当前位置:育文网>教学文档>教案> 乘法分配律教案

乘法分配律教案

时间:2023-10-23 15:28:22 教案 我要投稿

乘法分配律教案【范例15篇】

  作为一名教师,就难以避免地要准备教案,编写教案有利于我们科学、合理地支配课堂时间。我们该怎么去写教案呢?以下是小编为大家整理的乘法分配律教案,仅供参考,大家一起来看看吧。

乘法分配律教案【范例15篇】

乘法分配律教案1

  教学内容:北师大版四年级下册数学教科书第36页内容,和练习四的第5、6、7、9题。

  教学目标:1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  教学重点:充分感知并归纳乘法分配律。

  教学难点:理解乘法分配律的意义。充分感知并归纳乘法分配律。

  教具准备:多媒体课件

  教学设想:本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的'教学原则。充分体现了“为解决实际问题而学习数学”的新理念。

  活动过程:

  一、比赛激趣,提出猜想

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

  9×37+9×63

  9×(37+63)

  (2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  9×37+9×63=9×(37+63)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  二、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

  2、(1)谁能估计一下一共贴了多少块瓷砖?

  (2)请大家用自己的方法来验证他的估计是否正确。

  (3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)

  轻声读这些等式,你发现了什么?

  4、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。

  等号左边表示什么意思?等号右边表示什么意思?大家说的意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。

  在读这句话的时候,哪里应特别注意?

  请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。

  三、探索发展,应用规律

  (1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (80+4)×2534×72+34×28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  (3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

  38×29+3843×102

  (4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

  四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)

  1、请大家根据运算定律在下面的_里填上适当的数。5、6、7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。

  2、大家请到数学医院,帮老师判断对错。

  3、完成连一连。(给一分钟思考时间,然后抢答)

  4、完成填一填。(这道题我找表现最好的小组来开火车)

  5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)

  五、全课小结

  请你选择一个最能代表今天研究成果的。算式,说说我们今天研究了什么?

  请大家想一想,我们是怎样发现乘法分配律的呢?

  今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

乘法分配律教案2

  教材分析 :

  乘法安排律是北师大版小学数学四年级的教学内容。本课是在学生已经学习把握了乘法交换律、结合律,并能初步应用这些定律进展一些简便计算的根底上进展学习的。乘法安排律是本单元的教学重点,也是本节课内容的难点,教材是根据分析题意、列式解答、叙述思路、观看比拟、总结规律等层次进展的。然而乘法安排律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法安排律,更要让学生经受探究规律的过程,进而培育学生的分析、推理、抽象、概括的思维力量。同时,学好乘法安排律是学生以后进展简便计算的前提和依据,对提高学生的计算力量有着重要的作用。在本节课的教学过程的设计上,我注意从学生的生活实际动身,把数学学问和实际生活机密地联系起来,让学生在体验中学到学问。

  学情分析:

  学生根底较差、有的学生学习习惯不好,所以在设计教学过程时,我留意做到面对全体学生,尽量关注每个学生的进展。在前面教学中发觉学生对于用字母表示规律的把握是比拟坚固的',而对于一些有规律的数字也只是进展简洁的”竖式计算,没有发觉有些数字相乘之后积的特点,没有发觉简算的意义。因此,要让学生在计算中体会出简算的必要和便利,让学生亲身经受将实际问题抽象成数学模型并进展解释和应用的过程,进而使学生获得对数学理解的同时,在思维力量方面得到进步和进展。

  教学目标:

  学问与力量:

  1、在探究的过程中,发觉乘法安排律,并能用字母表示。

  2、会用乘法安排律进展一些简便计算。

  过程与方法:

  1、通过探究乘法安排律的活动,进一步体验探究规律的过程。

  2、经受共同探究的过程,培育解决实际问题和数学沟通的力量。

  情感、态度与价值观:

  1、在这些学习活动中,使学生感受到他们的身边到处有数学。

  2、增加学生之间的了解、同时体会到小伙伴合作的重要。

  3、在学习活动中不断产生对数学的奇怪和求知欲,着重培育良好的学习习惯。

乘法分配律教案3

  教学内容:人教社教材四年级下册P26页例7

  教学目标:

  1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。

  2、会应用乘法分配律,使某些运算简便。

  3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。

  教学重点:

  让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。

  教学难点:理解和掌握乘法分配律的推导过程。

  教学设计思路:

  1、通过买衣服的情境转入乘法分配律。

  2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的'意义。

  3、会用乘法分配律进行简单的计算。

  教学过程

  一、创设情境,生成问题

  1、生活引入,激发兴趣

  今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。

  出示:两件上衣(价格分别是100元、80元)

  两条裤子(价格分别是70元、50元)

  2、提出问题,独立思考

  出示:(1)一共有几种搭配方法?

  (2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。

  二、探索交流,建构规律

  1、生选择搭配方案并计算。

  2、组内研讨,并出示:

  (1)一共有几种搭配方案?

  (2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?

  3、汇报交流:

  (1)探讨第一种方案。

  师:哪一个同学想先来给项老师推荐他的方案?

  (预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(100 70)×5

  B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)

  (2)探讨第二种方案。

  (3)探讨第三种方案。

  (4)探讨第四种方案。

  教师板书:

  一套 ×套数 = 5件上衣 5条裤子

  (150 100)× 5 = 150×5 100×5

  (150 70)× 5 = 150×5 70×5

  (100 100)× 5 = 100×5 100×5

  (100 70)× 5 = 100×5 70×5

  4、生列举例子。

  (1)出示:活动要求

  A、写出三个这个的算式。

  B、交流:你怎么来说明你写的算式左右两边是相等的?

  (2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。

  5、用字母表示乘法分配律。

  问:谁能用一个算式表示全班所有同学的算式?

  6、学生归纳概括:乘法分配律的意义。

  三、巩固应用,训练提升

  1、在□里填上适当的数。

  (15 20)×12=□×12 □×12

  25×(4 9)=□×4 □×9

  8×(10 5)=□×□ □×□

  30×24=30×□ 30×□

  2、把左右两边相等的算式用线连接起来。

  48×12 52×12 15×18 26×18

  (15 18)×26 25×40 25×4

  25×(40 4) (48 52)×12

  14×(45-5) 11×4 25×4

  (11×25)×4 14×45-14×5

  四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?

乘法分配律教案4

  【教学内容】

  人教版四年级下册课本36页例3.

  【教材与学情定位】

  本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。

  【设计理念】

  1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。

  2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?

  2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?

  【教学目标】

  1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。

  2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。

  【教学重点】

  从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。

  【教学难点:】

  1.理解乘法分配律,体会其优越性。

  2.乘法分配律应用中出现的问题如何有效突破。

  【教学过程】

  1、同学们我们前面学习过两位数乘两位数,

  出示:25×14=

  算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。

  (师把25×14写在黑板左侧,指生上展示台展示自己的书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上)

  过程:25

  ×14

  100 25×4

  25 25×10

  350

  问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和)

  师随生动:14分成(10+4)的和乘25

  指25×14表示什么?14个25是多少

  指(10+4)×25表示什么?14个25是多少?

  指10×25+4×25表示什么?14个25是多少?

  可以画等号吗?可以

  那下面这几个算式表示什么?也可以这样写吗?

  【设计意图】

  本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。

  出示15×12= 23×16=

  学生观察:发现都是两位数乘两位数的运算,表示可以。

  师指生描述算式的含义并由学生独立完成算式转换。

  学生通过验证认识到:

  15×12=(10+2)×25=10×15+2×15

  23×16=(10+6)×23=10×23+6×23

  16×25=(10+6)×25=10×25+6×25

  现在还想等吗?

  15×12=(10+2)×25=10×15+2×15

  23×14=(10+4)×23=10×23+4×23

  16×25=(10+6)×25=10×25+6×25

  生:相等。

  师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?

  生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。

  师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传)

  【设计意图】

  本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。

  师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?

  生:可以。

  2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律

  (20+3)×37=

  (10+9)×23=

  (32+25)×74=

  学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?

  生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;

  左侧三个数,右侧四个数;

  ……

  小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。

  【设计意图】

  通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。

  师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?

  生一:(10+5)×74=10×74+5×74

  同意的举手,鼓励的掌声送给他

  生二:(10+7)×52=10×52+7×52

  生三:(10+9)×24=10×24+9×24

  生四:(30+2)×52=52×30+52×2

  【设计意图】

  学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。

  师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。

  (16+△)×51=

  (△+■)×○=

  引导出字母形式:

  (a+b)×c=

  师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。

  【本环节学生必须充分的讨论,争论,作为教师必须在学生的'练习中找到问题,并及时全班范围内解决。】

  汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍

  小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。

  字母形式:(a+b)×c=a×c +b×c

  也可以写成a×(b+c)=a×b+a×c

  【设计意图】

  本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。

  3、看谁算的又对又快:

  (4+6)×27 ○ 4×27+6×27

  (14+86)×39 ○14×39+86×39

  (100+1)×37○100×37+1×37

  3×62+5×62+2×62=

  集体订正,说学生的做法,怎么做的?怎么想的!

  【设计意图】

  通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!

  4判断:

  (1)(36+27)×5=36×5+27×5 ( )

  (2)(13+79)×12=13+79×12 ( )

  (3)(34+61)×43=34×61+43 ( )

  (4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( )

  手势表示,对的举对号,错误的举起十字。

  【设计意图】

  本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。

  5、情景剧:生活中的握手问题:

  两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。

  【设计意图】

  学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。

  6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?

  师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。

乘法分配律教案5

  教学内容:教科书第54页得例题和第55页的“想想做做”。

  教学目标:

  1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2、使学生在观察、比较、猜测、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨和简洁。

  3、使学生在数学活动过程中获得成功的体验,进一步增强数学学习的兴趣和自信心。

  教学重点、难点:发现并理解乘法分配律

  教学过程:

  一、 铺垫孕伏

  1口算

  125×53×8 25×44

  指名说出运用什么方法使计算简便

  2出示两组算式

  (6+4)×7 6×7+4×7

  20×(5+2) 20×5+20×2

  (10+25)×4 10×4+25×4

  先口算,再说说每一组算式有什么关系?(结果相同)

  所以我们可以用什么符号连接这两个算式?(等号)

  谈话导入:

  上学期我们学习了乘法的交换律和结合律。今天我们要学习乘法的另一个定律。

  二、 探究新知

  1、谈话:同学们,学校马上要进行广播操比赛了,体育老师准备给比赛的同学每人买一套服装,我们一看。

  出示课件:(课本第54页例题情景图)

  2、 提问:从图上你获得了哪些信息?

  (每件短袖32元 每条裤子45元 每件夹克衫65元)

  3、 提问:

  体育老师买5件夹克衫和5条裤子,一共要付多少元?你能自己列综合等式解决这个问题吗?

  4、 学生试做

  5、教师巡视,让用(65+45)×5和65×5+45×5两种不同方法解答的'学生分别口答。

  教师板书:(65+45)×5=110×5=550(元)

  65×5+45×5=325+225=550(元)

  6、指名学生说说自己列的算式和思路

  解法一:先算买一套衣服用多少元

  解法二:先算买夹克衫和买裤子各用多少元

  7提问:

  这道题的两种算法不同,比较一下他们的结果。你发现了什么?(结果相同)

  8谈话:结果相同的两个算式,可以用等号相连接

  板书:(65+45)×5=65×5+45×5

  9照上面的等式,你还能再说出一个吗?

  课件出示(—+-)×-=-×-+-×-

  10谈话:这样的等式有很多,今天我们一起来研究这样等式的规律。

  三、 概括定律

  1提问:

  观察例题这两个算式,等号左边先算什么,再算什么?右边呢?

  学生回答后(65+45)×5是用65与45的和同5相乘;65×5+45×5是把65和45分别同5相乘。

  2提问:谁能用一句话把等号左边算式的特点概括出来?右边呢?

  板书:两个数的和同另一个数相乘

  两个数分别同一个数相乘,再把两个积相加

  3提问:

  既然等式两边计算结果相同,我们可以得到什么?

  :两个数的和同另一个数相乘等于这两个数分别与另一个数相乘再相加

  4同桌把乘法分配律完整地说一遍

  5谈话:大家说得很好,你们发现的这个规律就是乘法分配律。(板书课题)

  6练习

  (1)、(42+35)×2=————

  (2)、27×12+43×12=————

  7、提问:如果现在要用字母来表示这个规律,你们认为应该用几个字母呢?(3个)

  8、谁会用字母a、b、c表示乘法分配律

  板书:(a+b)×c=a×c+b×c

  四、 巩固练习

  1根据乘法分配律,填出另一道算式

  15×26+15×14=□○(□○□)

  72×(30+6)=□○□○□○□

  2课本第55页“想想做做”第2题

  (1)学生用手势判断

  (2)谈话:第三题意见不统一,你是怎么判断的,不能确定时可以用什么方法?(计算)

  提问:

  怎么改算式,让同学们一看就知道他们相等?

  (74可以写成74×1)

  (3)提问:

  第4题的两个算式为什么不相等?怎样改写可以使它们相等?

  3选择题

  24×(49+51)与下面的————式相等

  (1)24×51+24×49

  (2)(24+49)×(24+51)

  (3)24×49×51

  4拓展题:

  把例题中的问题改成5件夹克衫比5条裤子多多少元,可以怎么做?学生试做后发现:两个数的差与一个数相乘,也可以用这两个数分别与这个数相乘,再把它们的积相减,这也是乘法分配律。

乘法分配律教案6

  教学目标:

  1、发现、理解和掌握乘法分配律;

  2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;

  3、培养学生观察、归纳、概括等初步的逻辑思维能力。

  4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。

  教学重点:乘法分配律的意义及其应用。

  教学难点:应用乘法分配律进行简便计算。

  教学过程:

  一、创设情境,激发兴趣:

  (请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?

  生:(齐)高兴激动。

  生1::打个招呼,宋老师好。

  生2:宋老师好!

  师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?

  生:不是,是分别握手。

  生:乘法分配律(小声地)

  (设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)

  二、自主探索,合作交流

  师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。

  1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?

  (1)阅读理解:让学生充分表达自己知道了什么。

  生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。

  生2:每个小组共有6人。

  (2)分析解答:

  学生汇报自己的解法,引导学生说明不同算法的理由。

  板书:(4+2)×25 4×25+2×25

  2.两个算式的结果怎样?用什么符号连接?生读等式

  板书:(4+2)×25=4×25+2×25

  生读算式(4+2)×25=4×25+2×25

  3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?

  口头列式,得出(58+42)×9=9×58+9×42(生读等式)

  4、观察这两组算式,请你写出一些类似的式子.

  每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)

  投影展示

  生1:(1+2)×3=1×3+2×3

  (3+2)×4=4×3+2×4

  (10+2)×5=10×5+2×5

  (6+4)×5=6×5+4×5

  生2:(4×2)×3=4×3+2×3

  生3:他的.算式是错的,括号里应该是两数之和。

  生4:( + )× = × + ×

  (a+b)×c= a×c+ b×c

  a×(b+c) = a×b+ a×c

  师;尝试用文字总结发现的规律

  生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。、、、、

  等号两边的算式有什么相同和不同?

  5、集体归纳。

  抓住:两个数和、分别相乘

  小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)

  两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。

  6、讨论记忆乘法分配律的方法。

  师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。

  生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。

  生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。

  、、、、、

  学生的方法很多。

  (设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)

  三、巩固新知,尝试练习

  1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?

  (12+200)×3=□×3+□×3

  15×(40+2)=□×40+□×2

  2、数学游戏:找朋友

  (1)找出得数相等的两个算式,(将算式卡片展示在黑板上)

  (设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)

  提问: 22×7+18 和(22+18) ×7 是朋友吗?如果要让它们成为朋友,该怎么改?

  (2)整理卡片,分成两组

  甲组 乙组

  ① 100×31+2×31 ① (100+2)×31

  ② 9×(37+63) ② 9×37+9×63

  ③ (22+18)×7 ③ 22×7+18×7

  分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。

  (设计意图:制造冲突,引出认知矛盾)

  男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)

  小结:能口算,并且能凑整十、整百数,算起来比较简便。

  利用乘法分配律可以使一些计算简便。

  (这一环节进行充分运用,渗透简便运算的意识)

  四、运用规律,内化新知

  (8+4)× 25= 34×72+34×28=

  先观察,说一说算式特点,再尝试计算、 指名板演、全班交流

  (设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)

  五、课堂总结与评价:

  用自己的话说一说什么是乘法分配律?

  (设计意图:培养学生的归纳总结意识和数学语言的表达能力。)

  板书设计:

  乘法分配律

  (4+2)×25 = 4×25+2×25

  (a+b)×c= a×c+ b×c

  甲组 乙组

  ① 100×31+2×31 ① (100+2)×31

  ② 9×(37+63) ② 9×37+9×63

  ③ (88+12)×7 ③ 88×7+12×7

乘法分配律教案7

  知识与技能目标:

  1、经历探索的过程,发现乘法分配律,并能用字母表示。

  2、能够运用乘法分配律进行一些简便的计算。

  过程与方法:

  培养学生观察、归纳、概括等初步的逻辑思维能力。

  情感与价值观:

  渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。

  教学重点

  理解并掌握乘法分配律

  教学难点

  乘法分配律的推理及运用

  教学准备

  多媒体电脑、课件

  教学过程

  一、用简便方法计算下面各题。

  452+199+24838×125×8×3

  二、比赛激趣,提出猜想

  (1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)

  10×37+10×63

  10×(37+63)

  (2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  10×37+10×63=10×(37+63)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  (设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)

  三、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

  2、(1)谁能估计一下一共贴了多少块瓷砖?

  (2)请大家用自己的方法来验证他的'估计是否正确。

  (3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)

  (设计意图:学生用不同的方法列式计算,为探讨规律做准备。

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?

  5、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)

  (设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?

  (a+b)×c=a×c+b×c

  (5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。

  四、探索发展,应用规律

  (1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (80+4)×2534×72+34×28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  (3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

  38×29+3843×102

  (4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

  (设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)

  五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)

  1、请大家根据运算定律在下面的_里填上适当的数。

  (10+7)×6=______×6+______×6

  8×(125+9)=8×______+8×______

  7×48+7×52=______×(______+_______)

  2、将得数相等的算式用线连起来。

  3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?

  六、全课小结

  请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?

  今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

乘法分配律教案8

  素质教育目标

  (一)知识教学点

  1.使学生理解乘法分配律的好处。

  2.掌握乘法分配律的应用。

  (二)潜力训练点

  透过观察、分析、比较培养学生的分析、推理和概括潜力。

  (三)德育渗透点

  透过乘法分配律的应用,激发学习兴趣。 教学重点:乘法分配律的好处及应用。

  教学难点:乘法分配律的反应用。

  教具学具准备:小黑板、(转板)口算卡片、投影仪、投影片、红、白方木块

  教学步骤

  一、铺垫孕伏

  1.口算:(卡片)

  25×17×4 125×24

  引导学生说一说运用了什么运算定律,这样计算有什么好处。

  2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)

  (6+4)×56×4+4×5

  (8+12)×4 8×4+12×4

  8×(7+3) 8×7+8×3

  二、探究新知

  1.导入新课

  前面我们已经学习了乘法的交换律、结合律,并且明白应用这些定律可使一些计算简便。这天这节课,我们再学习乘法的分配律。(板书课题)

  2.教学例5

  (1)出示例题:(小黑板)

  小强摆小木块,每行摆5个白木块,3个红木块,摆了4行。小强一共摆了多少木块?(两种方法解答) (2)指名读题并使学生明确题中已知条件和问题。

  (3)让学生拿出学具红、白小木块,按照要求摆一摆,并计算。(启发学生用两种方法解答,教师巡视)

  (4)学生试做后,引导回答如何列式解答,并说出解题思路。

  根据学生回答教师板书:

  (5+3)×4

  =8×4

  =32(个)

  5×4+3×4

  =20×12

  =32(个)

  教师引导学生分析,使学生明确:不一样解法的不一样解题思路。

  解题思路:

  ①先算出每行红、白木块共摆多少个,再算出4行一共摆木块多少个。

  ②先求出4行白木块和4行红木块各摆多少个,再算一共摆了多少个。

  (5)教师引导学生观察两种算式发现了什么?使学生懂得: ①两个算式相等。

  ②两个算式可用等号连接。

  学生答教师板书:

  (5+3)×4=32

  5×4+3×4=32

  (5+3)×4=5×4+3×4

  (6)教师出示:

  (18+7)×6=

  18×6+7×6=

  (18+7)×6○18×6+7×6

  20×(5+2)=

  20×5+20×2=

  20×(5+2)○20×5+20×2

  组织学生分组讨论,使学生明确:每组中算式所表示的好处。(学生答教师用色粉笔描4、6、20这些数,从而渗透“一个数”) 反馈练习:按题目要求,请你说出一个等式。(投影出示) (________+________)×________=________×________+________×________

  学生答教师填写投影。

  【透过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获得到达水到渠成。】

  教师:像贴合这种条件的式子,还有许多,那么这些算式到底有什么规律呢?教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:

  ①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘数和乘数的位置。)

  ②两个加数分别同一个数相乘再把两个积相加。 ③等号左右两边两个算式相等。

  3.概括定律:

  透过学生观察比较,启发学生用数学语言概括乘法分配律资料。(转板出示)让学生结合板书理解乘法分配律的.概念,然后再引导学生回答其资料,加以巩固。

  4.反馈练习做一做:

  横线上能填几?为什么?

  (32+35)×4=________×4+________×4

  (62+12)×3=________×________+________×________

  教师:启发学生用字母表示乘法分配律资料并指名板演,提示学生3个数可分别用a、b、c表示,然后,让学生说明算式的好处。这时,教师再提醒学生还有没有别的写法。透过教师引导学生答出c×(a+b)=c×a+c×b,并问学生根据什么?(乘法交换律,或用相乘来解释)

  三、巩固发展

  1.练习十四第1题

  2.在横线上填上适当的数

  (1)(24+8)×125=________×________+

  ________×________

  (2)25×(20+4)=25×________+25×________

  (3)45×9+55×9=(________+________)×________ (4)8×27+73×8=8×(________+________)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

  3.把相等的算式用等号连接起来: (1)32×48+32×52 32×(48+52)

  (2)(24+8)×524×5+24×8

  (3)20×(17+15) 20×17+20×15

  (4)(40+28)×5 40×5+28

  (5)(10×125)×810×8+125×8

  (6)4×(30+25)4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选取题:

  (1)28×(42+29)与下方的(相等

  ①28×42+28×29

  ②(28+42)×(28+29)

  ③28×42×29

  (2)与a×8-b×8相等的式子是(。

  ①(a+b)×8

  ②(a-b)×(8+8)

  ③(a-b)×8

  (3)与(10+8+9)×5相等的式子是(。 ①10×5+8×5+9×5

  ②5×10+5×8+5×9

  ③10×5+5×8+9

  四、课堂小结:这天学习了乘法分配律,明白了两个数的和与一个数相乘,等于两个数分别与一个数相乘,再把两个积相加。 五、课堂作业:练习十四第2题。 六、板书设计

  乘法分配律

  例5.… (5+3)×4 =8×4 =32(个) 5×4+3×4) =20×12 = 32(个) 答:小强一共摆了32个木块。 (5+3)×4=32 4×4+3×4=32 (5+3)×4=5×4+3×4 (18+7)×6=150 18×6+7×6=150 (18+7)×6=18×6+7×6 20×(15+9)=20×15+20×9 (a+b)×c=ac+bc c×(a+b)=ca+cb

乘法分配律教案9

  教学内容:

  数学四年级上册P48探索与发现(三)乘法分配律

  教学目标:

  1、使学生理解并掌握乘法分配律,并会用字母表示。

  2、能够运用乘法的分配律进行简便计算。

  3、培养学生观察发现、猜想、举例验证,得出结论等初步的逻辑思维能力。

  4、培养学生独立自主、主动探索、自己得出结论的学习意识。

  教学重点:

  理解并掌握乘法分配律。

  教学难点:

  乘法分配律的推理及运用。

  教学准备:

  多媒体,题单

  教学过程:

  一、创设情境,调动参与。

  师:以往上课只有老师和同学们,今天还有谁来了?

  生:爸爸妈妈

  师:爱爸爸妈妈吗?

  生:爱。

  师:把这一句话,分成两句话,怎么说。(我爱爸爸和妈妈)

  生:我爱爸爸,我爱妈妈。

  师:能把下面两句话合成一句话吗?(我喜欢语文课,我喜欢数学课。)

  师:中国语言真神奇,同样的意思,可以一句话来说,也可以两句话来说。而在数学中,也有类似的思考方法。今天,就让我们一起走进探索与发现(三)。

  二、新授,根据两种计算方法探索形成等式。

  1、出示例1,学生独立计算,然后上台板演两种不同的方法。

  (市场上的苹果每千克8元,罗老师先买了6千克,又买了4千克,罗老师一共花了多少钱?)

  2、读每种方法的算式,说一说每一步在算什么。

  3、口答。

  4、算式答案一样,用等号连接,写成一个等式。

  5、生读一读等式。

  6、观察这个等式,从等式中你发现了什么?

  7、出示例2。这个组合图形的面积是多少平方厘米?(A长方形:长7厘米,宽5厘米;B长方形:长3厘米,宽5厘米。)

  默读题目,用两种方法计算。

  8、展示学生的算法。

  第一个算式每一步分别在算什么?

  第二个算式每一步分别在算什么?

  这两个算式都在算组合图形的面积。答案相同,这两个算式也可以写成一个等式,((7+3)X5=7X5+3X5)

  三、观察等式,发现规律。

  1、师:下面,请大家带着这两个问题,仔细观察这两个等式。(“观察发现”)

  1、等号左右两边算式有什么相同的地方?有什么不同的地方?

  2、你能从乘法的意义来说明左边和右边的算式结果为什么会相等吗?

  2、先独立思考,然后和四人小组的同学交流你的想法。

  3、汇报。

  (1)数字相同,符号相同。运算顺序不同。(运算顺序是怎样的不同)

  (2)第一个等式的左边和右边都表示10个8相加是多少,第二个等式的左边和右边都表示10个5相加是多少,所以结果相同。

  4、根据这些特点,你有什么发现。

  生汇报自己的想法。

  师:我听明白了,大家发现了这个规律:两个数的和乘一个数,等于把这两个加数分别乘这个数,再把积相加。是这个意思吧?这只是我们的猜想。(“猜想”)

  你能举出一些有这样规律的例子吗?(“举例”)

  5、你们在草稿本上举个例子来试试,为了方便计算和节约时间,大家可以选择小一点的数字。

  6、学生汇报。

  生口答,师板书学生的`两个例子。

  还能举出其他的例子吗?(能)刚才我们用举例的方法验证了这个猜想,在举例的过程中有没有发现结果不一样的例子。(没有)

  看来这个规律是普遍存在的,在数学上,我们把这个规律叫做乘法分配律。(板书)(“得出结论”)

  读一读乘法分配律。

  刚才我们举了很多有这个规律的例子,这样的例子能举完吗?(不能)加上省略号。

  四、得出结论,揭示课题。

  用字母表示。

  师:如果用a,b,c三个字母代替数字,你能表示出乘法分配律吗?

  学生口答:(a+b)xc=axc+bxc

  这个等式反过来也成立。学生从左往右读一次,再从右往左读一次。

  师:a和b都与哪个数相乘了?(C),C就是a和b共同的乘数。

  五、运用。

  师:运用乘法分配律,我们来练一练。

  1、判断下面各题。

  (25+8)x4=25x4+8x4

  (10+5)x18=10x18+5

  6x(a+b)=6xa+axb

  生口答,错在哪儿?

  2、运用乘法分配律填一填。

  师:我们来运用乘法分配律填一填。

  课件出示:(10+7)x6=()x6+()x6

  8x(125+9)=8x()+8x()

  7x48+7x52=()x(+)

  学生口答,1、2题学生直接做判断。3题追问,48和52都同(7)相乘了,那么(7)就是48和52共同的乘数。

  3、计算。

  出示练习题:(40+4)X25 34X72+34X28

  第一题:展示两种算法。比较算法,用乘法分配律,可以使计算更简便。

  第二题:展示算法。

  为什么大多数同学都使用乘法分配律来计算了?

  小结:运用乘法分配律,可以使一些计算更简便。以后再遇到这样的题目时,我们就要先思考,是直接按题目的运算顺序算呢,还是可以用简便方法来算。

  六、课堂小结

  师:通过今天的学习,大家有收获吗?你学到了什么?还有其他的收获吗?

  生谈谈自己的收获。

  师:是的,今天我们学习了乘法分配律,利用这个规律,可以使一些计算变得更简便。在学习乘法分配律时,我们的学习方法是:先观察发现,然后猜想,再举例验证,最后得出结论。学习数学知识,可以使我们的学习和生活变得更简单。

  七、回归课本,翻书阅读,完成课堂作业。

  今天我们学习的内容在数学书48页和49页,同学们翻书仔细看一看。看完后在课堂本上完成今天的课堂作业49页,练一练2题的第1列和第2列

乘法分配律教案10

  教学内容:

  P36/例3(乘法分配律)

  教学目的:

  1、引导学生探究和理解乘法分配律。

  2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  乘法分配律的意义和应用。

  教学难点:

  乘法分配律的反应用。

  教学过程:

  一、铺垫孕埋伏

  思考问题。

  在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?

  二、新授

  小组讨论,尝试用不同的方法解决。

  教师引导学生用多种方法解答。

  学生汇报自己的解法。引导学生说明不同算法的理由。

  (1)(4+2)×25

  =6×25

  =150(人)

  4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。

  (2)4×25+2×25

  =100+50

  =150(人)

  4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。

  小组合作:

  (1)两组算式有什么相同点?

  (2)两组算式有什么不同点?

  (3)两组算式有什么联系?

  汇报。

  教师要根据学生的汇报,灵活地进行引导,总结出要点。

  你还能举出像这样的几组算式吗?

  学生举例。

  根据学生举例板书。

  到底我们举的.例子是不是符合这样的规律呢?请学生验证。

  请学生用语言表述出发现的规律。

  板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  你有什么好方法帮助我们大家记住乘法分配律?

  简记为:

  和与一个数相乘=积相加

  三、巩固练习

  P36/做一做

  P38/5

  在练习小结中,帮助学生记忆乘法分配律。

  四、小结

  学生汇报自己的收获。

  教师引导小结,相应完善板书。

  板书设计:

  乘法分配律

  一共有多少名同学参加了这次植树活动?

  (1)(4+2)×25(2)4×25+2×25

  =6×25 =100+50

  =150(人)=150(人)

  (4+2)×25=4×25+2×25

  ┆(学生举例)

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  两个数的和与一个数相乘,可以先把它们与这个

  数分别相乘,再相加。这叫做乘法分配律。

乘法分配律教案11

  教学目标

  1.引导学生探究和理解乘法分配律。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:借助实际问题体会、认识乘法乘法律。

  教学难点:用乘法交换律和结合律算式。

  预设过程

  一、引入

  1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?

  2、理解题意

  二、探新

  1、学生独自列式

  2、小组交流想法

  3、汇报:根据学生的回答板书

  25×(4+9)=25×4+25×9=325

  25×(4+9)=25×4+25×9

  指名学生说出每一步表示的意义

  (4+9)×25=4×25+9×25=325

  (4+9)×25=4×25+9×25

  4、改题:如果改为买45副,你又可以怎样算?

  45×(4+9)=45×4+45×9

  (4+9)×45=4×45+9×45

  5、观察:请你们仔细观察上面这几题,

  6、你们发现了什么?

  相同点:左边都是两个数的和与一个数相乘,

  右边都是两个数和这个数相乘再相加。

  不同点:算式左边和右边有什么不同?

  联系:算式左边和算式右边有什么联系?

  6、举例:这样的算式你能再举出一些吗?

  7、概括:你们能把上面的规律概括成一句话吗?

  两个数的.和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  你能用字母表示吗?(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  8、质疑:还有什么问题?

  三、巩固

  1、做一做

  判断并说明理由

  2、第5题:下面哪些算式运用了乘法分配律

  3、第6题

  103×1220×5524×20525×24

  四、:你们还有什么问题?

  五、布置作业:

  1、口算

  2、作业本

  3、寻找生活中乘法分配律的例子。

  板书设计

  作业设计:

  课堂作业本P15

  口算训练P16

  教学反思

  课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。

  在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,

  生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。

  生2:是呀,一个数好像是公共财产,都是它们共有的。

  这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。

乘法分配律教案12

  一、教材依据

  义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)

  二、设计思想

  “乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。

  在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的目的。教学的`重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。

  三、教学目标:

  1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;

  2、理解和掌握乘法分配律并会用字母表示;

  3、能够运用乘法分配律进行简便计算;

  4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。

  四、教学重点:

  引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。

  五、教学难点:

  乘法分配律的应用,进行一些简便计算。

  六、教学准备

  多媒体教学课件

  七、教学过程

  (一)情境导入,发现问题

  昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?

  课件出示:图片一共贴了多少块瓷砖?

  (1)谁能估一估,贴了多少块瓷砖?

  (2)谁来用自己的方法来验证估计是否正确?

  还有不一样的方法吗?谁来说说看?(生口答,师板书)

  板书:6×9+4×9(6+4)×9

  =54+36=10×9

  =90(块)=90(块)

  (3)请同学们观察,看看有什么发现?(学生讨论,汇报)

  (二)引导探究,发现规律

  1、猜想、验证

  (1)能不能利用你的发现举些例子来呢?

  生:举例

  (2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?

  (学生小组合作尝试,进行探索)

  2、概括、归纳

  (1)说说你们刚才验证的情况。

  生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。

  生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。

  生3……

  生4……

  (2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?

  问:我们能不能用一个式(字母)把乘法分配律表示出来呢?

  生:(a+b)×c=a×c+b×c

  (3)等号表示什么意思?(这个等式反过来也成立)

  (三)加强应用、深化理解

  我们发现了乘法分配律,它又有怎样的应用呢?

  (课件分步出示练习)

  1、填一填(课本49面练一练第一题)

  2、请同桌同学合用研究下面这些题目,怎样计算比较好?

  (80+4)×2534×72+34×28

  (1)学生讨论研究;

  (2)汇报计算方法,重点说为什么这样算;

  (3)小结:通过研究,应用乘法分配律可以使一些计算简便。

  (四)巩固练习、解决问题

  (课件分步出示)

  1、填一填

  (10+7)×6=__×6+__×6

  8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)

  2、同桌合作研究下面这些题目,怎样计算比较好?

  (80+4)×2534×72+34×28

  2、下面这些题,能用简便方法计算吗?怎样计算?

  (20+4)×2532×(200+3)38×29+38×1

  39×10138×29+3825×41

  (五)课堂小结

  1、说说今天我们研究了什么?

  2、大家想一想,我们是怎样发现乘法分配律的呢?

  3、乘法分配律有什么应用?

乘法分配律教案13

  教学内容:

  探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的“试一试”,“练一练”等)

  重点:指导学生探索乘法的分配律。

  难点:发现并归纳乘法分配律

  关键:指导观察分析算式的特征。

  教学目标:

  通过探索乘法分配律中的`活动,使学生进一步体验探索规律的过程。

  使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  会用乘法分配律进行一些简便计算。

  教具准备

  实物投影仪或挂图(课文插图)

  教学过程:

  导入谈话:

  教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。

  板书:探索与发现(三)

  今天,又有什么发现呢?让我们一起走上探索之路。

  探索交流、发现规律

  呈现课文插图(实物投影或挂图)

  教师:一共贴了多少块瓷砖?你怎么算?

  先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。

  反馈交流情况。

  由小组派代表汇报交流结果(有选择地板书)。

  学生A:6×9+4×9=54+36=90(块)

  学生B:(6+4)×9=10×9=90(块)

  要求学生结合插图说明算式的意义。

  指导学生结合观察算式的特点。

  举例验证。

  让学生根据算式特征,再举一些类似的例子。

  如:(40+4)×25和40×25+4×25

  42×64+42×36和42×(64+36)

  讨论交流:

  交流学生的举例是否符合要求:

  交流不同算式的共同特点;

  还有什么发现?(简便计算)

  字母表示。

  教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

  学生先独立完成,然后小组交流。最后教师板书。

  (a+b)×c=a×c+b×c

  提示课题。

  教师在未完成的板书中添上:乘法分配律。

  应用规律,解决问题

  课文第46页的“试一试”。

  1、(80+4)×25

  呈现题目。

  指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

  鼓励学生独自计算。

  2、34×72+34×28

  呈现题目。

  指导观察算式特点,看是否符合要求。

  简便计算过程,并得出结果。

  巩固练习

  课文第46页的“练一练”。

  第1题,简单的应用乘法分配律进行计算。

  第2题,注意指导一些算式的计算方法。

  99×11:可以看成(100-1)×11=1100-11或看成99×(10+1)=990+99

  38×29+38应该把算式看作:38×29+38×1

  第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。

  第一个问题“一共有多少瓶?”可以直接扳书让学生进行练习,然后进行交流。

  第二个问题“付1500元够吗?”学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。

  2、选用课时作业设计。

  [板书设计]

  乘法结合律

  3×(5×4)=60 15×25×4=1500

  (3×5)×4=60 15×(25×4)=1500

  乘法结合律:(a×b)×c=a×(b×c)

  教学挂图

乘法分配律教案14

  教学内容:教科书第68页例5,第69页做一做中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。

  教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。

  教学过程 :

  一、复习

  教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。

  二、新课

  1.教学例5。

  教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

  图中一共有多少个正方形?你是怎样想的?先请一个学生回答.教师把学生所列的算式写在黑板上。

  还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的`算式也写在黑板上。如:

  (5+3)4 54+34

  教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。

  第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

  这两个算式的计算结果怎样?

  这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

  (5+3)4=54+34

  等号左面的算式是什么意思?(5与3的和乘以4。)

  等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)

  教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

  教师:下面我们再看两组算式,先看:(18+7)6 186+76

  左面的算式是什么意思?(18与7的和乘以6。)

  右面的算式是什么意思?(18与7分别乘以6,再把两个积相加)

  算一算左面的算式等于什么?(18加7是25,25乘以6是150。)

  算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150)

  教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。

  这两个算式相等。说明18与7的和乘以6等于什么?说明18与7的和乘以6等于18与7先分别乘以6再相加。)

  教师:我们再来看两个算式 20(15+9) 20xx+209

  先来计算一下这两个算式各等于多少?

  两个算式都等于多少?

  这两个算式相等,说明20乘以15与9的和等于什么?

  2.进行抽象概括。

  教师指着上面的算式提问:

  仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)

  教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

  再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

  等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。

  教师:如果用a、b、c表示三个数,可以写成下面的形式:

  (a+b)c=ac+bc

  等号左面(a+b)c表示什么意思?(表示两个数的和同一个数相乘)。

  等号右面ac+bc表示什么意思?(表示把两个加数分别同这个数相乘;再把两个积相加。)

  三、巩固练习

  教师在黑板上写算式:(200十3)27,提问:

  1.这个算式中是哪两个数的和乘以哪个数?

  根据,这个算式等于哪两个乘积的和?

  教师在黑板上再写算式:18527十1527,提问:

  这个算式中是哪两个数分别乘以哪一个数?

  根据,这个算式等于哪两个数的和乘以哪一个数?

  2.做第69页做一做中的题目。

  先让学生读题,再想一想每个方框里应该填什么数。

  四、作业

  练习十四的第1、2题。

乘法分配律教案15

  教学内容

  教科书第64页例6,第64页做一做中的题目和练习十四的第1、2题。

  教学目的:

  使学生理解并掌握乘法分配律,培养学生的分析推理能力。

  教学重难点

  乘法分配律

  教具、学具准备

  教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。

  教学过程:

  一、复习

  教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。

  二、新课

  1.教学例6。

  教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

  图中一共有多少个正方形?你是怎样想的?先请一个学生回答,教师把学生所列的算式写在黑板上。

  还有别的.算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:

  (5十3)4 54十34

  教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

  这两个算式的计算结果怎样?

  这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:

  这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

  (5十3)4=54十34

  等号左面的算式是什么意思?(5与3的和乘以4。)

  等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)

  教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

  教师:下面我们再看两组算式,先看:(18十7)6 186十76

  左面的算式是什么意思?(18与7的和乘以6。)

  右面的算式是什么意思?(18与7分别乘以6,再把两个积相加。)

  算一算左面的算式等于什么?(18加7是25,25乘以6是150。)

  算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150。)

  教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。

  这两个算式相等,说明18与7的和乘以6等于什么?(说明18与7的和乘以6等于18与7先分别乘以6再相加。)

  教师:我们再来看两个算式 20(15十9) 20xx十209

  先来计算一下这两个算式各等于多少?

  两个算式都等于多少?

  这两个算式相等,说明20乘以15与9的和等于什么?

  2.进行抽象概括。

  教师指着上面的算式提问:

  仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)

  教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

  再看等号右面的三个算式有什么相同的地方?学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

  等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书乘法分配律。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。

  教师:如果用 表示三个数,乘法分配律可以写成下面的形式:

  (a+b) c=ac+bc

  等号左面(a+b) c表示什么意思?(表示两个数的和同一个数相乘。)

  等号右面ac+bc 表示什么意思?(表示把两个加数分别同这个数相乘,再把两个积相加。)

  三、巩固练习

  教师在黑板上写算式:(200十3)27,提问:

  1.这个算式中是哪两个数的和乘以哪个数?

  根据乘法分配律,这个算式等于哪两个乘积的和?

  教师在黑板上再写算式:18527十1527,提问:

  这个算式中是哪两个数分别乘以哪一个数?

  根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?

  2.做第64页做一做中的题目。

  先让学生读题,再想一想每个方框里应该填什么数。

  在(32十25)4中,两个数的和指的是什么?同一个数相乘指的是哪个数?

  根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?

  第一小题的方框里应该填什么数?(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)

  第二小题应该怎样填?根据什么运算定律?(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)

  四、作业

  练习十四的第1、2题。

【乘法分配律教案】相关文章:

乘法分配律教案09-25

《乘法分配律》教案09-04

乘法分配律教案09-04

小学乘法分配律教案03-17

《乘法分配律》小学教案03-31

乘法分配律教案最新10-13

《乘法分配律》教案15篇02-17

乘法分配律教案15篇02-17

乘法分配律教案(15篇)02-17

《乘法分配律》教案(通用19篇)01-19