有关可能性教案汇总10篇
在教学工作者开展教学活动前,可能需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。我们应该怎么写教案呢?以下是小编精心整理的可能性教案10篇,欢迎阅读,希望大家能够喜欢。

可能性教案 篇1
教学内容:
义务教育课程标准小学数学第三册青岛版第93—95页,分类统计。
教学目标:
1.会用不同的方法进行分类统计,完成相应的统计表。
2.感受分类的多样性,体会分类统计的统计的意义,进一步提升初步的统计观念。
3.经历分类统计的过程,发展运用数学知识解决问题的意识,培养热爱大海热爱大自然的情感。
重点难点:
1、会用不同的方法进行分类,完成相应的统计表。
2、能用分类统计的方法来解决相应的数学问题。
教学过程:
一、创设情境
师:同学们喜欢大海吗?(喜欢)你们去过大海吗?(去过,没去过)。说说你们在大海上都看到了什么?(蓝色的大海,海鸥,等等)老师知道有一群小朋友和他们的爸爸妈妈到海里去游泳了,咱们一起去看看,好吗?闭上眼睛,现在我们已经坐上火车了,嘟嘟,睁开眼睛吧,我们到了,(出示图片)说说你们都看到了什么?
(设计意图:谈话导入使学生很自然的引入课题,“闭上眼睛”使学生有一种神秘感,这样更能提高学生学习的兴趣,激发他们求知的欲望。此环节学生们畅所欲言的谈自己在大海上看到的情景,满怀激情的去求知)
评析:从学生感兴趣的大海入手,通过轻松愉快的谈话,一下子拉进了师生的距离。
小学低年级的学生往往是活泼好动,想象力是丰富的,教师创设:闭上眼睛,坐上火车,同时加上教师模仿“嘟嘟”的火车声,使学生仿佛身临其境。正因为教师创设的情景是符合学生年龄特点的,学生睁开眼睛看到大海图片时,才会表现出惊讶、激动的样子,使学生很快地全身心地投入到了新课中。
二、自主探究
1、引导看图提问题;师:你都看到了些什么?
生:一群人在海里游泳,海;师:那你们能根据刚才观察到的信息提出问题吗?;
生1:游泳的一共有多少人?;
生2:一共有多少只船?;
生3:沙滩上有多少人?;
生4:有多少个女孩在游泳?等等,;
师:大家是不是还有好多问题要问啊,那你们知道观海;
1、引导看图提问题。
师:你都看到了些什么?
生:一群人在海里游泳,海面上有一些船,还有一把伞,还有坐在沙滩上观海的人,远处有小岛,岛上还有宝塔,等等。
同学们观察得真仔细!
师:那你们能根据刚才观察到的信息提出问题吗?
生1:游泳的一共有多少人?
生2:一共有多少只船?
生3:沙滩上有多少人?
生4:有多少个女孩在游泳?等等,
师:大家是不是还有好多问题要问啊,那你们知道观海的人提出了什么样得问题吗?
(出示课件;正在游泳的有多少人?海面上一共有多少只船?)
刚才有的'同学提出的问题和观海人体的一样,有的包含在这两个问题里,这节课我们先来帮这位观海人来解决这两个问题,好吗?
(师板书问题:正在游泳的有多少人?海面上一共有多少只船?)
(设计意图:在观察中激发学生的学习兴趣和热情,培养问题意识。此环节学生几乎都想把观察到的说出来,并且提出了好多有价值的问题,从而看的出学生们思维是十分活跃的,有很强的问题意识)
评析:“同学们观察得真仔细!”教师恰当地对学生进行了表扬评价,鼓励了学生,同时为下面学生继续观察画面提供了努力方向,只有仔细观察画面才能发现问题、解决问题,同时注意了学生学习习惯的培养。
提出一个问题往往要比解决一个问题重要的多。此环节激发了学生的学习兴趣和热情,培养了问题意识。同时此环节的设计有的放矢、收放自如,既避免了学生不提问题、直接进行新课的死板,又避免了学生提出很多问题,不知从何入手。
2、解决问题,对分类统计的研究。
片段一:师:看第一个问题,老师读题,咱们先来看看正在游泳的都是些什么样的人啊?
学生1:有男的,女的。
师:哦,你这是按性别来分类的,是吗?
学生2:有大人小孩;师:哦,你是按年龄来分类的,是吗?
学生3:有戴游泳圈的,又不戴游泳圈的
师:哦,你是按有没有游泳圈来分类的。
学生4:有戴游泳帽的,不戴游泳帽的
师:哦,他是按什么分类的?学生齐答是按有没有游泳帽来分类的。
学生5:还有穿衣服的和不穿衣服的。
师:噢,你们同意吗?(学生的意见不一致)
师:这位同学观察得很细致,其实他们都穿这衣服了,只不过他们穿的衣服有的潜在水里我们看不到。
老师:大家观察得很仔细,分得也很仔细。
片段二:师:那大家想想咱们把这些游泳的人分类,对解决这个问题有没有用啊?有。好,咱们就试一试!(出示统计表)知道这表的名称吗?(生答:统计表)恩,对,咱们来一起看一看:类别谁知道是什么意思?(是分类情况)大家同意吗?那类别这一栏填什么呀?谁知道?(填分得什么)
师:比如说填什么?(生答男女)。如果是按大人小孩呢?(分别填大人,小孩)同意吗?同意。那人数是指什么?(就是各类的人数),合计是什么意思啊?(把它们加起来的数)同意吗?同意。
师:大家能根据刚才你们的分类填好这张统计表吗?好,请你们的组长把表一表二拿出来两个人共选一张来填,如果你们两个都不想用这两种分类方法,你们就选表三,用你们的分类方法来统计。两个人一个数的一个填得,看看哪组填的又快又好,老师就把他们的统计表展示出来。如果看不清屏幕上的图的话,可以借助老师为大家准备的照片,也在你们的桌子上,如果你有困难请举手,老师随时帮助你。好,开始填吧!(老师巡视指导,学生合作填统计表)
评析:通过观察统计表激起学生们以往学过的知识,感受知识的系统性。此环节能看的出部分学生对以前的知识掌握良好,部分同学借助集体的力量对知识进行了复习,学生感受到了分类统计的多样性,又通过两人合作填统计表无形当中培养了他们的合作意识,还给学生创造了自主创新的机会。
3、反馈展示。
师:我发现有的同学已经填完了,填完的请用眼睛告诉我,好,谁来展示一下你填的统计表?讲一讲你是怎么填的?师:其他的同学是不是也想展示你们的统计表啊?(是!)那好,看准了,和他的不一样的请拿过来,不过要有秩序噢!(学生纷纷展示,对于填得很好的奖励小粘贴)
观察这些统计表,从每种统计表中可以读到什么信息?
生1:男生10人,女生11人,合计21人,
生2:我在表二中能知道大人多少人,小孩多少人,等等
师:是不是通过这统计表咱们就很容易掌握游泳人的情况啊?(是)老师把不同分类的统计表放在一起请同学们来观察一下它们有什么不同和相同的地方。
生:相同的是合计一样,不同的是分类不一样。
师:你这是个重大的发现,老师要把它记下来。板书其中的发现:分类不一样,合计相同。
评析:此环节通过引导学生观察统计表说出所读到的信息,有利于学生理解分类统计的必要性,从而体会了分类统计的意义」
4、总结分类统计的方法。
师:这种统计的方法就叫分类统计。(板书:分类统计)师说:刚才咱们是根据什么填的这表啊?根据分类啊,那我们叫它分类统计好不好?那我们在分类统计时应该注意些什么呢?要数仔细,合计要算对。
5、解决第二个问题。
师:解决第二个问题可不可以用你们刚才的分类统计法来解决呢?(可以)那好,来,我们一起看一看。这些漂亮的船只可以怎样分类呢?你们可以两人一组或四人一组来一起份一份。待会看那组分的种类多。
6、反馈展示。
(1)看哪组坐的好就先让那组来说一说!
生1:分为大船,中船,小船;
生2:分为粉色的,红色的,还有蓝色的;
生3:分为汽艇,客船,油轮
师:大家观察得非常细。有关解决第二个问题的统计表也躺在信封里,还是请组长安静又快速的拿出表二来,两个人填一张表,和刚才一样一个数,一个填;
(2)谁想来展示一下你的统计表?先说一说你是安什;
生1:我是按颜色分类的,黄色的有五只,蓝颜色的有;
师:大家同意吗?有和她不一样的分类统计的吗?
评析:此环节学生在有分类统计的基础上让学生自主来;
三、应用拓展
1、师:今天咱们帮观海人用分类统计的方法解决了,;
2、师:今天是老师第一次和大家上课,我想了解一下;等,然后再算出合计来,
只要有一个数,一个填。看谁填得又快又对。(学生自主填统计表)
(2)谁想来展示一下你的统计表?先说一说你是安什么分类的,然后再说说你是怎样填的?
生1:我是按颜色分类的,黄色的有五只,蓝颜色的有三只,粉红色的有两只,合计是十只。
师:大家同意吗?有和她不一样的分类统计的吗?(学生纷纷展示)
评析:此环节学生在有分类统计的基础上让学生自主来填统计表,再次经历了统计的过程,感受了分类统计的多样性。学生们能够积极自主的填统计表,合作意识也有所提高。
1、师:今天咱们帮观海人用分类统计的方法解决了,我想他肯定会很高兴,你们呢?(高兴)出示课件练习1,看这些花漂亮吧,就像你们高兴的脸蛋一样。你们认识这些花吗?(月季,太阳菊,)都是什么颜色的?(红的,黄的)你们能用今天学过的分类统计的方法来统计统计吗?(想)好,请大家打开课本第94页,看到了吗?开始填吧!我要把最大的贴粘画奖给田的又对又快地同学!(展示,评价)
2、师:今天是老师第一次和大家上课,我想了解一下咱们班的人数情况,你们可不可以用今天学过的分类统计的方法让我了解一下啊?分男女,分扎辫子的不扎辫子的,分年龄,分高矮,分胖瘦,等等,然后再算出合计来,(只要有理就给与肯定。实际验证一下,采用比较明显的。)
评析:在学生掌握了分类统计方法的基础上,充分让学生来运用知识进行实践,进一步体会分类统计的意义,感受数学知识的应用性」
四、课堂总结
同学们说说这节课你有什么收获啊?(学到了分类统计的方法)那是不是这种方法只用在咱们校园里呢?(不是)那老师给大家布置一小任务,放学回家把今天学到统计方法教给你的家长,并且讨论一下在什么地方还可以用到分类统计的方法,回来了告诉大家,好吗?
可能性教案 篇2
教学目标
1、使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。
2、进一步体会游戏规则的公平性,能判断简单游戏规则是否公平,能设计简单的公平游戏规则。
3、使学生通过复习,进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性,培养简单的推理能力,增强学习数学的兴趣。
教学过程
一、复习可能性的含义以及可能性的大小
1、出示下列四个图形
四个袋子里分别装有4个球:1号袋有4个黑球;2号袋有4个白球;3号袋有3个黑球和1个白球;4号袋有1个1个黑球和3个白球
2.提问:从上面的某个口袋中任意摸一个球,从哪个口袋中摸出的一定是黑球?从哪个口袋中摸出的一定是白球?从哪个口袋中摸出的一有可能是黑球,也有可能是白球?
3.师小结:有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。
4. 用分数来表示图3、4的口袋中摸到黑球和白球的可能性大小.
5.完成后进行交流。
二、完成练习与实践的1-3题。
1、完成第1题,要让学生连线后,说说连线时的思考过程。
2、第2题在学生独立判断的基础上,再说说思考的方法。
3、第3题,要抓住怎样理解明天的降水概率是80%这句话的?再让学生按要求进行判断。
三、复习游戏规则的公平性
1、创设游戏情境,让学生判断游戏是否公平,为什么?
2、启发学生思考,要使游戏规则公平,你认为口袋里可以怎样放球,为什么?
3、小结:不管怎样放球,只要使参加游戏的小朋友摸到指定的球的可能性大小相等,这样的游戏规则就是公平的。
四、指导完成练习与实践的4-5题。
1、让学生交流对题目的理解。
2、让学生各自判断第(1)题中的三种方法是否公平,再交流思考的过程。
3、交流时可让学生排一排石头、剪刀、布的游戏,可能有几种不同的结果。
4、完成第5题。着重要让学生说说每个分数的思考过程,注意让学生从不同的`角度进行思考。
五、全课小结
通过这节课的复习,你对可能性又有了哪些新的认识?课后再收集一些有关可能性的例子,从中提出一些问题进行解答。
六、补充练习
前思考:
考虑到《统计与可能性》这部分知识难度不大,所以将潘老师设计的两课时合并成一课时上。
通过本课时的复习,帮助学生弄清有些事件的发生是确定的,有些事件的发生是不确定的(即有可能发生);再进一步认识到:在不确定的事件中,有些结果出现的可能性大一些,有些结果出现的可能性小一些,然后复习用分数来表示可能性的大小。判断一个游戏规则是否公平,应该看可能出现的游戏结果中,每种结果出现的可能性大小是否相等。
课前思考:
练习与实践的第1题要让学生说说连线的思考过程,突出有些事件的发生是确定的,有些事件的发生是不确定的,而不确定中,有些结果出现的可能性会大一些,而有些结果出现的可能性会小一些。第2题(2)要突出判断的理由。交流后教师可再引导学生思考,任意摸1个球,球上的数是素数的可能性大,还是合数的可能性大?还可以让学生说说球上的数是大于3的可能性大,还是小于3的可能性大?充分利用教材中的素材,加深对可能性含义的认识。
课后反思:
通过复习,我发现对于选择哪种统计量来表示一组数据的一般情况和分析游戏规则是否公平时,学生们会感到有困难。
如出示一组学生跳绳情况的统计数据,在求出这组数据的众数、中位数和平均数后让学生选择用哪个统计量表示这些同学的跳绳情况比较合适。这里需要学生分析这组数据中有没有极端数据以及平均数的位置是否偏离这组数据的中心。对于少数学生来讲,要做这样的数据分析的确困难不少。针对学生学习中出现的这些情况,还需要补充类似的练习,帮助学生进一步掌握这些知识。
课后反思:
练习与实践的第4题学生对做石头、剪刀、布游戏,来判断谁先套圈的方法,理解上会有一定的困难。关于第(3)题设计游戏规则,提醒学生,设计的方法应该有可能出现三种结果,而且每种结果出现的可能性要相等。第5题(2)鼓励学生根据指定的可能性设计不同的选法,提醒学生在每次选择后及时进行验算,以确认选择的方法是否符合指定的要求。
可能性教案 篇3
一、教学目标
(一)知识与技能
进一步体会不确定现象的特点及事件发生的可能性的大小。
(二)过程与方法
经历事件发生的可能性大小的探索过程,能根据试验的统计结果进行判断和推测,知道事件发生的可能性的大小与物体的数量有关,进一步体会随机现象的统计规律性。能根据数据推测事件发生的可能性的大小,并初步感受事件发生的等可能性。
(三)情感态度和价值观
感受数学与生活的密切联系。进一步培养学生的求实态度和科学精神。
二、教学重难点
教学重点:通过试验和推测,知道事件发生的可能性的大小与物体的数量有关。
教学难点:根据试验的结果,确定试验中相关物体的数量的多少。
三、教学准备
每组一个盒子(里面装有17个红色乒乓球和3个黄色乒乓球),多媒体课件。
四、教学过程
(一)复习旧知,激励导入
1.导入谈话。
同学们,通过前面的学习我们知道了,生活中有的事情可能发生,有的事情不可能发生,事情发生的.可能性也有大有小。今天这节课我们将进一步研究可能性的有关问题。
2.复习旧知。
(1)出示问题。(教师实物演示或PPT课件演示。)
(2)学生讨论回答问题。
3.揭示课题。
(1)教师揭示课题:看来啊,同学们认为可能性有大有小,而且这个大小和物体的数量有关。到底是不是这样的呢?今天我们将继续研究这个问题。
(2)板书课题:可能性。
【设计意图】在新课开始前设计小明摸球的问题情境,通过对这个问题的思考和讨论,既引导学生复习了前面学习的事件的确定性与不确定性事件发生的可能性的大小的知识,又顺势导入了对事件发生可能性的大小和物体的数量有关这一新问题的研究。
(二)试验猜想,探究新知
1.初步猜想。
(1)老师这里有一个盒子,里面有红色、黄色两种颜色的小球。如果从里面摸球的话,猜一猜,摸到哪种颜色的球的可能性大呢?(教师实物演示或PPT课件演示。)
(2)教师提问:说一说,你为什么这样猜呢?
(3)教师:我们的猜测准确吗?怎样验证呢?(教师组织学生集体讨论。)
2.试验验证。
(1)通过之前的学习我们知道,仅凭猜测得到的结果不一定是准确的,要通过实际操作、摸一摸才能验证。那么,在摸一摸的过程中,我们要注意什么呢?(PPT课件演示。)
注意事项:摸球的次数要足够多;每次摸球前要将盒子里的球摇匀;确定试验记录的方法;做好小组合作分工,有人负责摸球,有人负责记录球的颜色
(2)学生分小组开始摸球试验,试验前请仔细阅读试验要求。(PPT课件演示。)
(3)请各个小组展示、交流试验结果。
(4)统计各个小组的试验结果。(PPT课件演示,现场收集数据,填写统计表。)
3.总结提炼。
(1)总结。(PPT课件演示。)
①说说你们每次摸球,都摸出了哪些颜色的球?
②观察这几个组的统计数据,你发现各个小组的试验结果都一样吗?有什么共同点呢?
③想一想,为什么每个小组都是摸出红球的次数多,摸出黄球的次数少?盒子里的红球和黄球数量相等吗?
④同学们都认为之所以摸出红球的次数多,是因为盒子里的红球数量多而黄球数量少,是不是这样呢?让我们打开盒子来验证一下!
(2)提炼。(PPT课件演示。)
①引导提问:通过刚才的摸球游戏,你能得到什么结论?(PPT课件演示。)
②归纳概括:看来,在每次摸球的时候,每个球都有被摸出的可能,每次摸出的球的颜色是不确定的,可能摸出红球,也可能摸出黄球。红球的数量多,摸出红球的可能性大;黄球的数量少,摸出黄球的可能性就小。
4.深化小结。
(1)引发思考。(PPT课件演示。)
(2)教师小结:看来,可能性的大小和物体的数量有关。物体的数量越多,可能性越大;物体的数量越少,可能性越小。(PPT课件演示。)
【设计意图】让学生通过已有的知识经验自行进行试验,并通过对试验数据的总结与对比,初步体验和发现可能性的大小的规律。同时进一步认识到,只有根据试验中获得的数据去进行判断才是有科学依据的,培养学生的求实态度和科学精神。
(三)实践应用,反馈提升
1.基本练习。
(1)完成教材第46页做一做第1题。
①教师谈话:刚才通过试验我们知道了,摸出两种物体的可能性的大小与物体的数量有关,那三种物体的情况呢?可能性的大小是否也和物体的数量有关呢?
②出示问题。(PPT课件演示。)
③引导思考。(PPT课件演示。)
a. 想一想,可能会摸出什么颜色的棋子?
b. 摸出哪种颜色棋子的可能性最大?
c. 你能设计一个试验验证你的猜想吗?想一想,设计这个试验时需要注意什么?
d. 小组自主验证。(摸一摸,验证一下,做好记录。)
e. 你的猜想对吗?为什么猜得这么准确? 根据试验,你得出了什么结论?
(2)完成教材第46页做一做第2题。
①教师谈话:生活中应用可能性的地方是很多的,比如在抛硬币的游戏中就存在可能性的问题。
②出示问题。(PPT课件演示。)
③引导思考。(PPT课件演示。)
④拓展介绍。(PPT课件演示。)
2.变式、开放练习。
(1)完成教材第48页练习十一第9题。
①出示问题。(PPT课件演示。)
②猜一猜硬币可能在哪个盒子里?
③统计猜的结果。(PPT课件演示。)
④观察统计结果,你发现了什么?为什么?
(2)完成教材第49页练习十一第10题。
①出示问题。(PPT课件演示。)
②交流涂色的结果。
③小结:这些涂色方法各不相同,但是它们的共同点是什么?
【设计意图】本环节让学生应用可能性的大小与物体的数量有关这一数学知识去解决生活中的实际问题,在实践运用中强化对随机现象的统计规律的认识,提升学生的实践操作、总结归纳以及运用数学知识解决实际生活问题的能力。
(四)全课总结,提升认识
通过这节课的学习,你有什么收获?
(五)作业练习
完成教材第49页练习十一第11题。
可能性教案 篇4
教学目标:
1、通过“猜测—实践—验证”,让学生经历事件发生的可能性大、小的探索过程,感受某些事件发生的可能性是不确定的,理解并掌握事件发生的可能性的大小规律。
2、能对一些事件发生的可能性大小进行描述,结合具体情境,能对某些事件进行推理,知道其结果可能性的大小。
3、获得一些初步为数学实践活动经验,并在和同伴的合作与交流的过程中培养学生的合作学习的意识和能力。
教学重点:
感受某些事件发生的可能性大、小,理解并掌握事件发生的可能性的大小规律。
教学难点:
通过动手操作,分析推理,得出事件发生的可能性的大小规律。
教学过程:
一、游戏激趣,谈话引入(飞镖)
1、引出“可能”
今天老师要请大家一起玩个游戏,你们喜欢吗?(出示转盘)
请两个学生上来比赛,猜猜谁会赢?
教师小结:刚才这两位同学在没有比赛之前,我们是不能确定他们的输赢情况,在这种不确定的情况下,可以用“可能”来描述。(板书:可能—不确定)
现在谁能用可能一次来说说他们两个的输赢情况。(XX可能会赢,XX可能会输,从不同角度说说)
2、引出“不可能”、一定
比赛开始,规则每人投5次,等到第一位同学投完第5次,随机再让学生猜猜他们的输赢情况,并说说理由。从而引出“一定”、“不可能”
(板书:(一定--确定)
(不可能--确定)
3、小结:刚才我们所讲到的`“可能、不可能、一定”它是判断一件事情会不会发生的三种情况。其实像这样的例子在我们生活中还有许多,有些事情它可能发生,有些事情它不可能发生,而有些事情则一定发生,下面的事情请你用“可能、不可能、一定”来说一说。
4、练习(课件出示)
(1)小红说:“出生到现在我没有吃过一点东西。”
(2)太阳从西边出来。
(3)吃饭时,有人用左手拿筷子。
(4)世界上每天都有人出生。
5、教师说学生用手势进行判断。
(1)两个因数相乘,积是两位数。
(2)三位数除以两位数的商是两位数。
(3)一个人身高10米。
(4)角有一个顶点两条边。
二、操作活动探索规律
1、出示活动要求
(1)每人摸3次,摸的时候要按顺序,不能抢。
(2)摸之前将棋子摇一摇,任意摸出一个,小组长记录是什么颜色,然后把棋放回袋子再摸。
(3)小组长统计一共摸了几次,白棋几次,黑棋几次。
2、小组活动,教师巡视指导
2、汇报摸球情况
请各组的组长汇报你们组的摸球情况。(师将学生的摸球的情况统计在记录表中)仔细地观察这个表格,你发现了什么?
3、猜猜袋子里装有什么颜色的棋子,以及两种棋子数量的多少。
4、验证猜测结果
5、师小结:通过再一次的实验证明,可能性的大小与什么有关?(数量)数量
多的可能性就大,数量少可能性就少。那么两者的数量相等或差不多时,它们的
可能性就差不多了。
三、生活应用
我们掌握了可能性大小的规律,利用它可以解决生活中的很多问题。
1、现在我们再来玩玩这个飞镖游戏吧(请两位学生上来)
(1)猜猜他们两个投在那个地方的可能性大一些
(2)学生投了几次之后,猜猜谁赢的可能性大一些(随机察看情况)
2、定分
老师这儿有一个没有定分的飞镖,请你运用今天所学的知识,你觉得如何定分最合理?
3、摸奖
瞧,元旦马上到了,一百商店举行摸奖活动,规定凡是摸到白球均可获得价值100元的精美礼品。你会选择那一只摸奖工具箱。(说说你的理由)
可能性教案 篇5
教学内容:
教材P107—109
教学目标:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
3、 通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球, 他 摸到什么颜色的球的可能性最大
二、探究新知
1、教学例5
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数
黄
红
活动汇报、小结
(2)袋子里的红球多还是黄球多?为什么这样猜?
小组内说一说
总数量有10个球,你估计有几个红,几个黄?
(3)开袋子验证
让学生初步感受到实验结果与理论概率之间的关系。
2、练习
P107“做一做”
3、小结
三、巩固练习
P109 6
[1]学生说说掷出后可能出现的结果有哪些
[2]猜测实验后结果会有什么特点
[3]实践、记录、统计
[4]说说从统计数据中发现什么?
[5]由于实验结果与理论概率存在的`差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。
P110 7
可能性教案 篇6
教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。
教学目标:
1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。
2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。
3、情感目标:在活动交流中培养合作学习的意识和能力。
教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。
教学难点:利用可能性的知识解决实际问题。
教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。
教学过程:
一、创设情境,激趣猜测
1、听故事,激发学习兴趣
(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?
(动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)
2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?
学生猜测:它有可能追到小兔,也有可能追不到小兔。
师:那追到的可能性会......很小。
3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。
(板书课题:可能性的大小)
实践是最好的老师,下面我们就通过摸球试验来研究,好吗?
二、探究、验证
1、试验准备。
(1)介绍试验材料。
师:每个小组准备了一个盒子,盒子里都有红球和蓝球。
(2)说明试验要求。
(多媒体出示小组合作要求。)
师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题:(一)摸到哪种颜色球的可能性大?
(二)摸到哪种颜色球的可能性小?
(3)提出注意事项。
师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。
2、合作试验、初步推测。
(1)各小组试验,教师巡视。
(2)观察、汇报。
师:谁把你们组的试验结果汇报一下?
生汇报。
3、推理、验证、归纳。
(1)观察。
(集中展示各小组的摸球情况统计图。)
师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?
生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。
师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的可能性小呢?
(2)思考。
师:这都是你们的推测,到底对不对呢?有什么方法可以知道?
师:好!莫老师数三声,我们就一起把盒子打开。
师:请同学们数一数,红球有几个?蓝球有几个?看了这些颜色球的数量,再联系刚才的试验结果,你知道了什么?
(红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)
师:也就说,在摸球试验中,可能性的大小和什么有关系呢?
(与球的数量有关。)
师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。
(3)归纳。
师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色球的数量有关。哪种颜色球数量多,它的可能性就......(大);哪种颜色球数量少,它的可能性就......(小)。那可能性小是不是就代表没有可能摸到呢?
三、应用、拓展
师:其实生活中还有不少事情的出现与可能性的大少有关,你们能运用可能性知识来解决一些生活中的实际问题吗?
1、转转盘。(课本106页的“做一做”。)
师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?
(生可能会选黄色)你为什么会选黄色格呢?
(因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)
转转试试看?
不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)
师:为什么只有()个同学拿到图案?
(因为黄色格的数量少,蓝色的数量多,转到黄色的可能性小。)真聪明!那就把这张图案送给你吧?
3、拓展。
师:老师这里还有一个有趣的转盘(出示幸运转盘)。
商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?
(因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)
师:你们能用学到的数学知识解释生活中的问题,真是棒极了!
2、设计转盘。(练习二十第4题。)
师:看了这个转盘,你们想不想也来设计这样有趣的转盘?
(1)课件出示设计要求。
请同学们在书本109页上涂一涂。
(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)
问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?
(3)。
师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?
4、解决问题。
师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)
师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)
师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?
(小猫扑到黄色蝴蝶的可能性大。)
师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)
师:看来确实是扑到黄蝴蝶的可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?
(天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)
师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)
师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?
(因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的.可能性小一点。)
师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。
听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)
(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)
5、猜一猜。(练习二十第10题。)
师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。
师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有X个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?
汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。
师补充:虽然猜对的可能性小,但我们也是有可能猜对的。
四、、延伸
1、延伸。
师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流好吗?
2、。
(1)今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?
(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?
出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。
师:看了这个故事结果后,你们有话要跟小猴子说吗?
小朋友们,我们可不要像小猴那样三心两意哦!
五、板书设计
可能性大小
数量多可能性大
数量少可能性小
可能性教案 篇7
教材分析
从选择的素材看,准备部分是十分简单的随机事件,事件的可能性是1/2;例2的情境复杂一些,要用其他分数表示可能性的大小。从研究的可能性看,两道例题都是等可能性,可以用相同的分数表示;“试一试”和练习出现可能性不相等的现象,要用不同的分数分别表示。从问题的难度看,先是摸到某只球、某张牌的可能性,然后是摸到某种花色的牌、某种颜色的.球的可能性。
学情分析
是让学生初步认识确定性事件和不确定现象。在此基础上,继续教学可能性,用分数表示事件发生的可能性有多大。从感性描述可能性到定量刻画可能性,对可能性的体验深入了一步。
教学目标
1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。
2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
教学重点和难点
重点:理解并掌握用分数表示可能性的大小的基本思考方法。
难点:是在认识事件发生的不确定现象中感受统计概率的数学思想。
教学过程
一、复习旧知,唤起经验。
同学们一定玩过抛硬币游戏,其实抛硬币在生活中有很多的应用(足球、排球),我们一起来看看它在足球比赛中的运用吧。
板书:可能性
这一环节的设计是从学生感兴趣的事出发,带领学生用数学的眼光来研究生活现象,增强学生学习的欲望,提高学生学习兴趣。
二、创设情境、引导发现
1、教学例1
(1)课件出示例1场景图 ,提出问题。
足球比赛中是用抛硬币决定谁先发球的,乒乓球比赛中时是怎么决定谁先发球的?
提问:用猜左右的方法决定由谁先发球公平吗?为什么?
2、同步体验:试一试
这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。
三、迁移和提升。
教学例2
1、 课件出示例2中的实物图(逐一出示,学生说出各是什么牌)
2、提问迁移。
3、对比提升。
这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。
四、实践与应用。
1、生活中的数学问题。(一边说一边出示“转一转”课件)
2、出示练一练
这一环节的设计是借助转盘创设了转盘的游戏情境,让学生自主探索事件发生的可能性是几分之几,帮助学生进一步巩固用几分之几表示可能性大小的方法。
五、巩固练习
六、课堂小结
这两个环节的设计是通过总结、游戏和释疑,既呼应了开头,解开了学生心中的疑团,培养了学生小组合作的精神和动手操作的能力,也使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。进一步感受数学思考的严谨性。
可能性教案 篇8
在听完“可能性”、“认识更大的数”、“观察物体”这三节课,特别是最后这节“观察物体”之后,我有些话想跟大家说一说。刚才的这节课引发了我的回忆,因为两年前,我也上过这样一节课:观察物体。我的那节课设计得没有刚才这节课这么饱满,这么丰富。当时,学生也是分成四人小组坐在桌子周围,中间放着一些物体让学生画,听课的人也很多。下了课以后,听课的老师对这一节课产生了较大的反响或者说是冲突,有一位说了这样两句话:你这节课是数学课还是美术课?你的课乱糟糟的,像什么?
把当时的情形与今天的课作一个比较,我的感触很深。我们应该给学生一个什么样的数学?过去,我们常常把数学描述成为计算加证明,好像公式、计算、法则就是数学。其实,数学是非常饱满丰富的,像“观察物体”就是很好地培养学生空间观念的课例,但是,有人认为它不是数学。我们这套新教材有很多课,像观察物体、设计图形等,与美术有很密切的联系,但这些课是教学生们用数学的眼光重新去看待世界,与纯粹的美术要求,运用一定的艺术手法表现世界是不一样的。我们的数学就是要让学生有这样一个丰富的数学学习经历,使他们对世界的认识更加全面、更加完整。数学可以给学生丰富多彩的知识,不像过去,只是单一的计算加证明。《标准》对原来的数学知识删减了很多,也增加了很多内容来扩大学生的视野,给他们更多接受数学,尤其是现代数学的机会。我欣喜地看到,今天的这节“观察物体”课,学生离开了座位,在课堂上有了更大的活动空间。而传统的课堂上,学生是规规矩矩坐在座位上的,老师是绝对的权威,老师可以背着手到处巡视,但是学生是不可以动的,甚至有的学校还要求学生上课时小手背在后面。这应该引发我们的思考,在课堂中,我们究竟应该关注学生什么?哪些是非本质的东西,我们应当把它淡化?《标准》颁布之后,随着大家的讨论、交流,给我们带来了许多观念上的变革,尤其体现在教学方式、教学方法上。我们在座的每一位老师,都有一个共同的心愿:通过我们的努力,为学生一个幸福的学习数学的环境。这也是每一位数学教育工作者共同追求的目标。
今天这三节课,由于三位老师的辛勤劳动,使我们觉得有所感悟。这些课都是研究课,不是评优课。既然是研究课,有一个片断也好,有一个话题也好,或者积极的地方也好,不足的地方也好,只要我们因此有所感悟,就说明我们老师的劳动是非常有价值的,非常有创造性的.。应该看到,现在学生的发展不应该再沿用我们那时的模式了。老师讲,学生听;老师讲例题,学生模仿、练习,这是过去的一个最基本的学习方式。但是在信息时代,再沿用这样的学习方式已经不能适应社会的发展了。所以,《标准》中非常强调通过变革教师的教学方式来改变学生的学习方式和观念。也就是说,让学生在学习的过程当中,更加具有主动性、创造性、探索性,更加具有合作与交流的意识。过去我们将学生获得知识的多少作为教学质量的一个重要标准,而今天我们更强调学生在课堂中的一种社会化的发展,这也是当今社会更加关注的一个方面。
我们要处理好教师、学生与教材之间的关系。这三个要素之间相互依托的关系如何处理呢?不同的教育观念带来了不同的处理方法。我们首先应该思考一个问题:教师是什么?新大纲写得非常清楚:教师是合作者、鼓励者、指导者等等,定位很多,这些话说起来容易,在实际操作中却非常困难。这三节课都较好地体现了教师的这种角色转变。正是由于这种转变,我们的课堂开始变得生动有趣,学生在课堂上表现活跃,这说明他们喜欢上数学课了。首先喜欢上课,才能喜欢学数学。这三节课都非常贴近学生的生活,这体现了我们一再强调的现实性,这个现实不是我们成人眼中的现实,而是学生眼中的现实,这个现实既有与我们成人相同的,也有学生所处的特定年龄阶段的,如童话故事、游戏等等。在“可能性”这节课中,学生做了很多游戏;“观察物体”中,让学生用手势表示自己看到了茶壶的哪个方位。这些游戏都会吸引孩子的注意力,引起他们的兴趣,学生会觉得学习数学并不是高深莫测的,有时就像玩耍似的。有人提出这样的观点:不要老是谈课堂教学,应该把课堂教学规范为一个词,叫课堂生活。如果我们用课堂生活的观点来看待课堂教学的话,传递给学生的东西就会更贴近他们的现实心理。
这三节课,老师都注意在课堂上给学生留下更多的探索空间。在传统的教学中,万以内数的认识讲完以后,再讲多位数的读写,老师就会觉得没有什么讲头,学生跟着老师学,跟着老师读就行了。从“认识更大的数”这节课可以看出,郭老师在设计上很动了一番脑筋,让学生去读数,去分级;在感受大数时她也创设了很多让学生积极参与学习和探索的机会,如,想一想,你是怎么读的?怎么能读得更快?“可能性”、“观察物体”两节课在这方面做得也很好:你去想一想,他是站在哪个方位上看到的?再想一想,如果要求一个黄球也摸不到,应该怎么设计?在低年级时就给学生这么多主动探索的空间,为学生今后的发展打下了一个非常好的基础。
可能性教案 篇9
教材说明
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
1.事件发生的可能性以及游戏规则的公平性。
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
2.中位数的统计意义及计算方法。
学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。
教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
教学建议
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。
2.加强学生对中位数在统计学意义上的理解。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的.中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。
可能性教案 篇10
教学目的:
4、能够列出简单试验所有可能发生的结果,知道事件发生的`可能性是有大小的。
5、通过实际操作活动,培养学生的动手实践能力。
6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?
二、探究新知
1、教学例5
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数
黄
红
活动汇报、小结
【可能性教案】相关文章:
《可能性》教案01-31
可能性教案人教版12-21
可能性教案精选15篇02-18
《可能性》教案(15篇)03-08
《可能性》教案(通用20篇)09-24
可能性教案(通用15篇)02-28
《摸名片统计与可能性》教案03-07
可能性教案(集锦15篇)11-14
《可能性》教案汇编15篇03-08
《可能性》教案(集合15篇)03-11