相似三角形判定教案
作为一名无私奉献的老师,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。来参考自己需要的教案吧!下面是小编为大家整理的相似三角形判定教案,仅供参考,大家一起来看看吧。

相似三角形判定教案1
一、教学目标
1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。
2.掌握“两角对应相等,两个三角形相似”的判定方法。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点
1.重点:三角形相似的判定方法1
2.难点:三角形相似的判定方法1的运用。
三、课堂引入
1.复习提问:
(1)我们已学习过哪些判定三角形相似的方法?
(2)△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗?说说你的理由。
(3)△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题。
(4)教材P48的探究3。
四、例题讲解
例1(教材P48例2)。
分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似。由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似。
证明:略(见教材)。
例2(补充)
已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长。
分析:要求的是线段
DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长。由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似。
五、课堂练习
下列说法是否正确,并说明理由。
(1)有一个锐角相等的两直角三角形是相似三角形;
(2)有一个角相等的.两等腰三角形是相似三角形。
六、作业
1、已知:如图,△ABC的高AD、BE交于点F。
求证:AF/BF=EF/FD。
2、已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高。
(1)求证:
ACBC=BECD;
(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长。
相似三角形判定教案2
《数学课程标准》要求:让学生成为行为主体“动手实践、自主探索、合作交流 ”。以上述思想为出发点,本节课的教学设计体现了活动性、开放性、探究性、合作性、体验性。
教学流程:创设情境,激发求知欲——合作交流,探索新知——应用拓展,达成目标——归纳总结,深化目标
1.关于探索
两个三角形相似条件的探索,本设计没有按照教科书那样直接指导学生按部就班地画一个角,两个角这样的程序进行。而是首先在新旧知识的转折处,创设有助于学生自主学习的问题情境——能否配制一张完全一样的玻璃来引导学生探索并深入研究。使学生经历“直观感觉――动手感知――理性思维”的活动过程,在教师指导下生动活泼地、主动地、富有个性地学习,真正感受数学创造与探索的乐趣。
2.关于应用
三角形相似的判定方法的应用是本节的一个重点,在运用时,如何找准相等的两组对应角是一个难点。本设计注重了习题的发展性作用,层层深入,逐一突破难点。同时根据变式分层的思想,设计具有一定跨度的问题串,组织学生进行变式训练,使每个学生都得到充分的发展。
3.课堂组织
本课采用“自主探索,合作交流”这一教学组织形式,鼓励学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的过程中,逐渐完善自己的想法,感受到与同伴交流中获益的快乐。
4.关于评价方式:
本章定位于以直观几何为主体、附以一定程度上的说理和简单推理。本节课关注的`是学生能否主动参与小组合作,积极探索。为此,教师要特别关注学生个性化的学习需求以及对个性化学习的恰当评价在课堂教学中,给学生留有充足的时间,发表自己的观点,教师应及时表扬和鼓励,这有助于学生认识自我,建立自信,发挥评价的教育功能。
5.遗憾之处:
①题量过大,课堂时间安排较紧,有些问题落实的还不够深入。
②有些题虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,仅是为做题而做题。
6.反思之处:
反思一,集体的智慧是无穷的,一定继续发扬团结协作的好作风;反思二,教材的内涵是无尽的,一定要挖掘到一定的深广度;反思三,教师的经验是宝贵的,一定要开诚不公的交流;反思四,工作的责任心是必要的,一定要无私奉献;反思五,教师的工作是高尚的,来不的半点虚假。
总之,教师的教学技艺和水平在每天的工作中慢慢的提高,我会把教学反思一直坚持下去,因为它是我们教学提高的催化剂,更是学生学习进步的助力器。
相似三角形判定教案3
一、教学目标
1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。
2.掌握“两角对应相等,两个三角形相似”的判定方法。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点
1.重点:三角形相似的判定方法3--“两角对应相等,两个三角形相似”
2.难点:三角形相似的判定方法3的运用。
3.难点的突破方法
(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法。
(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据。
(3)如果两个三角形是直角三角形, 则只要再找到一对锐角相等即可说明这两个三角形相似。
三、例题的意图
本节课安排了两个例题,例1是教材P48的例2,是一个圆中证相似的题目,这个题目比较简单,可以让学生来分析、让学生说出思维的'方法、让学生自己写出证明过程。并让学生掌握遇到等积式,应先将其化为比例式的方法。
例2是一个补充的题目,选择这个题目是希望学生通过这个题的学习,掌握利用三角形相似的知识来求线段长的方法,为下节课学习“27.2.2 相似三角形的应用举例”打基础。
四、课堂引入
1.复习提问:
(1)我们已学习过哪些判定三角形相似的方法?
(2)如图,△ABC中,点D在AB上,如果AC2=AD?AB。
【相似三角形判定教案】相关文章:
相似三角形的判定教学反思(精选10篇)06-08
三角形全等的判定教案08-06
《全等三角形的判定》教案07-08
全等三角形的判定教案08-28
相似三角形说课稿03-04
利用相似三角形测高说课稿04-18
三角形全等的判定教学反思06-30
全等三角形的判定教学反思03-07
全等三角形的判定教学反思10-27
三角形全等的判定说课稿11-11