当前位置:育文网>教学文档>教案> 五年级数学教案

五年级数学教案

时间:2024-06-28 17:16:34 教案 我要投稿

五年级数学教案【热】

  作为一名教师,时常需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么写教案需要注意哪些问题呢?下面是小编收集整理的五年级数学教案,希望对大家有所帮助。

五年级数学教案【热】

五年级数学教案1

  教学目标:

  知识与技能:会用量具测量不规则物体的体积。

  过程与方法:通过对不规则物体体积计算方法的探讨,拓展学生的思维。

  情感与态度:促使学生在活动中积极探索,和谐配合,进一步激发学生对周围事物规律的探究。

  教学重点:探索不规则物体体积的测量方法。

  教学难点:知道不规则物体的体积就是排开水的体积。

  教学准备:量杯、水、沙子、橡皮泥、不规则物体(石块、石块)、乒乓球。

  教学过程:

一、导入阶段

  师:大家最近都在求物体的体积。这些物体,我们一起来看一看。(有各类形状的盒子(长方体和正方体),水)。

  师:小胖想问问你们这些物体的体积你们会求吗?怎么求?

  1、长方体和正方体形状的物体,我们会求,先测量出它们的长、宽、高各是多少,然后利用长方体和正方体的体积公式就能计算出来。

  2、a、可以把水倒入长方体容器内,水的长、宽与容器内部的长、宽相等,再测量一下水的高度,根据这三个条件,水的体积就可以求出来了。

  b、把容器内的水倒在量杯内,就能测出水的体积。

  师:那现在有一块石头,那么这块石头的体积怎么求呢?今天,我们就要研究这个问题。

  (出示课题:用量具测体积)

  二、新授

  师:我们首先来观看大屏幕。(视频)

  师:请大家交流一下,你看到了什么?

  生:将石块放入一个装满水的容器内时,容器内的水面高度会上升。

  师:大家再看一下……

  师:大家想一下,为什么将石块放入一个装满水的容器内时,容器内的.水面高度会上升?

  师:因为石块本身是有体积的,将石块放入一个装满水的容器内时,原本下面容器内的水就会被石块所“排开”了,这样就导致了容器内的水面高度会上升。

  师:那想一下,如果现在我把这石块从容器内取出的话,容器内水面高度又会发生怎样的变化?

  生:容器内水面高度会下降。

  师:再将石块放入容器内呢?容器内的水面高度又会XXXX?

  师:那你能否来判断一下,容器内的水面高度的上升与下降和石块的体积,两者之间究竟有怎样的联系?(大家小组讨论一下)

  生:水面升高的那部分水的体积就是石块的体积

  师:接下来,大家再来看一段视频,你试试看能否用刚才我们所学的这个知识来计算出罐头的体积?

  实验告诉我们是如何测量罐头的体积?罐头的体积是多少?

  (原来水的体积是200ml,现在把罐头放入量杯全部浸没在水中,水面就升高了,现在的体积是400ml,升高部分水的体积就是200ml,水面升高的那部分水的体积就是罐头的体积。)

  师:通过实验,我们知道:水面升高的那部分水的体积就是罐头的体积

  师:刚才我们交流了很多,谁能简单概括一下测量石块体积的方法?

  1、观察原来水的体积。

  2、放入石块。

  3、观察变化后的体积。

  4、求两个体积的差。

  师:a、现在老师想用你们刚才的方法测量这个石块的体积(将石块放入水中),观察一下,你有什么想说的?(石块没有被浸没)

  师:石块没有被完全浸没,但是水面却升高了,那么石块的体积是否就是水面升高的这部分水的体积?

  (不是,水面升高的这部分水的体积其实是石块浸在水里的这部分的体积,而不是整个石块的体积。)

  师:只有将石块整个都浸在水里面,水面升高那部分的水的体积就是石块的体积。

  师:通过两次实验,我们可以确定:物体排开水的体积就是物体的体积。(板书)

  师:通过刚才一系列的实验讨论,我们得出了这个结论,你们真聪明,有一只乌鸦也非常聪明,相信大家都学过“乌鸦喝水”的故事,我们一起来回顾一下。

  师:请同学们说一说乌鸦为什么会喝到水?

  (把石块投入到杯子中,石块就把水排开了,水面就升高了。石块投的越多,水面升高的越快,当水面升高到杯口时,乌鸦就能喝到水了。)

  师:乌鸦用这种方法喝到了水,非常聪明,希望同学们在生活中,如果遇到困难,也应该多角度,多方位的去思考,找到解决问题的好方法。

  师:接下去请同学们把书翻到67页,独立完成书上的第二题。

  师:谁能说说这幅图你看懂了什么,这个苹果的体积又是多少?

  (原来量杯中水的体积是600ml,把苹果完全浸没在水中后,水面上升到了800ml。

  上升部分水的体积就是苹果的体积:800-600=200ml=200cm3

  师:一起来看第三题,两只形状、大小相同的量杯盛有同样多的水,放入两块形状不同的石头后,如果水面升到一样高,那么这两块石头的体积相同吗?

  (相同,因为两个量杯的形状、大小是相同的,水面上升的又是一样高,虽然它们的形状不同,但是它们的体积是相同的。)

  A

  一个长方体水缸,长是7分米,宽是5分米,水深3分米,把一个钢球浸没在水里,水面上升0。2分米,这个钢球的体积是多少立方分米?(水缸的厚度不计)

  B

  一只长方体的玻璃缸,长6分米,宽4分米,水深5分米,如果将一块体积是14。4立方分米的石块全部放入水中,水面会上升多少分米?

  讨论题:

  有一只长方体水箱,长20分米,宽5分米,水箱里放入一个长方体钢块后,水面上升了0。6分米,已知钢块的长和宽都是4分米,求钢块的高是多少分米?(水箱的厚度不计)

  判断题

  1。把一个铁球沉没在长1。5分米,宽1。2分米的长方体容器里,水面由4。5分米上升到6分米,你能求出这个铁球的体积吗?

  (容器的厚度不计)

  A、

  1.5×1。2×4。5

  B、

  1.5×1.2×6

  C、

  1.5×1.2×(6—4.5)

  D、

  1.5×1.2×(4.5+6)

  2。有一只长方体玻璃水缸,长10分米,宽4分米,水箱里放入一个长方体铜块后,水面上升了0。5分米,已知铜块的长是3分米,高是4分米,求铜块的宽是多少分米?(水缸的厚度不计)

  A、

  10×4÷(3×4)

  B、

  10×4×0.5÷4

  C、

  3×4×0.5÷(10×4)

  D、

  10×4×0.5÷(3×4)

  深化练习:

  从里面量长、宽均为2分米,向容器中倒入4.4升水,再把一个苹果放入水中。这时量得容器内的水深是1.5分米,这个苹果的体积是多少?(玻璃容器的厚度不计)

  H独立练习:

  1、水倒入一个棱长为10厘米的正方体容器内,水高3厘米,然后放入许多小石子,这时水升高到5厘米,求这些小石子的体积。(容器的厚度不计)

  2、一个底面积为16平方分米长方体鱼缸,蓄水深20cm,现将一块小假山完全放入水中,此时水面上升了2cm,求这个小假山的体积。(鱼缸的厚度不计)

  三、小结

  师:通过今天的学习,你有什么收获?

五年级数学教案2

  分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

  一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

  从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

  二、渗透数学建模思想,强化用方程解答分数除法问题。

  从过去的.经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

  三、借助线段图分析数量关系,发挥其工具性。

  线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

  本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

  本单元的教育目标是:

  1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

  2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

  3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

  4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

  ●分数除法,安排4课时。

  第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

  第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

  第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

  第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

  分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

五年级数学教案3

  教学目标

  整理和复习

  教学内容

  本单元教材主要包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。

  平行四边形、三角形和梯形面积计算是学生掌握了这些图形特征以及长方形、正方形面积计算的基础上学习的,它们是进一步学习圆面积和立体图形表面积的基础。学到这一单元结束,多边形面积的计算就基本学完。

  组合图形的面积在义务教育的教材中是选学内容。本单元安排在平行四边形、三角形和梯形面积计算之后学习,学生在进行组合图形面积计算中,要把一个组合图形分解成为已学过的平面图形并进行计算,可以巩固对各种平面图形特征的认识和面积公式的运用,有利于发展学生的空间观念。

  本单元具体的教学内容分析如下:

  1.平行四边形的面积。

  通过提出解决比较两个花坛(一个长方形,一个正方形)面积的问题,让学生带着问题自主探索计算平行四边形面积的基本方法,并能运用计算平行四边形面积的方法解决一些实际问题。

  2.三角形的面积。

  为让学生能自主地探索计算三角形面积的方法,教材除呈现了学生需要解决三角形面积的实际问题外,更重要的是提出了如何把三角形进行转化的要求,这也是学生寻求解决三角形面积计算方法的重要思路。根据不同学生的认知能力,在学生探索三角形面积的计算方法中,教材呈现了多种不同的计算方法以及面积公式推导的方法,目的是在课堂上让每个学生都能充分地参与到探索活动之中。

  3.梯形的面积。

  这部分教学内容是利用学生前两个基本图形面积计算公式推导的经验,探索梯形面积的计算方法。同时,为了让每个学生都能参与探索活动,教材呈现了多种探索的方法,并说明了不同的探索过程。

  4.组合图形的面积。

  教材先通过呈现生活中具体物品使学生认识组合图形是由几个简单图形组合而成的.。然后要求学生找一找生活中的组合图形,以巩固对组合图形的认识。接着,引导学生学习组合图形面积的计算。所安排的例题及练习除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。

  5.整理和复习

  这部分内容先把本单元学过的知识进行系统整理,用图示帮助学生回忆本单元所学习的图形面积计算公式的推导过程,沟通各种面积公式及其推导过程的内在联系,再通过不同层次的练习,巩固已学的各种多边形的面积公式,提高应用公式解决简单实际问题的能力。

五年级数学教案4

  教学目标:

  使学生明确小数连除、除加、除减的运算顺序与整数相同,能灵活地运用学过的`定律和有关的规律进行简便计算。

  教学重点:

  教学过程:

  一.1.口算:

  0.1230.360.40.10.01

  0.160.024.50.0338

  0.040.50.750.1513

  2.说说下列各式的运算顺序,并算出结果。

  360454206+1507505-80

  3.用简便方法算

  13456035

  二.新授

  1.谈话引入

  小数的连除、除加、除减的运算顺序和整数一样。(板书课题)

  2.教学例10

  (1)读题、审题、列式。

  9.30.52.4

  问9.30.15表示什么?再除以2.4又表示什么?

  (完成板书)

  :小数连除的运算顺序与整数相同,从左往右依次计算。

  (2)练习第31页做一做(中)

  做前先讨论:这两题是什么算式?有几步运算?先算什么?再算什么?后指名板演讲评。

  3.在整数除法中学过的一些简便算法,有时也可以在小数除法中使用。

  (1)教学例11

  出示例11,师问:怎样算简便呢?

  学生小组讨论:得出把除数转化成是一位数的连除。(生讲师板书)

  5.635

  =5.675

  =0.85

  =0.16

  :在整数除法中学过的一些简便算法,有时也可以在小数除法中使用。(2)大家练第31页做一做(下)

  4.全课:略

  三.巩固练习

  1.第32页2、3填入书本

  2.课作:第1部分第4题

五年级数学教案5

  教学内容:

  本节内容属北师大版小学数学五年级下册第四单元“长方体(二)”最后一节的内容:有趣的测量(求不规则物体的体积)。

  教材分析:

  本节课是在学生已经掌握了长方体和正方体的认识,长方体和正方体的表面积、体积的知识,了解了容积的内容的基础上呈现的。要使学生通过观察、比较,掌握不规则物体的体积的求法,拓展了学生的知识面,渗透了转化的思想。

  学情分析:

  本班级学生,大部分学习认真、踏实、自觉,基础扎实,好学上进,部分男生活泼好动,爱思考。对于探索数学问题有着极其浓厚的兴趣,喜欢自己动手解决问题。在他们身上还明显地存在着儿童的天性,好动、好奇等。对于本单元的知识,大部分学生掌握得比较扎实。

  教学目标:

  1、经历测量芒果、石头、水瓶的体积的实验过程,探索不规则物体体积的测量方法,渗透转化的思想。

  2、握不规则物体的测量方法,并能测量不规则物体的体积。

  3、践与探索过程中,尝试用多种方法解决实际问题,提高灵活解决实际问题的能力。

  教学重点:

  让学生掌握不规则物体体积的测量方法。

  教学难点:

  灵活运用“排水法”和“溢出法”解决实际问题。

  教具准备:

  魔方、芒果、圆柱体量杯、长方体水槽、石块、苹果醋若干瓶

  教学过程:

  一、导入

  1、同学们,周末老师在整理房间的时候,从柜子里发现了一个魔方,我特别喜欢。

  从数学的角度来讲,魔方是一个什么样的物体?(正方体)

  怎样求出这个正方体的体积呢?(板书:V正=a3)

  它的棱长是10cm,体积是多少呢?(1000cm3)

  2、除了正方体,你还会求哪些立体图形的体积?(板书:V长=abh)

  3、像长方体和正方体这样,都能够直接通过公式求出它们的体积,这样的物体,我们把它们叫做“规则物体”。(板书:规则物体)

  4、现在请同学们再观察老师手中的魔方,它还是正方体吗?(旋转一下)那它是什么形状的物体呢?

  像这样,无法用语言准确地说出具体形状的一类物体,在我们的生活中随处可见,我们称它们为“不规则物体”。(板书:不)

  5、现在这个魔方的体积是多少呢?(还是1000cm3)你是怎么想的?(板书:转化)

  【设计意图:我用正方体魔方引入,把本节课主要用到的数学思想渗透给学生,为后面的实验做铺垫,同时又可以激发学生学习的积极性。】

  6、魔方是一个比较特殊的物体。再看,现在老师手中拿的这个芒果也是一个不规则的物体,我们能直接把它转化成规则的物体吗?

  那它的体积是多少,又该怎样求呢?

  这节课,我们就通过有趣的测量,共同来研究不规则物体的体积。

  二、新授

  (一)测量芒果的体积

  1、你想怎样测这个芒果的体积呢?(学生汇报)

  2、桌面上,老师为每个小组准备了两种测量工具:量杯和一个长方体容器。

  你认为选择哪一种测量工具,能够很快地求出芒果的体积?为什么?(选择量杯,因为它有刻度)

  3、这样做确实能比较快的求出芒果的体积,你来看(ppt演示)

  量杯中装有一部分水,正好是300mL,这300mL指的是什么?(水的体积)

  仔细观察,将芒果放入水中后,水面发生了怎样的变化?为什么水面会上升呢?那么,现在的400mL指的是什么?(水和芒果的体积)

  现在,你知道芒果的体积是多少吗?

  100是芒果的体积,它也是什么的体积?(上升的水的体积)

  4、在刚才的实验中,我们借助量杯完成了一次转化。是将什么转化成了什么呢?(将芒果的体积转化成了上升的水的体积,也可以说是将不规则的芒果转化成了规则的圆柱体)

  5、像刚才这样测量不规则物体体积的方法,我们把它叫做“排水法”。

  【设计意图:教师引导学生观察第一个实验:用量杯和水试一试、测一测芒果的体积。学生通过讨论、交流观察等一系列的活动,让学生初步的明白应用转化的思想,可以把不规则物体的体积转化为上升部分的水的体积,也就是测不规则物体体积的基本方法。】

  (二)测量石头的体积

  1、现在老师也想进行一次测量,我想测的是这块石头的体积。

  我应该选择什么工具来测量呢?为什么?(选择长方体容器,因为石头太大了)

  2、用这个长方体容器怎样求出这块石头的体积呢?在小组内和你的同伴说一说。(讨论后,学生汇报)

  3、在测量的时候应该注意什么?(强调:要从里面测量)

  出示数据:长25cm,宽18cm,水面高度8cm。慢慢将石头放入水中,观察水面发生了什么变化?为什么?

  这样放行不行(竖着)?为什么?(石头没有完全浸入水中)

  石头已经完全浸入水中,此时水面的高度是10cm

  4、你能根据屏幕上显示的数据计算出这块石头的体积吗?(学生动笔计算)

  5、刚才,在我们的共同努力下,测得了这块石头的体积。

  在这次实验中,我们又完成了一次转化,是将什么转化成了什么?(将石头的体积转化成了上升的水的体积,也可以说是将不规则的石头转化成了规则的长方体)

  【设计意图:学生有了第一个实验的基础,教师调换实验用品进行第二个实验,把量杯换为长方体容器来进一步探索求不规则物体的体积。学生有了第一个实验的基础,会很容易的探索出把不规则物体的.体积转化为可计算的长方体的体积,从而突破本节课的重难点。在这一环节中教师适时强调,测量时要把石头完全浸入水中,才能应用转化的思想求体积。】

  6、你还有其他的方法能够测量出这块石头的体积吗?(出示“溢出法”和“排水法”的逆运用)

  【设计意图:教师引导学生思考其他测量不规则物体体积的方法,从而让学生明白解决问题的方法的多样性。】

  7、其实,早在20xx多年前,大物理学家阿基米德就曾经用过刚才同学们说到的方法帮助国王解决了一个难题,出示“数学万花筒”,学生读。

  (三)测量苹果醋瓶的体积

  1、现在你们想不想亲自测量一下不规则物体的体积?

  机会就在眼前,每个小组的桌面上都有一瓶苹果醋。在大家动手之前,请你先猜猜看“这个瓶子的体积是多少?(净含量:260mL)

  2、现在就动手来验证一下吧。将记录填写在实验报告单中。

  【设计意图:新数学课程标准中强调,教学中“做”比“知道”更重要。数学活动课要把握好实践活动的时机,凡是能让学生自己设计的,就让学生亲自去发挥;凡是能让学生自己去做的,就让学生亲自去动手。】

  3、在刚才的实验中,我们又完成了一次转化,谁能来说一说?

  (四)总结

  通过这几次的实验,我们发现:不管是“排水法”还是“溢出法”,实际上都是在完成一次转化,是将什么转化成什么呢?(将不规则物体转化成规则物体)

  【设计意图:使学生明确“转化”思想的实质。】

  三、质疑

  看书页,对于今天我们学习的知识,你还有什么不清楚的地方?

  四、课堂练习

  (一)填空

  1、一个量杯水面刻度200mL,放入一个零件后,量杯水面刻度450mL,这个零件的体积是( )。

  2、一个长方体容器装满水,底面长8dm,宽5dm,高3dm,放入一个不规则物体后,溢出30升的水,这个不规则物体的体积是( )。

  3、一个长方体容器,从里面量长3分米,宽2分米,高5分米,里面装有水,水深3分米,如果把一块小长方体放入水中,小长方体的长是10厘米,宽8厘米,高5厘米,上升的水的体积是( )。

  【练习目的:强化“转化”思想的实质。】

  (二)解决问题

  第一组

  1、一个长方体容器,底面长4dm,宽2dm,放入一个石块后水面上升了0.5dm,这个石块的体积是多少立方分米?

  2、一个正方体的容器,棱长20厘米,现装有深度为5厘米的水。在放入一个物体后,水面上升到8厘米,放入物体的体积是多少立方厘米?

  【练习目的:通过对比练习,由直观到抽象,激发了学生的学习兴趣,提高了教学效率与效益。】

  第二组

  1、一个长方体容器,长20厘米,宽15厘米,高10厘米。将一块铁块放入容器中,装满水,再将铁块取出,这时容器中的水面高度是6厘米,这块铁块的体积有多大?★★

  2、一个正方体容器装满水,当放入一个长方体后,容器中溢出了48升水,已知长方体长8分米,宽2分米,求高是多少厘米。★★★

  3、一个棱长为15厘米的正方体容器内水深8厘米,浸入一个不规则的钢块后,水面上升到距容器口3厘米处,这个钢块的体积是多少? ★★★★★

  【练习目的:由浅入深,层层深入,采用小组合作的形式,让学生参与到教学全过程,增强学生的主人翁意识。】

  五、全课小结

  1、通过这节课的学习,你有什么收获?(学生汇报)

  2、生活中有许多不规则的物体,我们可以把它们转化成规则的物体来计算出体积。在解决数学问题的时候,往往需要我们用一种变通的方法去思考。

  3、拓展练习:那么,你能想办法测出一粒黄豆的体积吗?(学生汇报)

  一粒黄豆非常小,把它放入水中,我们很难看出水面的升高情况,也就很难算出它的体积。我们可以先测量出一定数量的黄豆的体积,再除以黄豆的数量,就能得出一粒黄豆的体积了。

  板书设计:

  转化

  有趣的测量:不规则物体的体积规则物体的体积

  V正=a3芒果的体积上升的水的体积

  V长=abh石头下降

  瓶子溢出

五年级数学教案6

  教学理念:

  让学生在广泛的探究时空中,在明主平等、轻松愉悦的氛围里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。

  教学过程:

  一、课前探疑

  学生课前认真预习课文内容,通过自主探究、合作交流,感知本课内容,提出疑难问题。

  二、课始集疑

  1、揭题

  2、集疑:同学们课前都进行认真的预习,现在请同学们把预习中没有解决的、需要在本节课上请老师、同学们帮助解决的问题提出来。

  过渡:刚才这些问题都提的非常好,我们这节课就重点解决这些问题。在解决这些问题之前,先请同学们认识一件物体。

  三、课中释疑

  <一>认识天平:课件出示天平,同学们说天平的作用、用法。

  <二>认识等式

  1、演示课件 写出式子

  在左边放二个40克的物体,右边放一个50克的法码,这时天平怎么样?

  你能用一个数学式子来表示这时候的现象吗? 40+50<100

  再在左边放一个30克的物体,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+50+30>100

  把左边的一个30克的物体换成10克的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+50+10=100

  再把左边的10克与50克的`物体换成未知的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+X<100

  再把左边的未知的物体换成另一个未知的,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? 40+X=100

  再把左边的物体换成二个未知的,右边另加上一个50克的砝码,这时天平怎么样?

  你能也用一个式子来表示这时候的现象吗? X + X=150

  2、分类

  刚才我们写出了这么多的式子,大家能把这些式子按照一个统一的标准分类吗?请小组讨论按照什么样的标准分?并把分类结果写在卡片上。

  展示同学们不同的分类,并说说你们是按照什么标准分的?

  师:按照不同的标准分类,有不同的结果。刚才同学们的分类都是正确的,为了解决刚才同学们所提出的问题,我们今天就研究这一种分法。(分成等式与不等式两类的)

  3、理解概念

  师:为什么这么分?你们发现了这一类式子有什么特点? 左右两边相等

  揭示:像这样表示左右两边相等的式子叫做等式。(板书:等式)

  谁来举一些例子说说什么是等式?

五年级数学教案7

  一、教学目标

  1、能直接在方格图上,数出相关图形的面积。

  2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

  3、在解决问题的过程中,体会策略、方法的多样性。

  二、重点难点

  整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。

  难点:学生能灵活运用。

  三、教学过程

  (一)直接揭示课题

  1、今天我们来学习《地毯上的.图形面积》。请同学们把书P18页,请同学们认真观察这幅地毯图,看看它有什么特征。

  2、小组讨论。

  3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。

  4、看这副地毯图,请你提出一些数学问题。

  (二)自主探索、学习新知

  1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?

  2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

  3、小组内交流、讨论。

  4、全班汇报。

  a)直接一个一个地数,为了不重复,在图上编号。(数方格法)

  b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)

  c)用总正方形面积减去白色部分的面积。(大减小法)

  d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

  5、师总结求蓝色部分面积的方法。

  (三)巩固练习

  1、第一题。

  (1)学生独立思考,求图1的面积。

  (2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。

  2、第二题。独立解决后班内反馈。

  3、第三题。

  (1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

  (2)学生观察结果,说发现。

  第(1)题的4个图形面积分别为1、2、3、4的平方数。

  第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。

  (四)总结

  对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。

  四、板书设计

  地毯上的图形面积

  一个一个地数(数方格法)

  平均分成4份,再乘4。(化整为零法)

  总面积减去白色面积。(大减小法)

  五、教学反思

  本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。

五年级数学教案8

  教学内容

  《除法估算》选自苏教版九年制义务教育小学教科书数学第九册P51的内容。

  教学思路

  小学数学应该与现实生活相联系,使学生的学习更具有现实性、趣味性和挑战性。“估算”在实际生活中有着广泛的应用,与其他知识也密不可分。因而,在教学“除法估算”这一部分内容时,设计围绕从学生刚经历的秋游活动来展开,让学生独立思考以发现估算的题材、自主探索以感知估算的价值、小组合作来交流估算的策略、尝试解题来总结估算的方法、实践运用以提高估算的能力。

  设计理念

  1、数学教学活动要关注学生的个人知识和直接经验

  新的《国家数学课程标准》(实验稿)中明确指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。因此,教学活动要以学生的发展为本,把学生的个人经验(除法计算)、直接经验(秋游的感受)和现实世界(生活中的数学)作为数学教学的重要资源。

  2、注重学生自主性和个性化的学习

  引导学生通过独立思考、自主探索、合作交流获得知识,激励学生自得自悟。并且注意在教学过程中要充分利用学生的已有经验,尊重他们不同的思维方式,让数学学习活动成为一个生动活泼的、主动的和富有个性的过程。

  教学目标

  1、经历除法估算方法的探索过程,理解并掌握估算的方法。

  2、能灵活运用估算方法解决实际的问题。

  3、在探索学习活动中,培养学生的实践意识,培养探索意识、合作意识、创新意识,并获得积极的、成功的情感体验。

  教学过程

  一、秋游场景引入,调动学生学习兴趣。

  上课后,出示秋游时拍的照片,询问学生当时的心情,一下就让学生回想起秋游那天的情景,因那天是远足秋游,学生对步行印象极深。在导入新课前,就提供路程和时间,让学生进行除数是一位数的除法估算的复习,求出同学们步行每小时大约行多少米。接着让学生把计时的单位改小,继续求每分钟的步行速度,便于我们判断走得比较快还是慢。此时顺利进入了除数是两位数的除法估算的教学中。

  二、创设问题情景,激励学生自行探究。

  1、关于所需车辆的计算:

  师:同学们走的速度很快呢,是玩的心情很迫切吧!怪不得有同学问老师:“为什么不坐车呢?大家想知道原因吗?”

  (1)出示题目并讲述:老师联系车子的时候只有中型客车,每辆车子可以坐44人,而我们四年级参加秋游活动的学生一共有235人。现在只有5辆车子可以用,你们认为够吗?

  (2)学生自己思考解答后交流。

  师:请同学来说说你的结果。(交流情况)

  生1:我觉得不够。因为235÷44≈6(辆),要6辆车子才可以。现在只有5辆,所以不够。

  (240)(40)

  生2:我认为够了。235÷44,235的近似数取200,235÷44≈5(辆)。

  (200)(40)

  生3:我认为是不够的,老师还没有算在里面呢。

  生4:老师,我用小数做的行吗?

  师:当然可以了。你课外知识真丰富!请你说说看。

  生4:我用235÷44≈5.3,把结果求近似数就是约等于5,所以我觉得5辆车就够了。

  生5:可是在现实生活中有时不能把后面的直接去掉,应该要向前面进一。

  生6:我同意生5的观点,5辆是不够的。我是这样想的:一辆车可以坐44人,那么5辆车大约可以坐44×5≈200(人),而200人<235人,多出来的人就坐不下了,要用6辆车才够。

  师:是啊,多出来的人怎么办呢?不去了吗?

  师:我看,问题主要是在生1和生2的两种解法中 235,也就是被除数的取近似数出现了分歧,那先来解决除数取近似数是怎样统一的?

  生7:只要省略最高位后面的尾数,保留整十数。

  师:其他同学有不同意见吗?(生都摇头表示没有)。问题是被除数到底该怎么考虑求近似数呢?在现实生活中来考虑这个问题,哪一种更符合实际呢?

  生齐:生1说的那种。

  生2:我现在想想应该是不够的,刚才没有仔细考虑。

  师:那就是说,被除数取近似数时,要考虑尽量和原来的数接近。

  生8:老师,那230也接近235的,为什么要取240呢?

  师:谁能回答这个问题?

  生9:因为240÷40是整数6,计算方便,算得快。

  师:为什么会这么快?

  生9:因为我想乘法口诀:四六二十四

  师:这个方法真妙啊!把除数的近似数求出来后,用乘法口诀来想,找个最接近被除数的,把它取作被除数的近似数。你真会动脑筋!

  师:(小结)我们用估计的方法求出了5辆车是不够的,所以决定远足秋游,还能观赏沿途风光呢,倒也是一举多得。

  2.关于缆车票价的.估算(出示缆车图)

  (1) 理解价格表

  师:到了坐缆车的地方,同学们可兴奋了。不知道有没有同学注意到了这张价格表呢?你能看懂它吗?(指名学生发言)

  生10:大人坐缆车上山要20元,上山、下山一起要30元。

  生11:大人光上山不下山是20元。儿童的票价是大人的一半。

  师:两人说得都很棒,生11补充得更好,那按价格表的说明,同学们每人应该付多少钱呢?

  生12:(口答)30÷2=15(元)

  师:老师要负责付同学们的费用了。请大家帮忙算一下:一个人的票价是15元,我们班级有58名同学参加秋游,那么该付多少钱呢?

  (学生小组讨论后交流)

  生13:我们小组认为老师要付15×58≈1200(元)

  (20)(60)

  生14:我们小组认为老师只要付15×58≈900(元)

  (60)

  师:怎么一下就相差了300元?该听谁的呢?

  生15:我们小组是列竖式计算的,其实只要15×58=870(元)

  师:同样是估算,相差300元,这里就要注意联系生活实际的情况,估算目的是计算快速,但也要注意准确。大家想知道事实上老师付了多少钱吗?

  (学生纷纷猜测)

  生16:老师,我想您付的钱应该比870元少。

  师:为什么这么说?

  生16:因为我想集体乘坐应该可以优惠的,很多地方集体购票都可以打折的。

  师:你的生活经验真丰富!的确如你所料,老师实际上付了775元。

  (生恍然,纷纷点头。)

  师:58个同学乘坐缆车,总共用了775元,你能算算自己用了约多少钱吗?

  列式:775÷58 ≈

  生解答后交流:除数58的近似数是60,被除数考虑能被60整除,而又接近775,所以求近似数是780。师板书:775÷58 ≈ 13(元)

  三、提供数据信息,鼓励学生自选解题。

  在学生掌握了除法估算的方法以后,出示一组信息,让学生选择其中对于自己想了解的情况有用的数据,进行计算解答,并和小组里的同学交流。

  反思:

  这堂课上得生动活泼,同学们都投身于自己探究知识的活动之中。他们仔细观察,认真思考,合作交流,终于发现了知识、领悟了方法,品尝到了成功的喜悦。我在实践后的体会如下:

  1、生活即教育

  “生活即教育。”这句话是著名的教育家陶行知说的。也说明了学习应该是学生自己的实践活动。以往教科书上枯燥的例题让学生失去了学习数学的兴趣,而我们现在应该更加关注学生会关心什么、经历了什么、对什么感兴趣、在生活中想要发现些什么。因为生活本身就是一个巨大的数学课堂,将学习和学生们的生活充分融合起来,让他们在自己感兴趣的问题中去寻找、发现、探究、认识和掌握数学。只有这样,学生才会学得积极主动,才会学得兴趣盎然。

  2、估算与生活

  估算的内容在生活中随处可见,有着极其广泛的应用,在日常生活中,对量的描述,很多时候只要算出一个与精确数比较接近的近似数就可以了。这堂课的教学,让学生把自己的经历和数学知识在生活中的应用结合起来,因此培养了学生的素质和能力。

五年级数学教案9

  教学要求:使学生理解商的近似值的意义;掌握用“四舍五入”法取商的近似值的方法,能正确地按照题意求出商的近似值。

  教学过程:

  一、复习。

  1.口算。

  0.63?7=0.090.24?0.3=0.80.65?0.13=5

  72?144=0.51.44?0.6=2.45.6?0.08=70

  2.按照“四舍五入”法求出下面各小数近似值。

  保留整数

  保留一位小数

  保留两位小数

  保留三位小数

  板演后结合算式教师把计算法则再复习一遍。

  二、新授。

  1、引入新课。

  小数除法有时会碰到永远除不尽的情况,有时虽然能除尽但实际上不需要那么多的`小数位数,这样求出的商就只要按题目要求取它的近似值。今天我们学习:求商的近似值。(板书课题)

  2.教学例6。

  例6:一个玩具厂试制了35架玩具飞机,共花156元,平均每架飞机多少元?

  (1)读题、审题,根据题目说出已知条件和问题。列出算式。

  156?35?4.46(元)

  (2)指导学生按照整数除小数的计算法则进行计算:

  (3)除到小数第三位商时,组织学生讨论。

  1.为什么这里除到第三位就可以了?(计算钱数时,通常只算到分,也就是说,得数只要保留两位小数就可以了,除到小数第三位就行了)。

  2.现在该怎么办?(用“四舍五入”法取近似值)

  (4)讨论书写的计算格式。

  答:平均每架玩具飞机约4.46元。

  (5)指出答句中“约”是什么意思?

  (6)教师归纳:计算钱数的时候,通常只算到“分”,算式只要保留两位小数,商除到小数第三位就可以了。千分位上是7,根据“四舍五入法”,7向前一位进1,5变成6,约等于4.46,写答句时要加上一个“约”字,表示近似值。

  3、补充例题:计算132?437(得数保留两位小数)

  A)学生独立进行计算。

  B)讨论得数保留两位小数的一般方法。

  4、:算小数除法,需要求商的近似值的时候,一般除到比需要保留的小数位数多一位,再按照“四舍五入法”把末一位去掉。

  三、巩固练习。

  1、指导看书,后练习课本24页做一做。

  2、练习六第1,3题。

  四、作业。

  练习六第2、4、5题。

五年级数学教案10

  (一)、实践操作

  1、组织谈话

  师:上节课我们已经认识了平行四边形,同学们都学了哪些知识,谁还记得。

  生:两组对边分别平行的四边形叫平行四边形。

  生:认识了平行四边形的高。

  2、媒体演示

  (出示课件:小山羊的困惑。配音:一只莽撞的小山羊把一个长方形撞倒了,变成了一个平行四边形,于是小山羊就发现了一个问题,是什么问题呢?)

  师:现在你能发现什么问题呢?

  生:为什么会变成平行四边形呢?面积是否变了呢?

  师:小山羊到底发现了什么问题?你们想不想知道呢?

  (出示问题:现在的平行四边形和以前的长方形谁的面积大呢?)

  生:一样大。

  生:我认为长方形面积大,平行四边形面积小。

  师:现在有两种意见,大部分同学认为面积一样大,个别同学认为长方形面积大。到底谁说得对呢?你们能不能想个办法比出这两个图形面积的大小?

  师:有什么方法验证一下它们的面积是否一样大呢?

  生:可以算一算它们的面积的大小。

  师:怎样算呢?

  生: 长方形的面积 =长×宽(板书)

  平行四边形的面积 =底×高

  师:你是怎样知道的?

  生:我是看书知道的。

  生:我是家长告诉的。

  师:那么,为什么平行四边形的面积=底×高,公式是怎么来的呢?这节课,我们就重点来研究平行四边形面积公式的推导过程?

  师:下面就用你自己手中的'学具,试着把平行四边形转化成我们已经学过的图形。

  (小组合作,4人一组,然后在全班汇报)

  (二)交流汇报

  师:你转化后的图形是什么?你是怎么转化的呢?谁能大胆的上来说一说。

  生:是长方形,我是沿着高剪的。

  师:你为什么这样剪,不沿着高剪开行不行?

  生:长方形的四个角都是直角,所以只有沿着高剪开才能转化成长方形。

  师:这个长方形和原来的平形四边形个部分之间有什么关系呢?同学们仔细观察(媒体演示转化的过程:找出底,画高,剪开,平移,拼补,转化成了长方形)。

  师::长方形和原来的平行四边形有什么关系?

  生:转化后的图形是长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积是底乘高。

  师:谁再来完整的说一遍。

  师:我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。

  师:平行四边形的面积计算公式还可以用字母表示呢?你知道怎样表示吗?(学生说,教师板书)

  生:公式是s=ah

  师:通过刚才的学生,我们知道了平行四边形面积计算的公式,下面一起来解决一些具体的实际问题。

  (三)巩固发展

  1.口算下列各题。

  生:第一个平行四边形的面积是12平方厘米。

  生:第二个平行四边形的面积是20平方分米。

  生:第三个平行四边形的面积是8平方米。

  2.辨析性练习:

  师:你能根据图中给出的数据求平行四边形的面积吗?(课件出示下图,单位:厘米)

  生:是54平方厘米。

  生:我不同意,因为……

  师:为什么说面积不是54平方厘米?

  生:我也认为不是9×6=54(平方厘米),因为6厘米这条高不是9厘米这条底上。如果沿6厘米这条高剪开拼成长方形,长方形的长就是6厘米这条高,长方形的宽却不是9厘米这条底。所以不能用9×6=54。

  师:谁再来说说。

  师:让我们来看看。下面你能计算了吗?(课件出示)

  生:2×9=18;3×6=18

五年级数学教案11

  一、教学目标

  (一)知识与技能

  1、能根据统计表正确绘制单式折线统计图。

  2、能根据折线统计图对数据进行分析,对数据的变化做出合理的推测,并能提出和解决数学问题。

  (二)过程与方法

  1、通过已有的统计经验迁移学习单式折线统计图。

  2、通过条形统计图和折线统计图的比较,了解折线统计图的特点和优势。

  (三)情感态度价值观

  1、培养学生观察、分析数据和合理推测能力。

  2、体会统计在生活中的作用和意义。

  二、教学重难点

  教学重点:认识单式折现统计图,了解折线统计图的特点和优势。会看、会绘制折线统计图,并能够根据折线统计图提出和解决数学问题。

  教学难点:感悟折线统计图的特点,能对数据的变化做出合理的推测。

  三、教学准备

  多媒体课件。

  四、教学过程

  (一)新课导入

  谈话:同学们喜欢机器人吗?参加过机器人大赛吗?没有也没关系,以后会有机会的。

  在中国,自20xx年起,每年都会举办一次全国青少年机器人大赛。记得在第一届大赛时,全国的参赛人数仅为200。不过后来,随着科技的不断发展,青少年中敢于进行科技创新的人才越来越多,参加机器人大赛的人也越来越多。在xxxx年时,已有约1100名选手,参赛队伍是426支;到xxxx年,参赛队伍达到了499支。老师还查询了其他几个年份的参赛队伍数量,大家请看。(教师边说,边通过课件出示统计表)

  (二)复习旧知──条形统计图

  1、教师:请同学们思考,从统计表里你得到了什么信息?(学生回答)

  教师:刚才说的信息,大家能用我们学过的.统计图表示出来吗?

  教师引导学生思考:横轴表示什么,纵轴表示什么?根据数据的情况,第一个起始格应该表示多少?接下来一格代表多少合适呢?

  2、根据学生的回答出示条形统计图。(课件演示)

  3、教师:观察完成的条形统计图,哪一年参赛的队伍最多?哪一年参赛的队伍最少?这些问题都一目了然了。如此看来,条形统计图比统计表更加清楚、直观。

  【设计意图】通过复习条形统计图的知识,为学习折线统计图做好准备。

  (三)探索新知

  1、认识折线统计图

  (1)课件出示折线统计图。

  教师:有一种比条形统计图更加“强大”的统计图,同学们想不想认识一下?请看大屏幕。

  课件出示:中国青少年机器人大赛参赛队伍统计图(xxxx—xxxx年)。

  教师:统计图还可以这样画。这种统计图叫做折线统计图,今天我们就来学习有关折线统计图的知识。(教师板书课题:折线统计图)

  (2)初步体会折线统计图的绘制过程。

  教师:我们首先来观察一下折线统计图的横轴与纵轴,与条形统计图相比,它们相同吗?(学生回答相同)

  教师:想知道其中的折线是怎样画出来的吗?我们一起来看一下。

  教师边介绍边描点,最后把这些点用线段顺次连接起来。(课件演示)

  【设计意图】一方面使学生初步感知折线统计图的形成过程,满足学生的好奇心理。另一方面,学生通过观察、比较、交流,逐步得到绘制折线统计图的步骤和方法,为后面独立绘制折线统计图做好准备。

五年级数学教案12

  教学目标

  1.理解和掌握循环小数的概念.

  2.掌握循环小数的计算方法.

  教学重点

  理解和掌握循环小数等概念.

  教学难点

  理解和掌握循环小数等概念.

  教学过程

  一、铺垫孕伏

  (一)口算

  0.8times;0.5= 4times;0.25= 1.6+0.38=

  0.15divide;0.5= 1-0.75= 0.48+0.03=

  (二)计算

  21divide;3= 15divide;3= 12divide;3= 10divide;3=

  教师提问:通过计算,你发现了什么?

  二、探究新知

  (一)教学例7

  例7 10divide;3

  1.列竖式计算

  教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

  使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

  所以10divide;3=3.33……

  (二)教学例 8

  例8 计算58.6divide;11

  1.学生独立计算

  2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

  所以58.6divide;11=5.32727……

  3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……

  教师提问:你有什么发现?

  (小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

  4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

  教师板书:循环小数.像3.33……和5.32727……是循环小数.

  5.简便写法

  3.33……可以写作 ;

  5.32727……可以写作

  6.练习

  把下面各数中的循环小数用括起来

  1.5353…… 0.19292…… 8.4666……

  (三)教学例9

  例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

  1.学生独立列式计算

  130divide;6=21.666……

  asymp;21.67(十克)

  答:小汽车大约装21.67千克汽油.

  2.集体订正

  重点强调:保留两位小数,只要除到小数点后第三位即可.

  3.练习

  计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

  28divide;18 2.29divide;1.1 153divide;7.2

  (四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

  1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的`.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.

  2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.

  三、课堂练习

  (一)计算下面各题,哪些商是循环小数?

  5.7divide;9 14.2divide;11 5divide;8 10divide;7

  (二)下面的循环小数,各保留三位小数写出它们的近似值.

  1.29090…… 0.0183838……

  0.4444…… 7.275275……

  四、布置作业

  (一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

  9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3

  (二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

五年级数学教案13

  一、主要教学内容

  ㈠数与代数

  1、第一单元“小数除法”。本单元包括小数除法,积商近似值,循环小数、小数四则混合运算等内容。结合具体情景,经历探索小数除法计算方法的过程,初步体验转化的数学思想。了解在生活中有时只需要求积商的近似值,掌握求近似值的方法,培养估算意识。初步了解循环小数,运用小数四则运算解决日常生活中的简单问题。

  2、第三单元“倍数与因数”

  本单元是在学生学过整数的认识、整数的四则计算等知识的基础上学习的,学习的主要内容有:认识自然数,倍数与找倍数,2、5、3倍数的特征,因数与找因数;质数与合数,奇数与偶数等知识。这些知识的学习是以后学习公倍数与公因数、约分、通分、分数四则计算等知识的重要基础。本单元的具体学习内容安排了六个情境活动:在“数的世界”活动中,主要是认识倍数和因数;在“探索活动(一)——2、5的倍数的特征”中,学生将经历探索2、5倍数特征的过程,理解2、5倍数的特征,知道奇数、偶数的含义;在“探索活动(二)——3的倍数的特征”中,学生将经历探索3的倍数的特征的过程,理解3的倍数的特征;在“找因数”活动中,利用直观的拼图游戏,让学生体会、掌握找因数的直观方法;在“找质数”活动中,引导学生经历用“筛法”制作质数表的过程,理解质数和合数的意义,并在活动在过程中,让学生了解一些数学史,丰富对数学发展的认识,感受数学文化的魅力;在“数的奇偶性”活动中,尝试运用“列表”、“画示意图”等解法问题策略发现规律,运用数的奇偶性解决一些简单问题。通过本单元的学习,学生将经历探索数的有关特征的活动,认识自然数,认识倍数和因数,能在100以内的自然数中找出10以内某个自然数的所有倍数,能找出100以内某个自然数的所有因数以及知道质数、合数;将经历2、3、5的倍数特征的探索过程,知道2、3、5的倍数的特征,知道奇数和偶数;能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步合情推理的能力;在探索数的特征的过程中,体会观察、分析归纳或猜想验证等探索方法,在数学活动中体验数学问题的探索性和挑战性。

  3、第五单元“分数”

  在学习本单元内容前,学生已初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分数加减法,以及能初步运用分数表示一些事物、解决一些简单的实际问题。本单元在此基础上引导学生进一步理解分数的意义,学习分数的再认识、分数与除法的关系、真分数、假分数、分数大小变化规律、公约数、约分、公倍数、通分、分数的大小比较等知识。这些知识的`学习是进一步学习分数四则计算、运用分数知识解决实际问题的基础,是分数教学的重点。本单元的具体学习内容安排了九个活动情境:在“分数的再认识”活动中,通过具体的情境,进一步理解分数的意义,体会“整体”与“部分”的关系,了解一个分数对应的“整体”不同,则所表示的具体数量也不同;在“分饼”与“分数与除法”两个活动中,学生将知道分数的分类标准,并能掌握带分数与假分数的相互转化的方法;在“找规律”的活动中,经历探索分数大小不变规律的过程,理解分数的基本性质,并能根据分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数;在“找最大公因数”与“约分”两个活动中,学生将认识公因数与最大公因数、并能运用这些知识进行正确地约分,也为后续理解、掌握通分的方法打下了基础;在“去少年宫”与“分数的大小”两个活动中,学生将认识公倍数与最小公倍数,并能运用这一知识,会正确地通分与比较分数的大小。通过本单元的学习,学生将进一步理解分数的意义,能正确用分数描述图形或简单的生活现象;认识真分数、假分数与带分数,理解分数与除法的关系,会进行分数的大小比较;能找出10以内两个自然数的公倍数和最小公倍数,能找出两个自然数的公因数和最大公因数,会正确进行约分和通分;初步了解分数在实际生活中的应用,能运用分数知识解决一些简单的实际问题。

  ㈡空间与图形

  1、第二单元“轴对称和平移”

  结合实例,感知平移轴对称现象;能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;通过观察、操作,认识轴对称图形,并能在方格纸上画出简单图形的轴对称图形。

  2、第四单元“多边形的面积”

  本单元学习的内容主要有:平面图形面积大小的比较方法、平行四边形面积的计算方法、三角形面积计算的方法以及梯形面积计算的方法等。

  2、第六单元“组合图形的面积”

  本单元的主要内容有:组合图形面积的计算与生活中各种不规则图形面积的

  估计与计算。在第二单元中,学生已经学习了平行四边形、三角形与梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,这也是提高学生综合能力的重要平台。

  本单元的具体学习内容安排了两个情境活动:在“组合图形的面积”中,重点介绍组合图形的形成以及计算组合图形的分割方法;在“探索活动——成长的脚印”中,主要学习不规则图形面积的估计与计算。通过这些内容的安排,让学生形成解答组合图形的基本能力。

  ㈢统计与概率

  第六单元“可能性”

  本单元学习的主要内容有:用分数表示可能性的大小与运用分数表示可能性大小的知识设计日常生活中的方案。在二年级时,学生已经学习了客观事件出现的可能性的,在三年级时,他们学习了客观事件出现可能性的大小,认识到可能性大小的出现是与相关的条件有密切的关系,在四年级时,教材安排游戏公平的活动,让学生认识等可能性。

  本册教材安排的综合应用内容将进一步整合数与代数、空间与图形、统计三个领域的内容,并进一步加强课堂数学知识与现实生活中的实际问题的结合,以提高学生综合实践的能力。本册教材安排了三个集中性的专题综合应用内容:在“数学与交通”的专题综合应用活动中,安排了“相遇”、“旅游费用”以及“看图找关系”三个小专题的内容,通过这些活动,以提高学生解决问题的策略思想;在“尝试与猜测”的专题综合应用活动中,安排了“鸡兔同笼”与“点阵中的规律”的两个小专题,通过这两个活动,引导学生关注与思考一些日常生活中的现象,从中能发现一些特殊的规律。通过对生活中一些现象分析与解决,让学生进一步体会数学与日常生活的密切联系。二、课时安排:(见附表)

  第一单元:小数除法

  教学目的要求

  1.通过具体情境,进一步理解除法的意义,探索并掌握小数除以整数的计算方法。

  2.通过“打电话”的情境,利用已有知识,经历探索除数是小数的除法计算方法的过程,体会转化的数学思想。

  3.通过人民币和外币的兑换活动,掌握求积、商近似值的方法,能够按要求求出积、商的近似值。

  4.通过计算蜘蛛和蜗牛每分爬行多少米,发现余数和商的特点,知道什么是循环小数,并会用四舍五入法对循环小数取近似值。

  重点与难点说明

  小数的除法,分为三种情形分别进行探索:一是小数除以整数,二是整数除以整数;三是小数或整数除以小数。

  小数除以整数的情形,结合实例,探索并理解可以把被除数当成整数,变成整数的除法求得商后,只要商的小数点与被除数的小数点对齐就可以了。

  整数除以整数的情形,在以往学过的整数的除法中,只能求得整数的商及余数。但在小数的除法中,整数的余数可以化为更小的单位(小数单位),因此可以继续平均分(做除法),得到的商是小数。所以,今后遇到整数除以整数的情形,可以把被除数(整数)的末尾添上小数点,在这个小数点后面可以添上所需要的“0”。这样,整数除以整数的情形又转化为上述小数除以整数的情形了。

  除数是小数的情形,应用商不变规律,根据把除数变成整数的需要,把被除数和除数扩大相同的倍数,就把除数是小数的除法转化成上述除数是整数的除法了。

  在实际应用中,对于复杂的小数的乘法或除法运算,可以用计算器进行计算,并且会根据要求,取积或商的近似值。

  认识循环小数,结合竖式除法的过程,体会出现了什么情况,不用再除下去,就能知道商一定是循环小数。

  第三单元目标:

五年级数学教案14

  教学内容:分数与除法

  教学目标:

  1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。

  2、运用分数与除法的关系,探索假分数与带分数的互化方法。

  3、培养学生动手操作、观察、比较和归纳的能力。

  4、培养学生团结合作、关心他人、先人后己等优良品质。

  教学重点:理解、掌握分数与除法的关系。

  教学难点:理解分数商a/b(b≠0)的意义。

  教学具准备:教学课件及3张完全相同的圆和剪刀。

  教学过程:

  一、设置疑问,揭示课题

  1、请同学们计算下面各题,你能把商分为哪几类?

  36÷6 = 6 4÷5=0.8 80÷5=16

  3÷7= 5÷10=0.5 4÷9=

  然后引导学生归纳分类:

  36÷6 = 6和80÷5=16的商为整数;

  4÷5=0.8和5÷10=0.5的商为有限小数;

  3÷7=和4÷9=的商为循环小数。

  2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)

  二、创设情境,引导探索

  1、创设情境,引入关系

  师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?

  生:愿意!

  师:好!那我们大家就一起来吧!

  师:请看我们班级为这次活动准备的食品:

  食品名称食品数量班级人数平均每人分的数量

  苹果40个47 40÷47

  饮料39瓶47 39÷47

  花生8千克47 8÷47

  上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。

  2.层层深入,感知关系

  师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

  师:同学们愿意帮xxx同学分一分蛋糕吗?

  生:愿意!

  师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?

  要把蛋糕平均分成几份?

  怎样列式?(指名口述算式)

  1÷3=

  师:大家拿出练习本来计算这个商是多少?(用小数表示)

  生:0.333…或

  课件显示:1÷3=0.333…或

  师:这个商用小数表示太麻烦了,能不能用分数来表示呢?

  请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?

  生:

  师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)

  (2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?

  (3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:被除数÷除数=

  (4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?

  生:会!

  师出示:40÷47=?39÷47=?8÷47=?

  3.,巩固关系

  师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

  生:想!

  师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

  ①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)

  ②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。

  ③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?

  ④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?

  ⑤算一算:师指一名同学板演算式:3÷4=(张)

  答:每人分得张。

  请板演的同学说一说自己是根据什么这样写的?

  ⑥如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

  学生回答,师板书:a÷b= (b≠0)

  师:大家考虑:这里的a和b是否可以是任何自然数?为什么?

  生:不可以,因为这里的b≠0

  师:左侧b≠0,那么右侧的'b是否可以是0?为什么?

  师:讨论完后,教师用红色粉笔标上:b≠0

  (引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)

  三、总结提升,归纳关系(师生共同完成)

  1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。

  2、判断:“分数就是除法,除法就是分数”这句话对不对?

  (最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)

  四、拓展延伸,发展能力

  1、填空:7÷13= =()÷()

  ()÷9= ()÷26=

  2、用分数表示下面各式的商。

  3÷4= 7÷12= 16÷49= 25÷24= 12÷25= 36÷57= 30÷37= 33÷78=

  7÷13= 74÷14= 77÷13= 78÷97

  3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)

  4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?

  五、情感教育,教书育人

  同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!

  板书设计:

  分数与除法

  a÷b= (b≠0)

  3÷4=(张)

  答:每人分得张饼。

五年级数学教案15

  课题一:两个数的

  教学要求 ①使学生理解公倍数、的概念。②使学生初步掌握求两个数的的方法。③培养学生抽象概括的能力和实际操作的能力。

  教学重点 理解公倍数、的概念。

  教学难点 求两个数的的方法。

  教学用具 投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和8 6和11 13和26 17和51

  2、求30和42的最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1 及画好的数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的倍数是哪几个?

  ②其中最小的一个是多少?有无最大的?为什么?

  (3)归纳并板书。

  ①4 和6公有的倍数有:12、24、36

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数 6的倍数

  4 8 16 20 12 24 6 8 30

  4 和6 的公倍数

  (4)抽象、概括。

  ①什么是公倍数、?(让学生说)

  ②指导学生看教材第71页有关公倍数、的概念。

  (5)尝试练习。

  做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的`方法来求几个数的。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  2 18 2 30

  3 9 3 15

  3 5

  18=233

  30=235

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的公倍数必须包含哪些质因数?(2335)

  (4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:

  2335=90

  (5)教学求的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出了?

  (6)尝试练习。

  做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求的方法。

  ①谁能说说求的方法。

  ②指导学生看第74页求两个数的的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

【五年级数学教案】相关文章:

五年级苏教版数学教案07-13

五年级数学教案11-07

五年级《梯形》数学教案11-20

五年级数学教案【荐】03-29

五年级数学教案约分04-04

五年级数学教案相遇04-08

五年级数学教案:《约分》04-11

五年级数学教案:统计04-10

五年级下册数学教案02-08