当前位置:育文网>初中>初中数学> 初中数学一次函数的应用知识点

初中数学一次函数的应用知识点

时间:2023-07-19 10:10:50 初中数学 我要投稿

初中数学一次函数的应用知识点汇总

  初中阶段的数学,相比于小学阶段要求更加明确,如分类讨论思想、数形结合思想、化归思想、整体思想、函数思想等。以下是小编精心整理的初中数学一次函数的应用知识点汇总,欢迎阅读,希望大家能够喜欢。

初中数学一次函数的应用知识点汇总

  初中数学一次函数的应用知识点 1

  一次函数的应用

  一、分段函数问题

  分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。

  二、函数的多变量问题

  解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻

  求可以反映实际问题的函数

  三、概括整合

  (1)简单的一次函数问题:

  ①建立函数模型的方法;

  ②分段函数思想的应用。

  (2)理清题意是采用分段函数解决问题的关键。

  初中数学知识要领的积累为的就是在中考中可以充分的发挥出来。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:

  在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的.方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  因式分解

  因式分解定义

  把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素

  ①结果必须是整式

  ②结果必须是积的形式

  ③结果是等式

  ④因式分解与整式乘法的关系:m(a+b+c)

  公因式:

  一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法

  ①系数是整数时取各项最大公约数。

  ②相同字母取最低次幂

  ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。

  ②确定商式

  ③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  初中数学一次函数的应用知识点 2

  一、常量、变量:

  在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 ;

  二、函数的概念:

  函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.

  三、函数中自变量取值范围的求法:

  (1).用整式表示的函数,自变量的取值范围是全体实数。

  (2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

  (3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

  (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

  (5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

  四、 函数图象的'定义:

  一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.

  五、函数值:

  函数值是指自变量在数值范围内取某个值时,因变量与之对应的确定的值

  例如:在正方形的面积公式S=a2中,若a=2;则S=4;若a=3,则S=9,这说明4是当a=2时的函数值,9是当a=3时的函数值

  六、函数有三种表示形式:

  (1)列表法 (2)图像法 (3)解析式法

  七、正比例函数与一次函数的概念:

  一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。

  一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.

  当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.

  八、正比例函数的图象与性质:

  (1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。

  (2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。

  九、一次函数与正比例函数的图象与性质

  一次函数概念

  如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数.

  图 像

  一条直线

  性 质

  k>0时,y随x的增大(或减小)而增大(或减小);

  k<0时,y随x的增大(或减小)而减小(或增大).

  直线y=kx+b(k≠0)的位置与k、b符号之间的关系.

  (1)k>0,b>0; (2)k>0,b<0;

  (3)k>0,b=0 (4)k<0,b>0;

  (5)k<0,b<0 (6)k<0,b=0

  一次函数表达式的确定

  求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.

  5.一次函数与二元一次方程组:

  解方程组

  从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值,一次函数知识要点

  解方程组

  从“形”的角度看,确定两直线交点的坐标.

  十、求函数解析式的方法:

  待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。

  1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.

  2.求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标

  3. 一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.

  4. 解不等式ax+b>0(a,b是常数,a≠0) . 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围

  初中数学一次函数的应用知识点 3

  一次函数的表达式是=x+b (≠b 、b是常数),其中是x自变量,是因变量,读作是x的一次函数,当x取一个值时,有且只有一个值与x对应,如果有两个或两个以上的值与x对应,那么这个函数就不是一次函数。

  一次函数表达式求解:

  一次函数也叫做线性函数,一般在X,坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的情况下,可以用一元一次方程来解答出另一个变量的值。

  一次函数的表达方式一般都为=x+b的函数,叫做是X的一次函数,当常数项为零时的一次函数,可表示为=x(≠0),这时的常数也叫比例系数。常用来表示一次函数的方法有解析法,图像法和列表法。一次函数的解析式一般分为点斜式,两点式,截距式。

  解答一次函数的作法最简单的就是列表法,取一个满足一次函数表达式的两个点的坐标,来确定另一个未知数的值。还有一个描点法。一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。通常情况下=x+b(≠0)的图象过(0,b)和(-b/,0)两点即可画出。

  一次函数与一次方程之间的关系:

  一次函数、方程和不等式是初中数学的主要内容之一,也是中考的必考知识点,新课程标准把三部分的关系提到了十分明朗化的程度。因此,应该重视这部分内容的.教学在教学中,可以从以下几个知识点进行辨析。

  任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。

  利用函数图像解方程:-2x+2=0,可以转化为求一次函数=-2x+2与x轴交点的横坐标。而=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。

  注意:解一元一次方程ax+b=0(a≠0)与求函数=ax+b(a≠0)的图像与x轴交点的横坐标是同一个问题。不同的是前者从数的角度来解决问题,后者从形的角度来解决问题。

  每个二元一次方程组都对应两个一次函数,从数的角度来看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数是何值;从形的角度来看,解方程组相当于确定两条直线交点的坐标,从而使方程组得出答案。

  初中数学一次函数的应用知识点 4

  一次函数的解析式

  ①点斜式:y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点);

  ②两点式:(y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点),

  ③截距式:x/a+y/b=1 (a、b分别为直线在x、y轴上的截距)。

  解析式表达的局限性:

  ①所需条件较多(2个点,因为使用待定系数法需要列一个二元一次方程组);

  ③不能表达没有斜率的直线(即垂直于x轴的直线;注意没有斜率的直线平行于y轴表述不准,因为x=0与y轴重合);

  ④不能表达平行于坐标轴的.直线和过原点的直线。

  x轴的正半轴逆时针旋转到直线所成的角(直线与x轴正方向所成的角)称为直线的倾斜角。设一直线的倾斜角为,则该直线的斜率k=tan。倾斜角的范围为(0, )。

  只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。

【初中数学一次函数的应用知识点】相关文章:

初中数学一次函数的应用知识点07-25

初中数学一次函数知识点07-20

初中数学数轴知识点应用04-01

初中数学矩形的知识点应用04-03

初中数学一次函数图像知识点03-25

初中数学一次函数知识点详解03-25

初中数学通分的知识点应用示例03-31

上海初中数学知识点之一次函数知识点03-25

初中数学知识点框架之一次函数03-25