平行四边形教案范文集合八篇
作为一名教职工,时常要开展教案准备工作,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写才好呢?下面是小编为大家整理的平行四边形教案8篇,希望能够帮助到大家。
平行四边形教案 篇1
教学目标
知识与技能:
1.使学生理解平行四边形和梯形的概念及特征。
2.使学生了解学过的所有四边形之间的关系,并会用集合图表示。
过程与方法:
通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。
情感态度和价值观:
通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。
重点理解平行四边形和梯形的概念及特征。了解学过的'所有四边形之间的关系,并会用集合图表示。
难点理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。
教具图形,剪子,七巧板
教学过程
教师导学
一、创设情景感知图形
1.出示例1,我们认识过平行四边形,你能说出哪些地方见过平行四边形?(64页)
2.在我们美丽的校园中,你能找到哪些四边形?
梯子的侧面-梯形
3.画出你喜欢的一个四边形。说一说什么样的图形是四边形?
展示学生画出的四边形,请学生标出它们的名称。
长方形 平行四边形
梯形 正方形
4.小组交流:
从四边形的特点来看,四边形可以分成几类?
学生讨论交流
二、探究新知
1.归纳平行四边形和梯形的概念
有什么特点的图形是平行四边形?
两组对边分别平行的四边形叫做平行四边形。
强调说明:只要四边形的每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。
提问:
①生活中你见过这样的图形吗? 它们的外形像什么?
②这些图形有几条边?几个角?是什么图形?
③这几个四边形有边有什么特点?
④它是平行四边形吗?
⑤你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么?
只有一组对边平行的四边形叫做梯形。
5.现在你有什么问题吗?
长方形和正方形是平行四边形吗?为什么?
6.用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗?
平行四边形教案 篇2
教 学 分 析
本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。
教 学 目 标
知识与 技能
引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。
过程与 方法
学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。
情感态度价值观
培养学生积极参与的学习品质,使学生获得成功的体验,感受教学与日常生活的密切联系,树立学好数学的信心。
教学策略
创设情景 动手实践 交流合作
教具学具
多媒体课件、长方形、正方形、格子纸、三角板
教 学 流 程
教师活动
学生活动
一、 创设情景,提出问题
今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题)
二、 协作探索,研究问题
1. 教学长方形、正方形
(1) 多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?
(2) 教学对边的概念:
在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示)
(3) 小组合作研究长方形、正方形的特点
下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说,你自己手中
观察汇报
观察汇报
学习对边的概念
小组合作
动手操作
长方形的对边和正方形的边有什么特点,角有什么特点?
(4) 指名汇报,并演示自己发现的`过程。
共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。
(5) 在方格纸上画出长方形、正方形
2. 教学平行四边形
(1) 多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?
我们把这样的四边形叫做平行四边形。
(2) 平行四边形的特点:
出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点?
(3) 总结:平行四边形有四条边,四个角,对边相等。
(4) 动手操作:拿出活动的四边形:拉动之后你发现了什么?
汇报总结
动手实践
观察认识平行四边形
观察思考发现特点
动手操作
三、 运用知识,解决问题。
1. 猜一猜。(多媒体演示)
2. 找一找。(多媒体演示)
3. 说一说。
四、 总结。
你今天从智慧星那里学到了什么?
练习巩固
总结交流
板书设计 :
长方形 正方形 和 平行四边形
边: 4条 4条 4条
对边相等 全都相等 对边相等
角:4个直角 4个直角 4个
平行四边形教案 篇3
教学目标:
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积
2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3、对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:
理解公式并正确计算平行四边形的面积.
教学难点:
理解平行四边形面积公式的推导过程.
学具准备:
每个学生准备一个平行四边形。
教学过程:
一、导入新课。
1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2、好,下面谁来说一说你找到了哪些学过的图形?
3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的`底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=ah
说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的填空。
7、验证公式
学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长宽
平行四边形的面积=底高
S=ah
S=ah或S=ah
平行四边形教案 篇4
一、所在班级情况,学生特点分析
本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。
二、 教学内容分析
平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。
三、 教学目标
1、 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。
四、 教学难点分析
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。
教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。
五、 教学课时
一课时。
六、 教学过程
(一)复习
1、做一做,说一说。
师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。
学生做 — 教师巡视 — 同桌互相评价 — 个别台前讲说。
2、复习长方形面积计算公式
我们学过长方形面积的计算公式,谁能说出长方形面积的计算
公式?
生:长方形面积=长×宽
师:那么平行四边形的面积该怎么计算?这一节,我们就一起来研讨它。
(板书课题)
(二)推导平行四边形的面积公式
1、数方格法:
师:这儿有两个图形,请同学们比较它们的大小。
出示课件(图1):
要比较这两个图形的大小,就是比较它们的面积。我们先用数方格的方法数出它们各自的面积。
教学活动:
(1)数出平行四边形和长方形的面积各是多少?
(2)平行四边形的底和高各是多少?
(3)长方形的长和宽各是多少?
(4)通过数方格,你发现了什么?
(平行四边形的底与长方形的长相等,平行四边形的高与长方形的宽相等。)
上面我们用数方格的方法得出平行四边形的面积,在实际的生活中,要求
的平行四边形的面积很大时,比如,一块平行四边形的果园,用数方格的方法就难以解决了。因此,我们能不能把一个平行四边形转化为我们已经学过的某一种图形,从而得出平行四边形面积的计算方法呢?
2、割补法:
(1)学生用学具演示。
师:同学们拿出另一个平行四边形,想一想,做一做,怎样才能把它转化成为一个长方形?
教学活动:
学生用学具做,同桌进行互相交流转化过程,边演示边述说,教师巡视指导。
(2)教师用教具演示。
同学们完成的真好,现在我们共同来演示怎样将一个平行四边形转化成一个长方形的呢?
出示课件(图2)。
教学活动:
在演示过程中,应尊重学生的观点,教师进行适当引导,坚持以学生为主体,生生互动,师生互动的原则,激发学生的学习积极性。
3、推导、归纳平行四边形的面积计算公式:
把一个平行四边形转化成一个长方形,什么变了,什么没变?
(形状变了,面积没有变。)
也就是说拼成后长方形的面积和原平行四边形的面积相等。
拼成后的长方形的长与平行四边形的底有什么关系?(相等)
长方形的宽和原平行四边形的高有什么关系?(相等)
在问答过程中,出示课件(图3)。
师:拼成后的长方形的长与原平行四边形的底相等,长方形的宽与原平行四边形的高相等,它门的面积也相等。我们知道长方形的面积是长乘宽,谁能说出平行四边形的面积怎样求?(平行四边形的面积等于底乘高。)
板书:平行四边形的面积=底×高
请看课件(图4):
如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的`高,平行四边形面积的字母公式该怎样表示呢?
学生口述,教师板书:
S=a×h
师:一般含有字母的式子里,乘号可以用“·”表示,读作a乘h,板书:
S=a·h
也可以把乘号省略不写,板书:
S=ah
学习活动:
将上面公式请同桌同学互相说说。
(通过同学相互述说,既弄清了平行四边形的面积、底、高之间的关系,又培养了学生的口头表达能力。)
要计算平行四边形的面积,必须知道几个条件,是什么?
(两个条件,底和高。)
七、课堂练习
1、运用公式,尝试学习。
师:请同学们打开课本24页,看“试一试”题目:
出示课件(图5)。
(在学生独立完成之后,与同学们说说各自的想法、做法,征求同学们的意见。)
2、巩固练习,拓展学习。
(1)选择正确的答案。
出示课件(图6)。
师:在上面A、 B、 C三个平行四边形中哪一个的面积是: 2×3=6(平方厘米),并说出理由。
(A:错误,因为3和2是两条邻边,不是对应的底和高;
(B:错误,因为底3和高2不对应,也就是说高2不是底边3上的高;
(C:正确。
(通过练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。)
3、操作观察,探究学习。
出示课件(图7)。
如上图,分别计算图中每个平行四边形的面积,你发现了什么?(单位:㎝)
(引导学生通过计算、观察、比较等,发现平行四边形底和高相等时面积也一
定相等。)
讨论:
当两个平行四边形的面积相等时,它们的底与高是否也相等?
(平行四边形的面积相等,底与高却不一定相等。)
八、作业安排
课本24页“练一练”,第3题、4题。
九、附录(教学课件)
十、教学反思
平行四边形的面积是北师大版五年级数学上册第二单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。
课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是不尽人意的。
平行四边形教案 篇5
【学习目标】
1、平行四边形性质(对角线互相平分)
2、平行线之间的距离定义及性质
【新课探究】
活动一:
如图,□ABCD的两条对角线AC、BD相交于点O.
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)想办法验证你的猜想?
(3)平行四边形的性质:平行四边形的对角线
几何语言:∵四边形ABCD是平行四边形(已知)
∴AO==AC,BO==BD()
活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.
(1)线段AC,BD有怎样的位置关系?
(2)比较线段AC,BD的长短.
(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.
【知识应用】
1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.
3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是
【当堂反馈(小测)】:
1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长
3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?
【巩固提升】
1.平行四边形的两条对角线
2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是
4、下列性质中,平行四边形不一定具备的是()
A、对角互补B、邻角互补C、对角相等D、内角和是360°
5、下列说法中,不正确的.是()
A、平行四边形的对角线相等B、平行四边形的对边相等
C、平行四边形的对角线互相平分D、平行四边形的对角相等
6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长
7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。
8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。
(1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对进行证明。
9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。
(1)多做几条这样的直线,看看它们有什么共同的特征
(2)试着用旋转的有关知识解释你的发现。
平行四边形教案 篇6
教学目标
1.能够从图中全面感知平行四边形现象,体会平行四边形在生活情景中的存在。,
2.通过观察、操作等活动,认识平行四边形的一些特征。
3.经历探索平行四边形的过程,了解它的基本特征,进一步发展空间观念。
教学重点
通过观察、操作等活动,认识平行四边形的一些特征
教学难点
经历探索平行四边形的过程,了解它的基本特征
教学过程
激发兴趣
一、(出示主题图)
我们已经认识了平行四边形,请同学们仔细
观察主题图,图中都有些什么物体,这些物体
都反映出一些什么现象?
这些现象正是我们本单元所要研究和学习
的平行四边形。(板书课题)
仔细观察
小组活动
探索、感知
探索新知 1.拉一拉。
师:拿出你们准备的长方形木框,用手捏住相对的两个角,向相反的方向拉动,边拉动,边观察你有什么发现?与原来的长方形有什么相同和不同?
生:可以拉成不一样的.平行四边形。……
师:说明平行四边形易变形。(板书:易变形)
2.画一画,比一比 。
(拉到一定的位置不变)师将拉成的平行四边形画在黑板上。学生将拉成的平行四边形画在纸上。 观察平行四边形,你发现了什么?
生:相对的两条边互相平行……
抽生演示测量两组对边分别平行。
师课件演示两组对边分别平行。
师小结:两组对边分别平行平行的四边形叫做平行四边形。
3.量一量,填一填,说一说。
师:先给平行四边形的边和角编上号。每位同学都用直尺量一量平行四边形的四条边,用三角板量一量四个角,然后填表。
长边 长边 短边 短边 边 ∠1 ∠2 ∠3 ∠4 角
观察表格,你有什么发现?
将自己的发现在小组交流,然后讨论平行四边形都有哪些特点?作好记录。
全班汇报。你们组发现了平行四边形都有哪些特点?
师:几组同学的汇报都有哪些相同的地方?你们有吗?
平行四边形都有哪些特征?
总结:1.两组对边分别相等。2.两组对角分别相等。
3.四个内角的和是360
学生操作
抽生汇报
先独立思考,在小组讨论。
独立观察后,同桌交流。然后全班交流。
学生操作,先拉平行四边形,再画。
独立观察
小组交流
抽生汇报
学生发言,其余注意倾听。
独立思考,汇报。
1组:我们发现左右两边的长都是……,上下两边的长都是……
一组对角都是……,另一组对角都是……
2组:……
课堂小结
今天这节课我们学习了些什么?你都有哪些收获?
平行四边形教案 篇7
教学内容:人教版第九册 64 – 67页
说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。
教学重点:平行四边形面积的推导过程。
本课采用的教法:自学法 、 转化方法、小组合作法、实验法。
学法:1、自主学习法
2、小组合作探究学习法。
教学程序:
一、创设问题情景, 为新课作铺垫。
请同学们帮李师傅的一个忙,
求出下面的面积,你是怎样想的?3厘米
5厘米
二、突出学生主体地位,发展学生的创新思维。
首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?
有的同学说:长方形面积与平行四边形面积相等(数出来的.)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想
三、小组合作,培养学生的合作精神。
小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高
学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)
学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。
四例题独立完成,体现学生自己解决问题的能力。
例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。
板书设计:
长方形面积==长乘宽
平行四边形面积=底乘高
s= a h
平行四边形教案 篇8
[教学内容]
人教版《义务教育课程标准实验教科书?数学》五年级上册第79-83页的内容。
[教学目标]
1、知识目标
使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标
通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标
①通过自评、互评,引导学生学会欣赏别人,认识自己;
②通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点]
推导平行四边形的面积公式及运用公式解决各种各样的问题。
[教学难点]
运用平行四边形的面积公式解决各种各样的问题。
[突破重、难点的方法]
动手操作,细心观察,合作交流。
[教具准备]
多媒体课件、木框架、长方形图片、平行四边形图片、剪刀、表格。
[学具准备]
长方形图片、平行四边形图片、剪刀。
[设计思路]
设置疑问-引发猜想-探究感悟-再探究深化-生成知识-应用和解决问题。
[教学过程]
教学过程
设计思路
一、以景置疑,引出课题
1、观察主题图,提出问题
①出示第79页的主题图,问:在这美丽的学校或学校的周围,你能看到我们所学过的图形吗?
②谁能说说长方形的面积是怎样计算的?正方形呢?
③在这美丽的校园里,我最喜欢看的是学校中间的两个花坛,你们知道长方形的花坛大还是平行四边形的花坛大吗?是怎样知道的?(估计学生会说我会算出长方形的面积,而平行四边形的面积看上去跟长方形的面积差不多)
教师引出今天我们就来学习平行四边形的面积,板书课题。
以学生熟悉的学校作为情景,让学生倍感亲切地投入到学习中,通过观察让学生重温学过的旧几何图形知识,然后再设置疑问,起到了一种温故而入新的效果。
1、数方格,比较平行四边形的面积与长方形的面积。
①拿出老师预先准备的方格纸图,即第80页平行四边形图和长方形图,然后叫学生用数的方法数出两个图形的面积各是多少。
②再认真观察方格纸上的两个图形,并完成以下的表格。
③仔细观察,你能发现什么?
学生可能会说出平行四边形的面积与长方形的.面积是一样的,也有的可能会说出平行四边形的面积应等于它的底×高,对于任何一种发现,教师都要表扬,对于一些有价值的发现更要大力表扬。
通过猜测,数方格,填表格,仔细观察,不数兑现以学生为主体的教学思想,同时也使学生感悟到平行四边形的面积与长方形的面积有着密切的关系,为再探究平行四边形的面积公式储备了澎湃的动力。
2、剪图形,进一步探究平行四边形的面积。
①出示图形,问谁有方法可以求出它的面积。
指出:要求这个图形的面积要用剪或拼的方法,那给你这两个图形,你能用类似的方法或其它方法来求它的面积吗?
②学生以小组为单位用剪或其它方法共同探究平行四边形的面积的计算方法。
3、小组汇报探究的过程和结果。
汇报完后,教师再通过电脑课件把平行四边形转化成长方形的过程演示给学生看,让学生进一步理解平行四边形的面积公式的形成过程。
4、小结平行四边形的面积。
平行四边形的底相当于长方形的长,高相当于宽,由此得出:平行四边形的面积=底×高
5、阅读课本,捕捉新知。
让学生自己看书本第81页的内容,看完后谈自己还发现了什么?
通过剪的小组活动,进一步培养学生动手操作能力、观察能力、思维能力。通过合作、观察、思考、交流、概括等活动得出平行四边形的面积公式,这正好符合当前的教学理念,即让学生参与 知识的形成过程,同时也验证了学生之前的猜想。
通过自主探索,让学生学会从书中获取知识,养成爱看书的好习惯。
三、练习巩固,知识升华。
(一)基本练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
强调学生在计算平行四边形的面积时应先写出它的字母公式,然后根据公式直接计出它的面积。
2、完成书本第82页的第1题。
此题先让学生独立解答,教师只作简单的讲评。
(二)综合练习
1、游戏式练习。
用一个文件袋装着两个没有给出底边、高的长度的平行四边形,叫学生出来抽其中一个,抽到面积大的哪位同学赢。
学生在确定哪个图形的面积大时,渗透要求平行四边形的面积需要知道平行四边形的底和高分别是多少的知识。
2、完成第82页的第3题。
3、选择题。
(1)如右图,()的面积大。
A、甲B、乙C、相等
(2)将一个长方形拉成一个平行四边形后,它的周长(),面积()。
A、变大B、变小C、不变
4、完成书本第82页的第4题。
要求学生说出解题思路。
分层次、有梯度地进行练习,目的是遵循学生的认知规律,从而更好使学生掌握知识和提升能力。
四、课堂小结,拓展延伸。
这节课,你学习了什么,学会了什么?觉得自己的表现怎么样,同学的表现呢?老师呢?
自评、互评更能让学生认识自己,在评价中更能反思自己的行为或表现,促使共同进步。
【平行四边形教案】相关文章:
平行四边形教案08-10
平行四边形的面积教案07-17
《平行四边形的认识》教案09-30
平行四边形教案优秀08-29
平行四边形面积教案02-29
平行四边形的认识教案07-30
《平行四边形的认识》教案07-09
平行四边形的判定教案07-08
平行四边形的面积教案06-18
《认识平行四边形》教案05-28