初中数学基本知识点
在日常过程学习中,看到知识点,都是先收藏再说吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点是我们提高成绩的关键!下面是小编收集整理的初中数学基本知识点,仅供参考,大家一起来看看吧。
初中数学基本知识点1
1、有理数:
(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数、注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:
①有理数分成整数,分数;整数又分成正整数,负整数和0;分数分成正分数和负分数。
②有理数分成正数、0、负数。正数又分成正整数和正分数,负数分成负整数和负分数。
2、数轴:
数轴是规定了原点、正方向、单位长度的一条直线、
3、相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0,a+b=0a、b互为相反数、
4、绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5、有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数—小数>0,小数—大数<0、
6、互为倒数:
乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数、
7、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数;
8、有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)、
9、有理数减法法则:
减去一个数,等于加上这个数的相反数;即a—b=a+(—b)、
10、有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定、
11、有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac、
12、有理数除法法则:
除以一个数等于乘以这个数的倒数;注意:零不能做除数。
圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
直角坐标系与点的位置
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0、
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(—2,3)在第四象限。
5、直角坐标系中,点A(—2,1)在第二象限。
基本函数的概念及性质
1、函数y=—8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=—3(x—2)2—5的开口向下。
5、抛物线y=4(x—3)2—10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的`图象在第一、三象限。
旋转
1、概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等
(3)两个对应点与旋转中心的连线段的夹角等于旋转角
3、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形中的对应点叫做关于中心的对称点。
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
5、中心对称图形:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
怎样快速提高数学成绩?
一、查缺补漏,主攻薄弱
请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。
别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。
因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。
二、反思错题
不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。
三、克服无谓失分
如何避免审题出错?
原因:看太快。
应对策略:
1、默读法;2、重点字词圈点勾画法;3、审图法。
如何降低计算失误?
表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。
应对策略:
1、不要为了赶时间而跳步计算;
2、宁可笔算,少用口算,更不要再抱着计算器;
3、对平时易算错的题型,可以验算一遍。
四、关注几个重点问题
1、新定义题型、非常规题型、存在性问题。
2、分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。
提高数学成绩常用方法有哪些
1、预习
预期常常由于“没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。
2、学会听课
听分析、听思路、听应用,关键内容一字不漏,注意记录。
3、做好错题本
每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。
4、用好课外书
正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。
5、注重数学思维方法的培养
要注意数学思想和方法的指导,站得高,才能看得远。
如何让数学学科预习变得更高效
一、读一读。预习时要认真,要逐字逐词逐句的阅读,用笔把重点画出来,重点加以理解、遇到自己解决不了的问题,作出记号,教师讲解时作为听课的重点、
二、想一想。对预习中感到困难的问题要先思考、如果是基础问题,可以用以前的知识看看能不能弄通、如果是理解上的问题,可以记下来课上认真听讲,通过积极思考去解决、这样有利于提高对知识的理解,养成学习数学的良好思维习惯。
三、说一说。预习时可能感到认识模糊,可以与父母或同学进行讨论,在同学们的合作交流与探讨中找到正确的答案、这样即增加了学生探求新课的兴趣,有可以弄懂数学知识的实际用法,对知识有个准确的概念。
四、写一写。写一写在课前预习中也是很有必要的,预习时要适当做学习笔记,主要包括看书时的初步体会和心得,读明白了的问题的理解,对疑难问题的记录和思考等。
五、做一做。预习应用题,可以用画线段的方法帮助理解数量间的关系,弄清已知条件和所求问题,找到解题的思路、对于一些有关图形方面的问题,可以在预习中动手操作,剪剪拼拼,增加感性认识。
六、补一补。数学课新旧知识间往往存在紧密的联系,预习时如发现学习过的要领有不清楚的地方,一定要在预习时弄明白,并对旧的知识加以巩固和记忆,同时为学习新的知识打下坚实的基础。
七、练一练。往往每课时的例题都是很典型的,预习时应把例题都做一遍,加深领悟的能力、如果做题时出现错误,要想想错在哪,为什么错,怎么改错、如果仍是找不到错误的根源,可在听课时重点听,逐步领会。
初中数学基本知识点2
二次函数基本知识点
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P[-b/2a,(4ac-b^2;)/4a]。
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的`开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
二次函数的三种表达式
①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
②顶点式[抛物线的顶点P(h,k)]:y=a(x-h)^2+k
③交点式[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]:y=a(x-x1)(x-x2)
以上3种形式可进行如下转化:
①一般式和顶点式的关系
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交点式的关系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
【初中数学基本知识点】相关文章:
初中数学基本定理知识点汇总08-03
初中数学基本知识点大全07-20
初中数学概率知识点05-09
初中数学垂直知识点12-07
初中数学倒数的知识点08-01
初中数学方差知识点05-16
初中数学知识点06-07
初中数学的知识点大全06-06
初中数学旋转的知识点05-29