当前位置:育文网>高中>高中数学> 高中数学知识点总结

高中数学知识点总结

时间:2024-05-18 10:33:38 高中数学 我要投稿

高中数学知识点总结(热)

  总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以有效锻炼我们的语言组织能力,因此我们要做好归纳,写好总结。那么总结要注意有什么内容呢?下面是小编收集整理的高中数学知识点总结,仅供参考,欢迎大家阅读。

高中数学知识点总结(热)

高中数学知识点总结1

  1、命题的四种形式及其相互关系是什么?

  (互为逆否关系的命题是等价命题。)

  原命题与逆否命题同真、同假;逆命题与否命题同真同假。

  2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的.唯一性,哪几种对应能构成映射?

  (一对一,多对一,允许B中有元素无原象。)

  3、函数的三要素是什么?如何比较两个函数是否相同?

  (定义域、对应法则、值域)

  4、反函数存在的条件是什么?

  (一一对应函数)

  求反函数的步骤掌握了吗?

  (①反解x;②互换x、y;③注明定义域)

  5、反函数的性质有哪些?

  ①互为反函数的图象关于直线y=x对称;

  ②保存了原来函数的单调性、奇函数性;

  6、函数f(x)具有奇偶性的必要(非充分)条件是什么?

  (f(x)定义域关于原点对称)

高中数学知识点总结2

  方差定义

  方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的.平均数。

  方差性质

  1.设C为常数,则D(C)=0(常数无波动);

  2.D(CX)=C2D(X)(常数平方提取);

  3.若X、Y相互独立,则前面两项恰为D(X)和D(Y),第三项展开后为

  当X、Y相互独立时,故第三项为零。

  独立前提的逐项求和,可推广到有限项。

  方差的应用

  计算下列一组数据的极差、方差及标准差(精确到0.01).

  50,55,96,98,65,100,70,90,85,100.

  答:极差为100-50=50.

高中数学知识点总结3

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)数量:只有大小,没有方向的量.

  (3)有向线段的三要素:起点、方向、长度.

  (4)零向量:长度为0的向量.

  (5)单位向量:长度等于1个单位的向量.

  (6)平行向量(共线向量):方向相同或相反的`非零向量.

  ※零向量与任一向量平行.

  (7)相等向量:长度相等且方向相同的向量.

  2.向量加法运算:

  ⑴三角形法则的特点:首尾相连.

  ⑵平行四边形法则的特点:共起点

高中数学知识点总结4

  1、你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

  2、线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

  3、三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

  3、线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的.两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。

  4、求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

  5、异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

  6、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

  7、两条异面直线所成的角的范围:0°《α≤90°

  直线与平面所成的角的范围:0o≤α≤90°

  二面角的平面角的取值范围:0°≤α≤180°

  8、你知道异面直线上两点间的距离公式如何运用吗?

  9、平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

  10、立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

  11、棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)

  12、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。

高中数学知识点总结5

  一、高中数列基本公式:

  1、一般数列的通项an与前n项和Sn的关系:an=

  2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

  3、等差数列的前n项和公式:Sn=

  Sn=

  Sn=

  当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

  4、等比数列的通项公式: an= a1qn-1an= akqn-k

  (其中a1为首项、ak为已知的第k项,an≠0)

  5、等比数列的'前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

  当q≠1时,Sn=

  Sn=

  二、高中数学中有关等差、等比数列的结论

  1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。

  2、等差数列{an}中,若m+n=p+q,则

  3、等比数列{an}中,若m+n=p+q,则

  4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。

  5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

  6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。

  7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

  8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

  9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

  10、三个数成等比数列的设法:a/q,a,aq;

  四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

高中数学知识点总结6

  一、圆及圆的相关量的定义

  1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

  2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫

  做直径。

  3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

  5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

  6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

  7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

  二、有关圆的字母表示方法

  圆--⊙ 半径—r 弧--⌒ 直径—d

  扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)

  1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

  2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

  3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定

  理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

  4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

  5.一条弧所对的圆周角等于它所对的圆心角的一半。

  6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  7.不在同一直线上的3个点确定一个圆。

  8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

  9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

  离):

  AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

  10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

  11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

  外离P>R+r;外切P=R+r;相交R-r

  三、有关圆的计算公式

  1.圆的周长C=2πr=πd

  2.圆的面积S=s=πr?

  3.扇形弧长l=nπr/180

  4.扇形面积S=nπr? /360=rl/2

  5.圆锥侧面积S=πrl

  四、圆的方程

  1.圆的标准方程

  在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

  (x-a)^2+(y-b)^2=r^2

  2.圆的一般方程

  把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

  相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

  五、圆与直线的位置关系判断

  平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

  讨论如下2种情况:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

  利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离

  (2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)

  将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

  令y=b,求出此时的两个x值x1,x2,并且我们规定x1

  当x=-C/Ax2时,直线与圆相离

  当x1

  当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

  圆的定理:

  1.不在同一直线上的三点确定一个圆。

  2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2.圆的两条平行弦所夹的弧相等

  3.圆是以圆心为对称中心的中心对称图形

  4.圆是定点的距离等于定长的点的集合

  5.圆的内部可以看作是圆心的距离小于半径的点的集合

  6.圆的外部可以看作是圆心的距离大于半径的点的集合

  7.同圆或等圆的半径相等

  8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

  10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  11.定理 圆的.内接四边形的对角互补,并且任何一个外角都等于它 的内对角

  12.①直线L和⊙O相交 d

  ②直线L和⊙O相切 d=r

  ③直线L和⊙O相离 d>r

  13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

  14.切线的性质定理 圆的切线垂直于经过切点的半径

  15.推论1 经过圆心且垂直于切线的直线必经过切点

  16.推论2 经过切点且垂直于切线的直线必经过圆心

  17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

  18.圆的外切四边形的两组对边的和相等 外角等于内对角

  19.如果两个圆相切,那么切点一定在连心线上

  20.①两圆外离 d>R+r ②两圆外切 d=R+r

  ③两圆相交 R-rr)

  ④两圆内切 d=R-r(R>r) ⑤两圆内含dr)

  21.定理 相交两圆的连心线垂直平分两圆的公共弦

  22.定理 把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24.正n边形的每个内角都等于(n-2)×180°/n

  25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长

  27.正三角形面积√3a/4 a表示边长

  28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29.弧长计算公式:L=n兀R/180

  30.扇形面积公式:S扇形=n兀R^2/360=LR/2

  31.内公切线长= d-(R-r) 外公切线长= d-(R+r)

  32.定理 一条弧所对的圆周角等于它所对的圆心角的一半

  33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

  35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

高中数学知识点总结7

  :平面

  1.经过不在同一条直线上的三点确定一个面.

  注:两两相交且不过同一点的四条直线必在同一平面内.

  2.两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)

  3.过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)

  [注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.

  4.三个平面最多可把空间分成8部分.(X、Y、Z三个方向)

  :空间的直线与平面

  ⒈平面的基本性质⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.

  ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.

  ⑴公理四(平行线的传递性).等角定理.

  ⑵异面直线的判定:判定定理、反证法.

  ⑶异面直线所成的角:定义(求法)、范围.

  ⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.

  ⒋直线和平面垂直

  ⑴直线和平面垂直:定义、判定定理.

  ⑵三垂线定理及逆定理.

  5.平面和平面平行

  两个平面的位置关系、两个平面平行的判定与性质.

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性质定理.

  (二)直线与平面的平行和垂直的证明思路(见附图)

  (三)夹角与距离

  7.直线和平面所成的角与二面角

  ⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平

  面所成的角、直线和平面所成的角.

  ⑵二面角:①定义、范围、二面角的平面角、直二面角.

  ②互相垂直的平面及其判定定理、性质定理.

  8.距离

  ⑴点到平面的距离.

  ⑵直线到与它平行平面的.距离.

  ⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

  ⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.

  (四)简单多面体与球

  9.棱柱与棱锥

  ⑴多面体.

  ⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.

  ⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、

  正方体;平行六面体的性质、长方体的性质.

  ⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.

  ⑸直棱柱和正棱锥的直观图的画法.

  10.多面体欧拉定理的发现

  ⑴简单多面体的欧拉公式.

  ⑵正多面体.

  11.球

  ⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.

  ⑵球的体积公式和表面积公式.

  :常用结论、方法和公式

  1.异面直线所成角的求法:

  (1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;

  (2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;

  2.直线与平面所成的角

  斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;

  3.二面角的求法

  (1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;

  (2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;

  (3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;

  (4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此法不必在图形中画出平面角;

  特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

  4.空间距离的求法

  (1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;

  (2)求点到直线的距离,一般用三垂线定理作出垂线再求解;

  (3)求点到平面的距离,一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键;二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;

高中数学知识点总结8

  1.定义法:

  判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可.

  2.转换法:

  当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断.

  3.集合法

  在命题的条件和结论间的'关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

  若A∩B,则p是q的充分条件.

  若A∪B,则p是q的必要条件.

  若A=B,则p是q的充要条件.

  若A∈B,且B∈A,则p是q的既不充分也不必要条件.

高中数学知识点总结9

  数学知识点1、柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

  截面距离与高的比的平方。

  (3)棱台:

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

  是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  数学知识点2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

  数学知识点3、空间几何体的直观图——斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  平面

  通常用一个平行四边形来表示。

  平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。

  在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:

  a) A∈l—点A在直线l上;Aα—点A不在平面α内;

  b) lα—直线l在平面α内;

  c) aα—直线a不在平面α内;

  d) l∩m=A—直线l与直线m相交于A点;

  e) α∩l=A—平面α与直线l交于A点;

  f) α∩β=l—平面α与平面β相交于直线l。

  二、平面的基本性质

  公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

  公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

  公理3经过不在同一直线上的三个点,有且只有一个平面。

  根据上面的公理,可得以下推论。

  推论1经过一条直线和这条直线外一点,有且只有一个平面。

  推论2经过两条相交直线,有且只有一个平面。

  推论3经过两条平行直线,有且只有一个平面。

  公理4平行于同一条直线的两条直线互相平行

  如何让数学学科预习变得更高效

  一、读一读。预习时要认真,要逐字逐词逐句的阅读,用笔把重点画出来,重点加以理解。遇到自己解决不了的问题,作出记号,教师讲解时作为听课的重点。

  二、想一想。对预习中感到困难的问题要先思考。如果是基础问题,可以用以前的知识看看能不能弄通。如果是理解上的问题,可以记下来课上认真听讲,通过积极思考去解决。这样有利于提高对知识的理解,养成学习数学的良好思维习惯。

  三、说一说。预习时可能感到认识模糊,可以与父母或同学进行讨论,在同学们的.合作交流与探讨中找到正确的答案。这样即增加了学生探求新课的兴趣,有可以弄懂数学知识的实际用法,对知识有个准确的概念。

  四、写一写。写一写在课前预习中也是很有必要的,预习时要适当做学习笔记,主要包括看书时的初步体会和心得,读明白了的问题的理解,对疑难问题的记录和思考等。

  五、做一做。预习应用题,可以用画线段的方法帮助理解数量间的关系,弄清已知条件和所求问题,找到解题的思路。对于一些有关图形方面的问题,可以在预习中动手操作,剪剪拼拼,增加感性认识。

  六、补一补。数学课新旧知识间往往存在紧密的联系,预习时如发现学习过的要领有不清楚的地方,一定要在预习时弄明白,并对旧的知识加以巩固和记忆,同时为学习新的知识打下坚实的基础。

  七、练一练。往往每课时的例题都是很典型的,预习时应把例题都做一遍,加深领悟的能力。如果做题时出现错误,要想想错在哪,为什么错,怎么改错。如果仍是找不到错误的根源,可在听课时重点听,逐步领会。

  该怎么提高数学课堂学习效率

  课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;

  手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;

  耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;

  口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;

  眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;

  心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。

  数学复习方法学霸分享

  1、重点练习几种类型的题目

  不要钻偏题、怪题、过难题的牛角尖,根据平时做套卷时的感受,多练习以下几个类型的题目。

  (1)初看没有思路,但分析后能顺利做出的。通过对这类问题的练习,能够使我们对题目的考点和重点更熟悉,提高建立思路的速度和切入点的准确度,让我们能在考试中留出更多时间来处理后面难度高、阅读量大的综合题。

  (2)自己经常出错的中档题。中档题在中考中每年的考查内容都差不多,题目位置也相对固定,属于解决了一个板块就能得到相应版块分数的类型。在中档题的某个题型经常出错说明对这部分内容的基本概念和常用方法理解不到位。通过练习,多总结这类题目的解题思路和技巧,把不稳定的得分变成到手的分数。中档题难度一般不会太高,所以对于自己薄弱的中档题进行突击练习一般都会有很好的效果。

  (3)基础相对薄弱的同学也应该做一些常考的题目类型。比如圆的切线的判定以及与圆相关的线段计算、一次函数和反比例函数的综合、二元一次方程整数根问题等,通过练习,进一步提高我们解决这些问题的熟练度

  2、学会看错题的正确方式

  大部分学生都有错题本,在复习时看错题本,巩固自己的错误是不错的复习方式,但在看错题时一定要杜绝连题目带答案一起顺着看下来的方式。尽量能够将答案挡住,自己再尝试做一遍,如果做的过程中遇到问题再去看答案,并做好标注,过两天再试做一遍,争取能在期末考试前将之前的错题整体过两到三遍、加深印象。

  3、认真研究每道题目的考点

  做题时,我们心中要对相应题目所对应的考点有所了解,比如填空题中如果出现几何问题,主要是对图形基本性质和面积的考察,而很少考到全等三角形的证明(尺规作图写依据除外),所以我们在填空题中看到几何问题,就不用从全等方面找突破口,而是更多地注重图形的基本性质。比如平行四边形对角线互相平分、等腰三角形三线合一等。

  4、尽量避免只看不算

  很多同学在复习时不喜欢动笔,觉得自己看明白了就行,但俗话说“眼过千遍不如手过一遍”,不去实际操作只是看一遍题目,对题目解法和思路的印象其实是很低的。而且在计算过程中还能锻炼我们的计算能力,提高解题速度和准确性。许多同学在写证明题时很不熟练,逻辑不顺畅,也是由于平时对书写的不重视,应该趁着期末考试前的时间,多练练书写。

  学好数学要重视“四个依据”是什么

  读好一本教科书——它是教学、考试的主要依据;

  记好一本笔记——它是教师多年经验的结晶;

  做好一本习题集——它是知识的拓宽;

  记好一本心得笔记——它是你自己的知识。

高中数学知识点总结10

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.

  3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4

  .集合的表示方法:列举法与描述法。

  常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R

  5.关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表

  示某些对象是否属于这个集合的方法。6、集合的分类:

  (1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合

  (3).空集不含任何元素的集合例:{x|x2=-5}=Φ

  二、集合间的基本关系

  1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?

  2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。即A?A

  ②如果A?B,且A?B那就说集合A是集合B的真子集,记作A B(或BA)

  ③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

  记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.

  3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

  A∪φ=A,A∪B=B∪A.

  4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用U来表示。

  (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念

  合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  能使函数式有意义的实数x的集合称为函数的定义域,求函数的`定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.

  2.构成函数的三要素:定义域、对应关系和值域

  再注意:(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

  3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”

  给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

  说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

  5.常用的函数表示法:解析法:图象法:列表法:

  6.分段函数在定义域的不同部分上有不同的解析表达式的函数。(1)分段函数是一个函数,不要把它误认为是几个函数;

  (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.7.函数单调性(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1

  注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

  (2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法

  (A)定义法:○1任取x1,x2∈D,且x1

  8.函数的奇偶性

  (1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

  2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○

  则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。

  补充不等式的解法与二次函数(方程)的性质

高中数学知识点总结11

  一、函数对称性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)关于x=a对称

  f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称

  f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称

  例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

  【解析】求两个不同函数的对称轴,用设点和对称原理作解。

  证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.

  例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

  证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.

  二、函数的周期性

  令a,b均不为零,若:

  1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|

  2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|

  3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|

  4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|

  5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|

  这里只对第2~5点进行解析。

  第2点解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3点解析:同理,f(x+a)=-f(x+2a)……

  ①f(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函数最小正周期T=|2a|

  第4点解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函数最小正周期T=|2a|

  第5点解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移项得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右边通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函数最小正周期T=|4a|

  扩展阅读:函数对称性、周期性和奇偶性的规律总结

  函数对称性、周期性和奇偶性规律总结

  (一)同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的'对称性)

  1、奇偶性:

  (1)奇函数关于(0,0)对称,奇函数有关系式f(x)f(x)0

  (2)偶函数关于y(即x=0)轴对称,偶函数有关系式f(x)f(x)

  2、奇偶性的拓展:同一函数的对称性

  (1)函数的轴对称:

  函数yf(x)关于xa对称f(ax)f(ax)

  f(ax)f(ax)也可以写成f(x)f(2ax)或f(x)f(2ax)

  若写成:f(ax)f(bx),则函数yf(x)关于直线x称

  (ax)(bx)ab对22证明:设点(x1,y1)在yf(x)上,通过f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即点(2ax1,y1)也在yf(x)上,而点(x1,y1)与点(2ax1,y1)关于x=a对称。得证。

  说明:关于xa对称要求横坐标之和为2a,纵坐标相等。

  ∵(ax1,y1)与(ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(ax)f(ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  (2)函数的点对称:

  函数yf(x)关于点(a,b)对称f(ax)f(ax)2b

  上述关系也可以写成f(2ax)f(x)2b或f(2ax)f(x)2b

  若写成:f(ax)f(bx)c,函数yf(x)关于点(abc,)对称2证明:设点(x1,y1)在yf(x)上,即y1f(x1),通过f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以点(2ax1,2by1)也在yf(x)上,而点(2ax1,2by1)与(x1,y1)关于(a,b)对称。得证。

  说明:关于点(a,b)对称要求横坐标之和为2a,纵坐标之和为2b,如(ax)与(ax)之和为2a。

  (3)函数yf(x)关于点yb对称:假设函数关于yb对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于yb对称。但在曲线c(x,y)=0,则有可能会出现关于yb对称,比如圆c(x,y)x2y240它会关于y=0对称。

  (4)复合函数的奇偶性的性质定理:

  性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。

  性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x+a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。

  性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。

  总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程

  总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。

  总结:x的系数同为为1,具有周期性。

  (二)两个函数的图象对称性

  1、yf(x)与yf(x)关于X轴对称。

  证明:设yf(x)上任一点为(x1,y1)则y1f(x1),所以yf(x)经过点(x1,y1)

  ∵(x1,y1)与(x1,y1)关于X轴对称,∴y1f(x1)与yf(x)关于X轴对称.注:换种说法:yf(x)与yg(x)f(x)若满足f(x)g(x),即它们关于y0对称。

高中数学知识点总结12

  函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

  平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

  数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

  不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

  概率和统计。这部分和我们的生活联系比较大,属应用题。

  空间位置关系的定性与定量分析。主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

  解析几何。高考的难点,运算量大,一般含参数。

  高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

  掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

  理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

  理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

  掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

  了解随机事件的发生存在着规律性和随机事件概率的意义。

  了解等可能性事件的概率的.意义,会用排列组合的基本公式计算一些等可能性事件的概率。

  了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

  会计算事件在n次独立重复试验中恰好发生k次的概率。

高中数学知识点总结13

  高考数学导数知识点

  (一)导数第一定义

  设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0 + △x也在该邻域内)时,相应地函数取得增量△y = f(x0 + △x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第一定义

  (二)导数第二定义

  设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x — x0也在该邻域内)时,相应地函数变化△y = f(x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第二定义

  (三)导函数与导数

  如果函数y = f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y = f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。

  (四)单调性及其应用

  1。利用导数研究多项式函数单调性的一般步骤

  (1)求f¢(x)

  (2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

  2。用导数求多项式函数单调区间的一般步骤

  (1)求f¢(x)

  (2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

  高中数学重难点知识点

  高中数学包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。

  必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

  必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

  这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22———27分

  2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

  3、圆方程:

  必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

  必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15———20分,并且经常和其他函数混合起来考查

  2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17———22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

  高中数学知识点大全

  一、集合与简易逻辑

  1、集合的元素具有确定性、无序性和互异性。

  2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。

  5、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”。

  原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。反证法分为三步:假设、推矛、得果。

  6、充要条件

  二、函数

  1、指数式、对数式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”。

  (2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个。

  (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像。

  3、单调性和奇偶性

  (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。

  偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。

  (2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”。

  复合函数的奇偶性特点是:“内偶则偶,内奇同外”。复合函数要考虑定义域的变化。(即复合有意义)

  4、对称性与周期性(以下结论要消化吸收,不可强记)

  (1)函数与函数的图像关于直线(轴)对称。

  推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称。

  推广二:函数,的图像关于直线对称。

  (2)函数与函数的图像关于直线(轴)对称。

  (3)函数与函数的图像关于坐标原点中心对称。

  三、数列

  1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

  2、等差数列中

  (1)等差数列公差的取值与等差数列的单调性。

  (2)也成等差数列。

  (3)两等差数列对应项和(差)组成的新数列仍成等差数列。

  (4)仍成等差数列。

  (5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;

  (6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和—偶数项和”=此数列的中项。

  (7)两数的等差中项惟一存在。在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解。

  (8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式)。

  3、等比数列中:

  (1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。

  (2)两等比数列对应项积(商)组成的新数列仍成等比数列。

  (3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;

  (4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和。

  (5)并非任何两数总有等比中项。仅当实数同号时,实数存在等比中项。对同号两实数的等比中项不仅存在,而且有一对。也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解。

  (6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式)。

  4、等差数列与等比数列的联系

  (1)如果数列成等差数列,那么数列(总有意义)必成等比数列。

  (2)如果数列成等比数列,那么数列必成等差数列。

  (3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件。

  (4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数。

  如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列。

  5、数列求和的常用方法:

  (1)公式法:①等差数列求和公式(三种形式),

  ②等比数列求和公式(三种形式),

  (2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

  (3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的'推导方法)。

  (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一)。

  (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和

  (6)通项转换法。

  四、三角函数

  1、终边与终边相同(的终边在终边所在射线上)。

  终边与终边共线(的终边在终边所在直线上)。

  终边与终边关于轴对称

  终边与终边关于轴对称

  终边与终边关于原点对称

  一般地:终边与终边关于角的终边对称。

  与的终边关系由“两等分各象限、一二三四”确定。

  2、弧长公式:,扇形面积公式:1弧度(1rad)。

  3、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”。务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

  5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

  6、三角函数诱导公式的本质是:奇变偶不变,符号看象限。

  7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

  角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。

  8、三角函数性质、图像及其变换:

  (1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

  注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变。既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定。如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?

  (2)三角函数图像及其几何性质:

  (3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。

  (4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。

  9、三角形中的三角函数:

  (1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余。锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。

  (2)正弦定理:(R为三角形外接圆的半径)。

  (3)余弦定理:常选用余弦定理鉴定三角形的类型。

  五、向量

  1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征。

  2、几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是)。

  3、两非零向量平行(共线)的充要条件

  4、平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2。

  5、三点共线;

  6、向量的数量积:

  六、不等式

  1、(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。

  (2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

  (3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

  (4)解含参不等式常分类等价转化,必要时需分类讨论。注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集。

  2、利用重要不等式以及变式等求函数的最值时,务必注意a,b(或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。

  3、常用不等式有:(根据目标不等式左右的运算结构选用)

  a、b、c R,(当且仅当时,取等号)

  4、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

  5、含绝对值不等式的性质:

  6、不等式的恒成立,能成立,恰成立等问题

  (1)恒成立问题

  若不等式在区间上恒成立,则等价于在区间上

  若不等式在区间上恒成立,则等价于在区间上

  (2)能成立问题

  (3)恰成立问题

  若不等式在区间上恰成立,则等价于不等式的解集为。

  若不等式在区间上恰成立,则等价于不等式的解集为,

  七、直线和圆

  1、直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量))。应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

  2、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为。

  (2)直线在坐标轴上的截距可正、可负、也可为0。直线两截距相等直线的斜率为—1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。

  (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合。

  3、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

  4、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解。

  5、圆的方程:最简方程;标准方程;

  6、解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

  (1)过圆上一点圆的切线方程

  过圆上一点圆的切线方程

  过圆上一点圆的切线方程

  如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程。

  如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离)。

  7、曲线与的交点坐标方程组的解;

  过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程。

  八、圆锥曲线

  1、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用。

  (1)注意:①圆锥曲线第一定义与配方法的综合运用;

  ②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的正数,抛物线点点距除以点线距商是等于1。

  2、圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势。其中,椭圆中、双曲线中。

  重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点。

  3、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解。特别是:

  ①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”。

  ②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理。

  ③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

  ④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化。

  4、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点。

  注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。

  ②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响。

  ③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等。

  九、直线、平面、简单多面体

  1、计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

  2、计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解。注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线。

  3、空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用。注意:书写证明过程需规范。

  4、直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质。

  如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

  如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心。

  5、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等。注意:补形:三棱锥三棱柱平行六面体

  6、多面体是由若干个多边形围成的几何体。棱柱和棱锥是特殊的多面体。

  正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体。

  7、球体积公式。球表面积公式,是两个关于球的几何度量公式。它们都是球半径及的函数。

  十、导数

  1、导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)

  2、多项式函数的导数与函数的单调性

  在一个区间上(个别点取等号)在此区间上为增函数。

  在一个区间上(个别点取等号)在此区间上为减函数。

  3、导数与极值、导数与最值:

  (1)函数处有且“左正右负”在处取极大值;

  函数在处有且左负右正”在处取极小值。

  注意:①在处有是函数在处取极值的必要非充分条件。

  ②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值。特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。

  ③单调性与最值(极值)的研究要注意列表!

  (2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”

  函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

  注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。

高中数学知识点总结14

  集合的分类:

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的.集合,叫做自然数集,记作N。

  在自然数集内排除0的集合叫做正整数集,记作N+或N_。

  整数全体构成的集合,叫做整数集,记作Z。

  有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点一一对应的数。)

  1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

  2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中数学知识点总结15

  1、算法的概念:

  ①由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。

  ②算法的五个重要特征:

  ⅰ有穷性:一个算法必须保证执行有限步后结束;

  ⅱ确切性:算法的每一步必须有确切的定义;

  ⅲ可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;

  ⅳ输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。

  ⅴ输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。

  2、程序框图也叫流程图,是人们将思考的过程和工作的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法

  (1)程序框图的基本符号:

  (2)画流程图的基本规则:

  ①使用标准的框图符号

  ②从上倒下、从左到右

  ③开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点

  ④判断可以是两分支结构,也可以是多分支结构

  ⑤语言简练

  ⑥循环框可以被替代

  3、三种基本的逻辑结构:顺序结构、条件结构和循环结构

  (1)顺序结构:

  顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。

  (2)条件结构:分支结构的一般形式

  两种结构的共性:

  ①一个入口,一个出口。特别注意:一个判断框可以有两个出口,但一个条件分支结构只有一个出口。

  ②结构中每个部分都有可能被执行,即对每一个框都有从入口进、出口出的路径。

  以上两点是用来检查流程图是否合理的基本方法(当然,学习循环结构后,循环结构也有此特点)

  (3)循环结构的一般形式:

  在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。

  循环结构又称重复结构,循环结构可细分为两类:

  ①如左下图所示,它的功能是当给定的条件成立时,执行A框,框执行完毕后,再判断条件是否成立,如果仍然成立,再执行A框,如此反复执行框,直到某一次条件不成立为止,此时不再执行A框,从b离开循环结构。

  ②如右上图所示,它的功能是先执行,然后判断给定的条件是否成立,如果仍然不成立,则继续执行A框,直到某一次给定的条件成立为止,此时不再执行A框,从b点离开循环结构。

  高中数学算法初步知识点:算法的基本语句

  (1)赋值语句:在表述一个算法时,经常要引入变量,并赋给该变量一个值,用来表明赋给某一个变量的一个具体的确定值的语句叫做赋值语句。

  赋值语句的一般格式:变量名表达式

  ①=的意义和作用:赋值语句中的=号,称作赋值号。

  ②赋值语句的作用:先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值。

  ③关于赋值语句,需要注意几点:

  ⅰ赋值号左边只能是变量名,而不是表达式。例如3。6=X,5=y;都是错误的

  ⅱ赋值号左右不能对换:赋值语句是将赋值号右边的表达式赋值给赋值号左边的变量,例如:Y=X,表示用X的值替代变量Y原先的取值,不能改写成X=Y,因为后者表示用Y的值替代变量X的值。

  ⅲ不能利用赋值语句进行代数式(或符号)的演算:在赋值语句中的赋值符号右边的表达式中的每一个变量都必须事先赋值给确定的.值,不能用赋值语句进行如化简、因式分解等演算,在一个赋值语句中只能给一个变量赋值,不能出现两个或多个=。

  ⅳ赋值号和数学中的等号的意义不同:赋值号左边的变量如果原来没有值,则在执行赋值语句后,获得一个值。例如X=5;Y=1等;如果原来已经有值,则执行该语句后,以赋值号右边表达式的值代替该变量的原值,即将原值冲掉。例如:N=N+1在数学中是不成立的,但在赋值语句中,意思是将N的原值加1再赋给N,即N的值增加1。

  计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,就执行语句,如果条件不符合,则直接结束该条件语句,转而执行其他语句。其对应的程序框图为:(如下图)

  条件语句的作用:在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去。需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理。

  (3)循环结构:

  算法中的循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(for型)两种语句结构。即WHILE语句和UNTIL语句。

  ①WHILE语句的一般格式是:

  其中循环体是由计算机反复执行的一组语句构成的。WHLIE后面的条件是用于控制计算机执行循环体或跳出循环体的。

  当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与END之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到END语句后,接着执行END之后的语句。其对应的程序结构框图为:(如下图)

  其对应的程序结构框图为:(如上图)

  从for型循环结构分析,计算机执行该语句时,先把初始值赋给循环变量,记下终值和步长,并比较初值和中止,如果初值超过终值,就执行end以后的语句,否则执行for语句下面的语句,执行到end语句时,计算机让循环变量增加一个步长值,然后用增值后的循环变量值与终值比较,如果超过终值,就执行for语句以后的语句。是先执行循环体后进行条件判断的循环语句。

  高中数学算法初步知识点:复习点睛

  1、什么是算法:一般地,算法是指在解决问题时按照某种机械程序步骤一定可以得到结果的处理过程。这种程序必须是确定的、有效的、有限的。要了解算法的基本思想、基本结构、程序框图、基本语句、算法案例等。

  2、四种基本的程序框:

  4、基本算法语句:赋值语句、条件语句、循环语句;

  5、解决分段函数的求值等问题,一般可采用条件结构来设计算法;

  6、对于有规律的计算问题,一般可采用循环结构设计算法;

  7、在WHILE语句中,是当条件满足时执行循环体,而在for语句中,是当条件不满足时执行循环体

【高中数学知识点总结】相关文章:

高中数学统计知识点总结10-21

高中数学知识点的总结03-07

高中数学导数知识点总结04-10

高中数学复数知识点总结05-10

高中数学知识点总结05-15

高中数学基本的知识点总结05-17

高中数学求切线知识点总结10-27

高中数学必修2知识点总结11-22

高中数学重点知识点总结11-18

高中数学基本的知识点总结(合集)05-17