当前位置:育文网>教学文档>教案> 勾股定理教案

勾股定理教案

时间:2024-11-03 21:24:30 王娟 教案 我要投稿

(经典)勾股定理教案20篇

  作为一名无私奉献的老师,常常需要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?下面是小编精心整理的(经典)勾股定理教案20篇,欢迎大家分享。

(经典)勾股定理教案20篇

  勾股定理教案 1

  教学目标:

  能运用勾股定理及直角三角形的判定条件解决实际问题。

  在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

  教学准备

  《数学学与练》

  集体备课意见和主要参考资料

  教学过程

  一.新课导入

  本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

  一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流。

  创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:

  底端也滑动0.5m;如果梯子的顶端滑到地面上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等)。

  通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题,从中感受用数学的眼光审视客观世界的乐趣。

  二.新课讲授

  问题一在上面的情境中,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?

  组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导。

  问题二从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流。

  设计问题二促使学生能主动积极地从数学的角度思考实际问题,教学中学生可能会有多种思考,比如:

  ①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;

  ②因为梯子顶端下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;

  ③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。

  教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法。

  3.例题教学

  课本的`例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题,通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智。

  三.巩固练习

  甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km。

  四.小结

  我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边,从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程。

  勾股定理教案 2

  学习目标

  1、通过拼图,用面积的方法说明勾股定理的正确性。

  2、探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

  重点难点

  重点:用面积的.方法说明勾股定理的正确。

  学习难点:勾股定理的应用。

  学习过程

  教师

  二次备课栏

  自学准备与知识导学:

  这是1955年希腊为纪念一位数学家曾经发行的邮票。

  邮票上的图案是根据一个著名的数学定理设计的。

  学习交流与问题研讨:

  1、探索

  问题:分别以图中的直角三角形三边为边向三角形外

  作正方形,小方格的面积看做1,求这三个正方形的面积?

  S

  正方形BCED=S

  正方形ACFG=S

  正方形ABHI=

  发现:

  2、实验

  略

  练习检测与拓展延伸:

  求下列直角三角形中未知边的长

  检测:

  1、在Rt△ABC中,∠C=90°

  (1)若a=5,b=12,则c=________;

  (2)b=8,c=17,则S△ABC=________。

  2、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()

  A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

  3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()

  A.12cmB.10cmC.8cmD.6cm

  4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?

  5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?

  课后反思或经验总结:

  1、什么叫勾股定理;

  2、什么样的三角形的三边满足勾股定理;

  3、用勾股定理解决一些实际问题。

  勾股定理教案 3

  学习目标:

  1、通过拼图,用面积的方法说明勾股定理的正确性。

  2、通过实例应用勾股定理,培养学生的知识应用技能。

  学习重点:

  1.用面积的方法说明勾股定理的正确。

  2.勾股定理的'应用。

  学习难点:

  勾股定理的应用。

  学习过程:

  一、学前准备:

  阅读课本第46页到第47页,完成下列问题:略

  二、合作探究:

  (一)自学、相信自己:

  (二)思索、交流:

  略

  (三)应用、探究:

  略

  (四)巩固练习:

  略

  三、学习体会:

  本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。

  四、自我测试:

  略

  五、自我提高:

  略

  勾股定理教案 4

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。

  本节内容的难点是勾股定理的逆定理的应用。在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的。具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。这样设计主要是培养学生善于提出问题的习惯及能力。

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。

  (3)通过实际问题的解决,培养学生的数学意识。

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数。

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的`纵横迁移感受数学的辩证特征。

  教学重点:

  勾股定理的逆定理及其应用

  教学难点:

  勾股定理的逆定理及其应用

  教学用具:

  直尺,微机

  教学方法:

  以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:

  (1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。

  (2)判定直角三角形的方法:

  ①角为:

  ②垂直:

  ③勾股定理的逆定理

  3、定理的应用(投影显示题目上)

  略

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

  5、布置作业:

  书面作业P131#9

  求证:△DEF是等腰三角形

  勾股定理教案 5

  教学目标

  1、知识与技能目标

  学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

  2、过程与方法

  (1)经历一般规律的探索过程,发展学生的抽象思维能力。

  (2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

  3、情感态度与价值观

  (1)通过有趣的问题提高学习数学的兴趣。

  (2)在解决实际问题的过程中,体验数学学习的实用性。

  教学重点:

  探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

  教学难点:

  利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

  教学准备:

  多媒体

  教学过程:

  第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

  情景:

  在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

  第二环节:合作探究(15分钟,学生分组合作探究)

  学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的`方法:建立数学模型,构图,计算。

  学生汇总了四种方案:

  学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短。

  学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短。

  (1)中A→B的路线长为:AA’+d;

  (2)中A→B的路线长为:AA’+A’B>AB;

  (3)中A→B的路线长为:AO+OB>AB;

  (4)中A→B的路线长为:AB。

  得出结论:利用展开图中两点之间,线段最短解决问题,在这个环节中,可让学生沿母线剪开圆柱体,具体观察,接下来后提问:怎样计算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则。

  第三环节:做一做(7分钟,学生合作探究)

  教材23页

  李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,

  (1)你能替他想办法完成任务吗?

  (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

  (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  第四环节:巩固练习(10分钟,学生独立完成)

  1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走,上午10:00, 甲、乙两人相距多远?

  2.台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

  3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?

  第五环节 课堂小结(3分钟,师生问答)

  内容:

  如何利用勾股定理及逆定理解决最短路程问题?

  第六环节:布置作业(2分钟,学生分别记录)

  内容:

  作业:1.课本习题1.5第1,2,3题.

  要求:A组(学优生):1、2、3

  B组(中等生):1、2

  C组(后三分之一生):1

  勾股定理教案 6

  一、教学目标设置

  知识与技能:

  1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。

  2、了解勾股定理的内容。

  3、能利用已知两边求直角三角形另一边的长。

  过程与方法:

  1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

  2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

  情感与态度:

  1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。

  2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

  二、教学重、难点

  重点:探索和证明勾股定理

  难点:用拼图方法证明勾股定理

  三、学情分析

  学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。

  四、教学策略

  本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。

  五、教学过程

  教学环节

  教学内容

  活动和意图

  创设情境导入新课

  以“航天员在太空中遇到外星人时,用什么语言进行沟通”导入新课,让孩子们尽情发挥他们的想象,而华罗庚建议可以用勾股定理的图形进行和外星人沟通,为什么呢?通过一段VCR说明原因。

  [设计意图]激发学生对勾股定理的兴趣,从而较自然的引入课题。

  新知探究

  毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。

  通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。

  每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。

  回答以下内容:

  (1)想一想,怎样利用小方格计算正方形A、B、C面积?

  (2)怎样求出正方形面积C?

  (3)观察所得的各组数据,你有什么发现?

  (4)将正方形A,B,C分别移开,你能发现直角三角形边长a,b,c有何数量关系?

  引导学生将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.

  问题是思维的起点”,通过层层设问,引导学生发现新知。

  探究交流归纳

  拼图验证加深理解

  每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。

  回答以下内容:

  (1)想一想,怎样利用小方格计算正方形P、Q、R的面积?

  (2)怎样求出正方形面积R?

  (3)观察所得的各组数据,你有什么发现?

  (4)将正方形P,Q,R分别移开,你能发现直角三角形边长a,b,c有何数量关系?

  由以上两问题可得猜想:

  直角三角形两直角边的平方和等于斜边的平方。

  而猜想要通过证明才能成为定理

  活动探究:

  (1)让学生利用学具进行拼图

  (2)多媒体课件展示拼图过程及证明过程理解数学的严密性。

  从特殊的等腰直角三角形过渡到一般的直角三角形。

  渗透从特殊到一般的数学思想,为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的'类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

  通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。

  利用分组讨论,加强合作意识。

  1、经历所拼图形与多媒体展示图形的联系与区别。

  2、加强数学严密教育,从而更好地理解代数与图形相结合

  应用新知解决问题

  在应用新知这个环节,我把以往的单纯求解边长之类的题目换成了几个运用勾股定理来解决问题的古算题。

  把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别注重培养学生认识事物,探索问题,解决实际的能力。

  回顾小结整体感知

  在最后的小结中,不但对知识进行小结更对方法要进行小节,还可向学生介绍了美丽的图案毕达哥拉斯树,让学生切身感受到其实数学与生活是紧密联系的,进一步发现数学的另一种美。

  学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力。

  布置作业巩固加深

  必做题:

  1.完成课本习题1,2,3题。

  2.分别以直角三角形的三边为直径作三个半圆,这三个半圆之间面积有何关系?为什么?

  选做题:

  3.课后收集勾股定理的证明方法,下节课展示。

  针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,让感兴趣的学生课后探索,感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化。

  勾股定理教案 7

  一、教学目标

  (一)知识目标

  1、创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣。

  2、让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题。

  (二)能力目标

  1、培养学生学数学、用数学的意识和能力。

  2、能把已有的数学知识运用于勾股定理的探索过程。

  3、能熟练掌握勾股定理及其变形公式,并会根据图形找出直角三角形及其三边,从而正确运用勾股定理及其变形公式于图形解决相关问题。

  (三)情感目标

  1、培养学生的自主探索精神,提高学生合作交流能力和解决问题的能力。

  2、让学生感受数学文化的价值和中国传统数学的成就,激发学生的爱国热情,培养学生的民族自豪感,教育学生奋发图强、努力学习。

  二、教学重点

  通过图形找出直角三角形三边之间的关系,并正确运用勾股定理及其变形公式解决相关问题。

  三、教学难点

  运用已掌握的相关数学知识探索勾股定理。

  四、教学过程

  (一)创设情境,引出问题

  想一想:

  小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的.想法吗?你能解释这是为什么吗?

  要解决这个问题,必须掌握这节课的内容。这节课我们要探讨的是直角三角形的三边有什么关系。

  (二)探索交流,得出新知

  探讨之前我们一起来回忆一下直角三角形的三边:

  在Rt △ABC 中,∠C=90° ∠C 所对的边AB :斜边c ∠A 所对的边BC :直角边a ∠B 所对的边AC :直角边b

  问题:在直角三角形中,a 、b 、c 三条边之间到底存在着怎样的关系呢?

  我们先来探讨等腰直角三角形的三边之间的关系。

  这个关系2500年前已经有数学家发现了,今天我们把当时的情景重现:

  请同学们也来看一看、找一找。

  数学家毕达哥拉斯的发现:S A +SB =SC

  即:a 2+b2=c2

  也就是说:在等腰直角三角形中,两直角边的平方和等于斜边的平方。

  议一议:如果是一般的直角三角形,两直角边的平方和是否还会等于斜边的平方? 如

  分析: SA +SB =SC 是否成立?

  (1)正方形A 中含有 个小方格,即S A = 个单位面积。

  (2)正方形B 中含有 个小方格,即S B = 个单位面积。

  (3)由上可得:S A +SB = 个单位面积

  问题:正方形C 的面积要如何求呢?与同伴进行交流。

  方法一:

  “补”成一个边长为整数格的大正方形,再减去四个直角边为整数格的三角形

  方法二:分割成四个直角边为整数格的三角形,再加上一个小方格。

  也就是说:在一般的直角三角形中,两直角边的平方和等于斜边的平方。

  概括:

  勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方

  数学语言描述:

  在Rt △ABC 中,a 2+b2=c2

  (用多媒体简单介绍勾股定理的名称由来、中国古代的数学成就及勾股定理的“无字证明”)

  (三)应用新知,解决问题

  略

  (四)归纳总结

  (1)这节课你学到了什么知识?

  ①勾股定理:直角三角形两直角边的平方和等于斜边的平方。

  ②在直角三角形中,任意已知两边,可以用勾股定理求第三边。

  (2)运用“勾股定理”应注意什么问题?

  ①要利用图形找到未知边所在的直角三角形;

  ②看清未知边是所在直角三角形的哪一边;

  ③勾股定理要用对。

  (五)练习巩固

  略

  (六)作业

  1.A、B 、C 组:课本第69、70页,习题18.1 第1,2,3题

  2. A、B :练习册33、34页

  3.A :课本第71页“阅读与思考”,了解勾股定理的多种证法。

  勾股定理教案 8

  教学目标

  1、知识目标:

  (1)掌握勾股定理;

  (2)学会利用勾股定理进行计算、证明与作图;

  (3)了解有关勾股定理的历史。

  2、能力目标:

  (1)在定理的证明中培养学生的拼图能力;

  (2)通过问题的解决,提高学生的运算能力

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过有关勾股定理的历史讲解,对学生进行德育教育。

  教学重点

  勾股定理及其应用

  教学难点

  通过有关勾股定理的历史讲解,对学生进行德育教育

  教学用具:

  直尺,微机

  教学方法:

  以学生为主体的`讨论探索法

  教学过程

  1、新课背景知识复习

  (1)三角形的三边关系

  (2)问题:(投影显示)

  直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

  2、定理的获得

  让学生用文字语言将上述问题表述出来。

  勾股定理:直角三角形两直角边 的平方和等于斜边的平方

  强调说明:

  (1)勾――最短的边、股――较长的直角边、弦――斜边

  (2)学生根据上述学习,提出自己的问题(待定)

  学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论。

  3、定理的证明方法

  4、定理与逆定理的应用

  5、课堂小结:

  (1)勾股定理的内容

  (2)勾股定理的作用

  已知直角三角形的两边求第三边

  已知直角三角形的一边,求另两边的关系

  6、布置作业:

  a、书面作业P130#1、2、3

  b、上交作业P132#1、3

  勾股定理教案 9

  教学目标

  知识与技能:

  了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

  过程与方法:

  在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

  情感态度价值观:

  通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

  教学过程

  1、创设情境

  问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?

  师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

  设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

  2、探究勾股定理

  观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

  问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?

  师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论

  追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

  师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的`平方。

  设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

  问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

  师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

  勾股定理教案 10

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:

  分式通分的理解和掌握。

  教学难点:

  分式通分中最简公分母的确定。

  教学工具:

  投影仪

  教学方法:

  启发式、讨论式

  教学过程

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2、通分的依据:分式的基本性质。

  3、通分的关键:确定几个分式的.最简公分母。

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:

  (1)取各分母系数的最小公倍数;

  (2)凡出现的字母为底的幂的因式都要取;

  (3)相同字母的幂的因式取指数最大的。

  取这些因式的积就是最简公分母。

  勾股定理教案 11

  [教学分析]

  勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

  本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的`正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

  [教学目标]

  一、知识与技能

  1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

  2、应用勾股定理解决简单的实际问题

  3、学会简单的合情推理与数学说理

  二、过程与方法

  引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

  三、情感与态度目标

  通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

  四、重点与难点

  1、探索和证明勾股定理

  2、熟练运用勾股定理

  [教学过程]

  一、创设情景,揭示课题

  1、教师展示图片并介绍第一情景

  以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

  周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度,夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘,得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

  2、教师展示图片并介绍第二情景

  毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。

  二、师生协作,探究问题

  1、现在请你也动手数一下格子,你能有什么发现吗?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

  3、你能得到什么结论吗?

  三、得出命题

  勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

  四、勾股定理的证明

  赵爽弦图的证法

  第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。

  第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、,斜边为 的

  角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。

  因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。

  这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

  五、应用举例,拓展训练,巩固反馈。

  勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

  例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

  六、归纳总结

  1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

  2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

  七、讨论交流

  让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

  我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

  勾股定理教案 12

  教学目标

  1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

  2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

  3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

  教学重点

  了解勾股定理的由来,并能用它来解决一些简单的问题。

  教学难点

  勾股定理的探究以及推导过程。

  教学过程

  一、创设问题情景、导入新课

  首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

  出示课件观察后回答:

  1、观察图1—2,正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即B的面积为______个单位。

  正方形C中有_______个小方格,即C的面积为______个单位。

  2、你是怎样得出上面的结果的?

  3、在学生交流回答的'基础上教师进一步设问:图1—2中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。

  二、层层深入、探究新知

  1、做一做

  出示投影3(书中P3图1—3)

  提问:(1)图1—3中,A,B,C之间有什么关系?(2)从图1—2,1—3中你发现什么?

  学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。

  2、议一议

  图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?

  (1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  (2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?

  3、想一想

  我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?

  三、巩固练习。

  1、在图1—1的问题中,折断之前旗杆有多高?

  2、错例辨析:△ABC的两边为3和4,求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足

  =25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。

  综上所述这个题目条件不足,第三边无法求得

  四、课堂小结

  鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。

  五、布置作业

  勾股定理教案 13

  一、教学目标

  【知识与技能】

  理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

  【过程与方法】

  经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

  【情感、态度与价值观】

  体会事物之间的联系,感受几何的魅力。

  二、教学重难点

  【重点】勾股定理的逆定理及其证明。

  【难点】勾股定理的'逆定理的证明。

  三、教学过程

  (一)导入新课

  复习勾股定理,分清其题设和结论。

  提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。

  出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。

  (二)讲解新知

  请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

  出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

  学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

  勾股定理教案 14

  【学习目标】

  能运用勾股定理及直角三角形的判别条件解决简单的实际问题。

  【学习重点】

  勾股定理及直角三角形的判别条件的运用。

  【学习重点】

  直角三角形模型的建立。

  【学习过程】

  一.课前复习

  勾股定理及勾股定理逆定理的区别

  二.新课学习

  探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题

  有一个圆柱,它的高等于12cm,底面圆的周长是18cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?

  思考:

  1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为这样的线路有几条?可分为几类?

  2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从A点到B点的最短路线是什么?你是如何画的?

  3.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

  4.你是如何将这个实际问题转化为数学问题的?

  小结:

  你是如何解决圆柱体侧面上两点之间的最短距离问题的?

  探究点二:利用勾股定理逆定理如何判断两线垂直?

  李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,

  但他随身只带了卷尺。(参看P13页雕塑图1-13)

  (1)你能替他想办法完成任务吗?

  (2)李叔叔量得AD的长是30cm,AB的.长是40cm,BD长是50cm,AD边垂直于AB边吗?你是如何解决这个问题的?

  (3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?

  探究点三:利用勾股定理的方程思想在实际问题中的应用

  例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长,已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长。

  思考:

  1.求滑道AC的长的问题可以转化为什么数学问题?

  2.你是如何解决这个问题的?写出解答过程。

  小结:

  方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础。

  三.课堂小结:本节课你学到了什么?

  四.新知应用

  略

  五.作业布置:习题1.41,3,4题

  勾股定理教案 15

  课题:

  勾股定理

  课型:

  新授课

  课时安排:

  1课时

  教学目的:

  一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

  二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

  教学重点:

  引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题

  教学难点:

  用面积法方法证明勾股定理

  课前准备:

  多媒体ppt,相关图片

  教学过程:

  (一)情境导入

  1、多媒体课件放映

  图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,2002年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

  2、多媒体课件演示FLASH

  小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。

  (二)学习新课

  问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的.地面,看看能发现什么?对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。

  问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

  (三)巩固练习

  1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?

  2、解决课程开始时提出的情境问题。

  (四)小结

  1、背景知识介绍

  ①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;

  ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。

  2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?

  (五)作业练习

  18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。

  勾股定理教案 16

  教学目标

  1.灵活应用勾股定理及逆定理解决实际问题。

  2.进一步加深性质定理与判定定理之间关系的认识。

  重难点

  1.重点:灵活应用勾股定理及逆定理解决实际问题。

  2.难点:灵活应用勾股定理及逆定理解决实际问题。

  教学过程

  一、自主学习

  略

  二、交流展示

  例1(P33例2)、某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于Q、R处,并相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可求PR,PQ,QR;

  ⑷根据勾股定理 的逆定理,求∠QPR;

  ⑸求∠RPN。

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

  例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

  分析:

  ⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长;

  ⑶根据勾股定理的逆定理,判断三角形是否为直角三角形。

  三、合作探究

  略

  四、达标测试

  1.一根24米绳子,折成三边为三个连续偶数的`三角形,则三边长分别为,此三角形的形状为。

  2.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

  3.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,则电线杆和地面是否垂直,为什么?

  五、教学反思

  略

  勾股定理教案 17

  一、教学目标

  知识与技能:能进一步运用勾股定理解决简单的实际问题。

  过程与方法:在解决简单的实际问题中,感受数学建模、转化的思想方法。

  情感态度与价值观:让学生主动参与解决问题的过程,体会数学的应用价值。

  二、教学重点和难点

  重点:构造直角三角形,运用勾股定理解决问题。

  难点:根据已知和未知的关系,建构方程,解决实际问题。

  三、教学方法和手段

  主要采用启发引导、合作交流、演示反馈等教学方法,运用多媒体辅助教学。

  四、教学过程

  活动一:

  1.情境引入

  有一个圆柱状的透明玻璃杯,由内部测得其底部半径为3 cm,高为8 cm,今有一支12 cm长的吸管随意放在杯中。如果不考虑吸管的粗细,那么吸管露出杯口外的长度至少为 cm。

  2.学生活动

  用下面两个问题引导学生活动:

  (1)你是怎样解决这个问题的?

  (2)找出直角三角形后下一步应怎么办?

  3.数学建构(初步)

  (1)找出直角三角形;

  (2)运用勾股定理求线段的长度。

  设计意图:从学生感兴趣的情境入手,调动学生的积极性,让学生初步感知本节课所要学习的内容,从而引入课题。

  活动二:

  1.例题教学

  略

  2.建构数学

  (1)实际问题数学问题构造直角三角形运用勾股定理解决线段长度计算问题解决数学问题解决实际问题。

  (2)实际问题数学问题解决数学问题解决实际问题。

  设计意图:数学建模思想是数学中的一种重要思想方法,及时地归纳总结,让学生领会这种思想方法,对于自己数学学习是很有帮助的。

  3.数学应用

  略

  活动三:

  1.拓展延伸

  在一次地震中,一棵20米高的`大树被折断了,地震过后,测量了有关数据,测得树梢着地点到树根的距离为6米。这棵大树折断处离地面有多高?

  设计意图:本题是把实际问题转化为数学问题,构造出直角三角形。已知直角三角形的一边和另外两边的和。引导学生通过设未知数,根据勾股定理这个等量关系列出方程,渗透方程思想,进而求出未知线段的长度。

  2.回顾反思

  师生共同总结应用勾股定理解决简单实际问题的方法。

  活动四:

  1.当堂反馈

  (1)校园里有一块长方形的草地,长4 m,宽3 m,草地旁有路,但有个别同学偶尔会走“近路”,从草地上走。经过计算我们会发现这样只是少走 步而已(假如两步合1 m)。

  设计意图:此题的设计一方面是为了简单地利用勾股定理,另一方面是为了让学生有一个爱护花草树木的习惯,注意自己的举止文明,渗透德育教学。

  (2)已知,在ABC中,∠C=90°,AC=5 cm,BC=10 cm,将ABC折叠,使点B与点A重合,折痕为DE。求CD的长度。

  设计意图:此题的设计是检测折叠和利用勾股定理列方程的知识的运用。

  2.布置作业

  课本第68页第4、5题,第7页第14题。

  设计意图:作业主要是为了巩固本节课所学知识,最后一题是为了让学生探索研究在立体图形中构造出两个直角三角形,利用勾股定理求出线段的长度。

  [教学反思]

  一、增强应用意识,渗透数学建模思想

  数学与现实生活密不可分,数学无时不在我们身边,正如一位数学教育家所说:“数学是现实的,学生在现实生活中学习数学,再把学习的数学应用到现实中去。”从现实中寻找学习的素材,增强应用数学的意识,使学生感受数学就在我身边。本节课所选取的问题背景都是学生熟悉的情景,让学生体验解决身边问题的全过程,自己去研究探索,经历数学建模过程,提高应用数学的意识和用数学解决实际问题的能力。

  二、学会分析比只会解答更有效

  《义务教育数学课程标准》要求:能通过观察、实验、类比等获得数学猜想,进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。

  毕达哥拉斯曾说过:在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。可见分析问题能力的培养是多么重要。问题出示后,给学生足够的思考时间,适当采用合作交流的辅助方式,然后组织学生在课堂中交流自己的思考历程,并安排其他学生质疑与补充。这些措施的落实,能进一步拓宽学生分析问题能力的空间,提升学生的思维水平和思维层次。

  三、恰当评价,呵护学生的学习热情

  要彻底解决学生在教学中的主体地位。教师必须转变观念以学生的“学”为出发点,将“自主探究、合作交流”的学习方式贯穿于课的始终,并将评价与教师的教和学生的学有机地融为一体。教师以一个参与者的身份积极参与交流与评价,可以为学生大胆探索、积极交流,创设宽松的心理环境,营造民主、平等、和谐的课堂气氛。在我的课堂上学生经常是妙语连珠,积极发言,有时说错了,只要加以引导都能开心坐下来。学生学习的热情需要呵护。恰当地运用评价的激励与促进作用,可以充分激发和调动学生学习的积极性和主动性,进而获得理想的教学效果。

  勾股定理教案 18

  教学目标

  1、知识与技能目标

  用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用。

  2、过程与方法

  让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法,进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。

  3、情感态度与价值观

  在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的思想,激励学生发奋学习。

  教学重点

  了结勾股定理的由,并能用它解决一些简单的问题。

  教学难点:

  勾股定理的'发现

  教学准备:

  多媒体

  教学过程:

  第一环节:创设情境,引入新(3分钟,学生观察、欣赏)

  内容:2002年世界数学家大会在我国北京召开,

  投影显示本届世界数学家大会的会标:

  会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”

  的图作为与“外星人”联系的信号,今天我们就一同探索勾股定理。(板书 题)

  第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)

  1.探究活动一:

  内容:

  (1)投影显示如下地板砖示意图,让学生初步观察:

  (2)引导学生从面积角度观察图形:

  问:你能发现各图中三个正 方形的面 积之间有何关系吗?

  学生通过观察,归纳发现:

  以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

  2.探究活动二:

  略

  3.议一议:

  略

  第三环节: 勾股定理的简单应用(7分钟,学生合作探究)

  略

  第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流)

  略

  第五环节:堂小结(3分钟,师生对答,共同总结)

  内容:教师提问:

  1.这一节我们一起学习了哪些知识和思想方法?

  2.对这些内容你有什么体会?请与你的同伴交流。

  第六环节:布置作业(2分钟,学生分别记录)

  内容:

  作业:

  1.教科书习题1.1;

  2.《读一读》——勾股世界;

  3.观察下图,探究图中三角形的三边长是否满足

  要求:A组(学优生):1、2、3

  B组(中等生):1、2

  C组(后三分之一生):1

  勾股定理教案 19

  一、教学目标

  1、知识与技能目标:

  理解并掌握勾股定理的基本内容,即直角三角形中两直角边的平方和等于斜边的平方(a+b=c)。

  能运用勾股定理解决简单的直角三角形问题。

  2、过程与方法目标:

  通过观察、猜想、验证等数学活动,经历勾股定理的探索过程,培养学生的数学思维和推理能力。

  体会数形结合的思想,学会将实际问题转化为数学问题来解决。

  3、情感态度与价值观目标:

  激发学生对数学的兴趣和热爱,培养学生的探索精神和创新意识。

  通过介绍勾股定理的'历史和文化背景,增强学生的民族自豪感和文化自信。

  二、教学重难点

  教学重点:理解勾股定理的基本内容,掌握其应用方法。

  教学难点:灵活运用勾股定理解决实际问题,特别是当问题涉及多个直角三角形或需要构建直角三角形时。

  三、教学准备

  教具准备:多媒体课件、直角三角形模型、方格纸等。

  学具准备:学生自备直尺、铅笔、练习本等。

  四、教学过程

  1、引入新课:

  通过展示一些与勾股定理相关的实际问题或历史典故,如毕达哥拉斯发现勾股定理的故事,激发学生的学习兴趣和好奇心。

  提出问题:在直角三角形中,三边之间有什么关系?引导学生思考并尝试回答。

  2、讲授新知:

  讲解勾股定理的基本内容,并展示其数学表达式(a+b=c)。

  通过多媒体演示或实物模型,帮助学生直观理解勾股定理的含义和应用。

  引导学生通过观察和思考,发现勾股定理在直角三角形中的普遍性和规律性。

  3、巩固练习:

  设计一些简单的练习题,让学生运用勾股定理解决实际问题。例如,计算直角三角形的未知边长、判断三角形的形状等。

  鼓励学生独立思考和合作交流,共同探索解决问题的方法和途径。

  4、拓展提升:

  引导学生将勾股定理应用到更复杂的数学问题或实际问题中。例如,计算立体图形中直角三角形的边长、解决与勾股定理相关的几何问题等。

  通过讨论和分享,让学生展示自己的解题思路和成果,互相学习和借鉴。

  5、课堂小结:

  总结本节课所学内容,强调勾股定理的重要性和应用价值。

  鼓励学生在日常生活中多观察、多思考,运用数学知识解决实际问题。

  五、作业布置

  完成课后练习题,巩固所学知识。

  查找并了解勾股定理的历史和文化背景,撰写一篇小论文或制作一份手抄报。

  六、教学反思

  反思本节课的教学效果和学生的学习情况,总结经验教训。

  根据学生的反馈和作业情况,调整后续的教学计划和教学方法。

  勾股定理教案 20

  一、教学目标

  1、知识与技能目标:

  使学生理解并掌握勾股定理的基本内容,即直角三角形中,直角边的平方和等于斜边的平方(a+b=c)。

  培养学生运用勾股定理解决实际问题的能力。

  2、过程与方法目标:

  通过观察、猜想、验证等数学活动,使学生经历勾股定理的探索过程,体验数学发现的乐趣。

  培养学生的合情推理能力和主动探究的习惯。

  3、情感态度与价值观目标:

  激发学生对数学的兴趣和热爱,培养学生的数学素养。

  通过介绍勾股定理的历史背景,增强学生的文化自信和民族自豪感。

  二、教学重难点

  教学重点:掌握勾股定理的基本内容,并能运用勾股定理解决简单的实际问题。

  教学难点:理解勾股定理的证明过程,以及灵活运用勾股定理解决实际问题。

  三、教学准备

  教具准备:多媒体课件、直角三角形模型、正方形网格纸等。

  学生准备:预习勾股定理的基本内容,准备纸笔进行课堂练习。

  四、教学过程

  1、引入新课:

  通过多媒体展示一些与勾股定理相关的图片或视频,如毕达哥拉斯发现勾股定理的故事、赵爽弦图等,激发学生的学习兴趣。

  提出问题:你知道直角三角形的三边之间有什么关系吗?引出勾股定理的主题。

  2、新课讲授:

  讲解勾股定理的基本内容,并板书公式:a+b=c。

  通过多媒体展示勾股定理的证明过程,如面积法、割补法等,使学生理解勾股定理的正确性。

  引导学生观察直角三角形模型,加深对勾股定理的理解。

  3、课堂练习:

  给出一些简单的实际问题,让学生运用勾股定理进行计算。

  鼓励学生上台板演,其他同学进行点评和补充。

  教师对学生的练习情况进行总结和点评,指出存在的问题和需要注意的事项。

  4、拓展延伸:

  介绍勾股定理在现实生活中的应用,如建筑、测量、导航等领域。

  引导学生思考:如果直角三角形的`两条直角边分别增加1倍,斜边会发生什么变化?通过讨论和交流,培养学生的数学思维和探究能力。

  5、课堂小结:

  总结本节课所学的内容,强调勾股定理的重要性和应用价值。

  鼓励学生课后继续探索勾股定理的相关知识,如勾股定理的逆定理等。

  五、作业布置

  完成课后习题,巩固勾股定理的基本内容和应用方法。

  查找资料,了解勾股定理的历史背景和现代应用,撰写一篇小论文或制作一份手抄报。

【勾股定理教案】相关文章:

勾股定理教案05-30

勾股定理的教案12-11

勾股定理教案[合集]05-30

(集合)勾股定理教案07-14

勾股定理教案优选【15篇】07-14

勾股定理的说课稿,勾股定理说课稿范文05-06

《勾股定理》说课稿12-16

《勾股定理》说课稿06-20

探索《勾股定理》说课稿01-04