习。
仿照例3出示类似的两道应用题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。
2、提高题:同来互相编题,互相解答。
通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。
第四个环节课堂作业反馈信息
完成课本练习二十三第4-7题
(三)说“诱思探究”在本节课的具体体现
1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。
2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。
五、说板书设计
分数除法应用题
例3:白海货运码头有一批货物,运走了,还剩240吨,这批货物原有多少吨?运走了剩下240吨?
(一)解:设这批货物原有x吨。(二)240÷(9-5)×9
我这样板书,对启迪学生思维,开发学生智力,增强学生的记忆,加深对所学的知识的理解,都起到了“画龙点睛”的作用。
《分数除法》说课稿11
一、说教材
1、教学内容
本课是《义务教育课程标准实验教科书》(北师大版)数学五年级下册第25页到26页的内容。
2、教材分析
这节课的知识基础是分数乘法的意义和计算方法以及倒数的认识。教材中呈现了两个问题,这两个问题的共同点是都把 平均分,第(1)题是平均分成2份,第(2)题是平均分成3份,第(1)题的算式是 ÷2,被除数 的分子是能被除数整除的,而第(2)题的算式是 ÷3,被除数 的分子是不能被3整除的。无论哪一种方法,目的都是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。
教学目标:
根据新课标的要求和教材的特点,结合五年级学生的认知能力,本节课我确定如下的教学目标:
知识与能力目标:理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。
过程与方法目标:通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。情感、态度与价值观目标:通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。
教学重点:
定位为理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:
定位为分数除以整数计算法则的推导过程。
3、教学准备
为了更好地对本节课进行教学,课前我准备了多媒体课件、长方形纸等。
二、说教法与学法
根据新课标的要求和本节教学实际,在设计本课教学时我主要突出以下几点:
1、在注重算理和算法教学的同时,体现估算。
《数学课程标准》对计算教学有明确的要求,即淡化笔算、重视口算、加强估算。分数除以整数是学生今后继续学习的重要基础,在教材中占有重要的地位,但在现行教材中对估算意识的培养还未凸显出来。针对这一现象,我力求把培养学生的估算意识,发展学生的估算能力融入教学,在课堂上形成具体的教学行为,从而加以体现。
2、以探索为主线,鼓励学生算法多样化。
学生是课堂教学中的主体,将更多的时间、空间留给学生,是调动和发挥学生主体意识的重要途径之一。从问题的提出,就让学生主动参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。
3、让学生充分评价和反思。
在教学过程中要引导学生加以评价,加强反思。当学生探索出多种算法后,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种算法是否更具有一般性,普遍性。
为了达成上述目标,在本节课中我将贯彻“以学生为主体,教师为主导,训练思维为主线”的教学原则:
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除以整数的意义和计算方法。
2、设计教法体现主体
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
三、说教学过程
根据以上的教学理念,结合本课的特点,我把本课的教学程序设计为以下三个层次进行教学:
第一层次:教学分数除法的意义。
通过多媒体课件创设情境涂一涂,得出分数除以整数的算式 ,让学生理解分数除法的意义和整数除法的意义相同。
第二层次:大胆猜想分数除法的计算方法。
这个算式的特殊性在于分子能够整除整数,学生容易理解分数除法的意义并找到特殊的计算方法,因此放手让学生大胆猜想分数除法的计算方法,再利用多媒体课件操作探究,使学生理解分数的分子能被整数整除时,可直接去除;并举例操作验证这一算法。
第三层次:激发矛盾,再次探究。
让学生用探索到的方法来计算 。此时学生发现分子除以整数除不尽,分子除以整数的方法不适用。知识矛盾的冲突引发学生进一步观察和思考,并再次利用多媒体课件操作探究,从特殊到一般,探索新的计算方法。
具体教学环节设计如下:
(一) 旧知复习,蕴伏铺垫
复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。
1、展示问题:
(1)什么是倒数?
(2)你能举出几对倒数的例子吗?
(3)如何求一个数的倒数?
【设计意图】本节课的内容是以倒数为基础的。分数除以整数的`计算方法与倒数紧密联系,因此,在引入新课之前,带领学生系统深入地复习倒数的相关知识是很有必要的。
2、展示多媒体:笑笑和淘气去买白糖。
问题1:他们每人买了两袋白糖,一共买了多少袋白糖?
问题2:这些白糖一共重2千克,每袋白糖有多重?
问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?
【设计意图】本环节设置了一个“买白糖”的具体情境,并展示了三个层层递进的问题,在帮助学生复习整数除法的同时,引出了本节课的主要内容——分数除以整数。由于设置了三个递进的问题,学生不会觉得问题3的提出很突然,并且,由于有了问题2的铺垫,列出问题3的算式也较为容易。
(二) 创设情境,理解意义
展示多媒体:
把一张纸的 平均分成2份,每份是这张纸的几分之几?
让学生自主思考解决这个问题。学生利用事先准备好的纸,先把纸平均分成7份,再涂出其中的4 份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。在汇报反馈时,将学生的思维过程展示出来,即分、涂的过程。使每位学生都能在清晰地展示中分享他人的思维方法。通过思考操作学生达成共识: 里有4个 ,平均分成2份,每份就是2个 ,是 。接着让学生列出算式 ÷2= ,在探究过程中,学生同时理解了分数除法的意义。
(三) 大胆猜想,举例验证
学生通过操作,明白 是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。这种方法是否具有普遍性呢?教师让每位学生举例验证,通过分一分,涂一涂证明结论。
【设计意图】大胆地猜想是一种非常好的数学思考方法,但还要经过科学的验证。科学的验证可不仅仅是一两道题就能得出结论,数十名同学会举例出数十道不同类型的分数除法算式。而其中有些算式是分子除以整数除不尽的。
(四) 激发矛盾,再次探究
学生很快发现有些算式是无法用以上结论计算出来的,如 ÷3,分子4除以3是除不尽的。矛盾的引发,说明“分母不变,被除数的分子除以整数得到商的分子”这样的计算方法不具有普遍性。我引导学生再一次进行探究。为了便于全班统一交流,我选取学生举例中的一道典型算式进一步研究,如 ÷3,此时,先让学生动手分一分、涂一涂,然后再让他们进行小组交流。
【设计意图】苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”本环节的设计通过让学生动手操作、自主探究、合作交流等方式,体验了“探索——发现——验证——修改”的过程,通过一系列活动,使学生完成了知识的自我建构,同时也加深了学生对分数除以整数意义的理解,符合学生的发展需要。
根据学生的小组讨论,学生发现把 平均分成3份,每一份就是这张纸的 。得到的算式是 ÷3= 。此时我还引导学生发现:把 平均分成3份,这其中的一份实际上就是 的 ,而求一个数的几分之几可以用乘法来计算,算式是 × = 。比较两个算式,学生很快发现它们是相等的。由此,学生再一次得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。
【设计意图】这一环节,我引导学生根据乘法的意义来解决分数除法的计算方法,即将新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要的方法。这一环节主要也是学生自己发现,学生的主体地位得到尊重,从被动接受知识为主动探索,学生学习的过程变得精彩而不在枯燥无味。
(五)再次验证,分层练习
多媒体出示:
1、 3/5÷3 =; 3/4÷4= ;4/11 ÷5=; 8/9÷6=; 6/7÷8=; 4/15÷12=;
2、 ( )×9=1/3 ;8×( )=; 5×( )= 4/3;( )×5= 1/2;( )×2= 4/5;4×( )= 1/4;
3、找规律填数: 8/9,4/9,( ),1/9 ,1/18,( )。
【设计意图】一个新的计算结论必须反复验证。让学生通过实际运算再次验证一个分数除以整数的意义和计算方法,学生在不断地思考与验证中,发现了第二种计算方法的普遍性,也深刻理解了分数除法的计算算理。
以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,也是新理念的挑战,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的整合。
四、说板书设计
把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?
把一张纸的 平均分成3份,每份是这张纸的几分之几?
除以一个整数(零除外)等于乘这个整数的倒数。
【设计意图】这样的板书设计集条理性、科学性、整体性和概括性为一体,有利于学生将教材的知识结构转化为学生头脑中的认知结构,能够体现出新旧知识的密切联系。
《分数除法》说课稿12
第一单元的教学也基本上完成了。回顾分数乘法这一单元的教学,在备课时一直被如何处理分数乘法意义困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即求几个相同加数的和、求一个数的几倍是多少和求一个数的几分之几是多少。
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。
此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的.用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。
本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位1的理解,重点放在在应用题中找单位1的量以及怎样找的上面先找出问题中的分率句再从分率句中找出单位1,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
《分数除法》说课稿13
“分数与除法的关系”这一教学内容,是小学教学第八册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。
本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。
分数与除法的关系这一小节的目标有以下几点:
1.知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。
2.能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。
3.情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。
在教学本课内容之前,学生已掌握了,分数的意义,知道了分数的产生等知识,具有动手操作的学习技能和小组合作探究的学习能力。通过对本节课内容的学习,要使学生具有领悟到分数与除法的关系,而且要感受到用分数来表示结果时量与率的不同之处。
本课材的内容是由以下几部分组成的:
第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。
第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。
第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。
本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学。教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程,这也是我的教学特色。
在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。
针对以上的学生情况和教学设想,我设计了这样的课程。
一.激情引入,自主建构。
这一部分的目的是在已有的知识上学习新知识,让学生感知知识产生和发展的过程,为重点的落实,难点的突破铺路搭桥。
(1)出示一条长1米的绳子,动手折一下,平均分成3段,亲身感受13米的具体长度。
(2)问一问他们怎样计算这一份的长度?
(3)当他们发现不能得到整数的商时,引导他们讨论应该怎样表示他的结果。
从而板书课题——分数与除法的关系。
(4)介绍分数表示除法的`商的由来。
二.在目标的递进中,获得积极的数学学习情感。
这一部分的目的是在学生已初步建立了分数与除法的关系时,将数学活动变成师生之间,生生之间交往互动与共同发展的过程,遵循学生认知的特点,进一步发展思维能力,创造有现实性,挑战性和趣味性的数学活动。
(1)出示例3:把3块饼平均分给4个孩子,每人平均分得多少块?
——首先请他们估算一下每个人应分得多少块?
参考答案:
A.半块B.半块多C.一块
——其次,拿出准备好的圆纸片,小组合作动手操作。
——最后展示分法一种是一个一个分都是34块
一种是重叠起来一块分
(2)课件展示全整的二种变化过程,引导总结3块饼的14实际上是一块饼的34,列出完整的算式,并用分数来表示具体的结果。
(3)在教授完例2和例3后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。那么教学设计为请他们观察黑板上的算式和结果,猜测分数与除法之间有什么关系,根据学生不同的认知情况,安排了大量的模仿练习,感性体验数学活动。
练习一:
A.3米长的钢管平均分成3份,每份长多少米?
B.把2米长的钢管平均分成3份,每份长多少米?
C.把1米长的钢管平均分成3份,每份长多少米?
练习二:(具体操作)
A.把4张饼,平均分给5个孩子,每个孩子分得多少快?
B.把2张饼,平均分给5个孩子,每个孩子分得多少快?
C.把2张饼,平均分给5个孩子,每个孩子分得多少快?
在这一组练习中,让孩子动手剪一剪,拼一拼,真实体验每一个分数结果的由来与意义,并且通过落列的算式组:3÷3=1(米)4÷5=45(块)
2÷3=23(米)2÷5=25(块)重点
1÷3=13(米)1÷5=15(块)
体会当的不到整数结果的时候,用分数来表示他们的商,发现分数的分子是除法里的被除数,分母是除法里得出术,在总结完各部分关系与分母公式后,请他们推理一下,除法理由具体要求吗?(除数不能为零)那分数有没有要求呢?说一说理由,教师板书b≠0,引导进行验证从分母所表示的意义说明没有意义。
三.掌握知识技能,实现数学思想的深入。
结合本书的重点,难点,这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。
练习设计主要分为以下几个层次:
①强化分数与除法的关系:
A组:7÷13=()1358=()÷()()÷9=5()
B组:(课件展示:4平方米的花坛平均分成大小相同的5快?)
让学生叙述一下你观察到了什么?发展学生的口头表达能力。然学生想一想,你都可以知道什么?发展学生的空间想象观念训练知识的迁移能力。
每块是多少平方米?怎样解答?进一步巩固所学的知识。
②用分数表示商的意义的总体认识。
A组:讨论“15分钟走1千米的路,平均每分走几分之几千米?走了路的几分之几?”
B组:结合练习一回答:每段各是多少米?各占这根钢管的几分之几?
结合练习二回答:每人各分到多少块?各占饼的几分之几?
四.画龙点睛,留下个性发展的空间。
课程的最后以学习目标进行提纲式小结,便于学生形成知识的网络,在次重申本节的重点和难点,培养学生质疑问难的好习惯教师引导思考练习一中每段的长度都不一样,为什么都各占钢管的13?13米和13有什么不一样?f(1,5)块和15有什么不一样?要将分数与除法之间的关系从认识上、意义上、联系上进行一次升华。给学生一个完整的认识,为今后的继续学习留下个性发展的空间,释放无穷的潜能。
五.板书设计。
第一部分为新授例题。第二部分为模仿练习
第三部分为总结的分数与除法的关系知识。第四部分为分层次的发展思维。
训练题
这样设计的目的再现了知识产生和发展的过程,体现了一切事物发展的本质特点,更重要的是渗透给学生,从实践中上升为理论,又用于指导新的实践,在实践中检验理论的真实性,从而树立从小爱科学的唯物主义世界观。
《分数除法》说课稿14
教材分析:
《分数与除法》是人教版义务教育实验教科书五年级下册的教学内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系十分重要。
本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。
教学目标:
1.知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商
2.能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。
3.情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。
教学重点:
理解分数与除法之间的关系。而本节的难点是具体体会每一个商的.由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学。
教法学法:
为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生大胆猜想,动手实践,在体验中、在交流中发现规律。在教学的进行中,充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。
针对以上的学生情况和教学设想,我设计了这样的过程。
教学过程:
一、激情引入,自主建构。
这一部分的目的是在已有的知识上学习新知识,让学生感知知识产生和发展的过程,为重点的落实,难点的突破铺路搭桥。
(1)学生独立完成课前练习,引入新课。
(2)出示例1:把一块蛋糕平均分给3个人,每人分得多少块?
(3)当他们发现不能得到整数的商时,引导他们讨论应该怎样表示他的结果。
(4)介绍分数表示除法的商的由来。
板书课题 —— 分数与除法
二、在目标的递进中,获得积极的数学学习情感。
这一部分的目的是在学生已初步建立了分数与除法的关系时,将数学活动变成师生之间,生生之间交往互动与共同发展的过程,遵循学生认知的特点,进一步发展思维能力,创造有现实性,挑战性和趣味性的数学活动。
(1)出示例3:把3块饼平均分给4个孩子,每人平均分得多少块?
首先,请他们思考,列出算式。
其次,拿出准备好的圆纸片,小组合作动手操作。
最后,展示分法:一种是一个一个分,一种是重叠起来一块分。
(2)课件展示完整的二种分法,引导总结3块饼的实际上是一块饼的,列出完整的算式,并用分数来表示具体的结果。
(3)在教授完例1和例2后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。引导学生通过 1÷3 =和3÷4=两个算式的比较,体会当得不到整数结果的时候,用分数来表示他们的商,发现分数的分子是除法里的被除数,分母是除法里得除数,在总结完各部分关系与字母公式后,通过两项不同的练习进一步了解分数与除法的关系,
三、掌握知识技能,实现数学思想的深入。
结合本书的重点,难点,这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。
《分数除法》说课稿15
一、教材分析
“分数与除法的关系”这一教学内容,是小学数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。
二、教学目标
本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。
分数与除法的关系这一小节的目标有以下几点:
1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。
2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。
3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。
三、课前准备
本课材的内容是由以下几部分组成的:
第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。
第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。
第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。
第四部分:是教学有关单位名称之间的转化。
本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的'教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。
在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。
材料准备:一米长的绳子一条,每个学生准备三个大小相同的圆纸片,水彩笔、直尺等文具。
【《分数除法》说课稿】相关文章:
分数与除法说课稿11-09
分数除法说课稿02-15
《分数与除法》说课稿02-21
分数与除法的关系说课稿11-09
分数与除法关系说课稿08-10
《分数除法》说课稿(15篇)03-24
《分数除法》说课稿15篇04-09
《分数除法》说课稿15篇12-06
分数与除法的关系说课稿4篇11-09