精选平行四边形教案范文汇编七篇
作为一位优秀的人民教师,通常需要准备好一份教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?下面是小编整理的平行四边形教案7篇,欢迎阅读与收藏。
平行四边形教案 篇1
教学内容:
课本第73-74页练习十七第4-9题
教学要求:
1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
教学重点:
能比较熟练地运用平行四边形的计算公式,解答有关的应用题。
教具准备:
口算卡片。
教学过程:
一、复习
1、平行四边形的面积计算公式是什么?
2、口算:
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
3、求平行四边形的面积。
(1)底12米,高是7米;(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米
4、出示课题。
二、新授
1、补充例题
一块平行四边形的麦地底长125米,高24米,它的面积是多少平方米?
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?
与上题比较,从数量关系上看,什么是相同的?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
A900×(125×24÷10000)
B900÷(125×24)
C900÷(125×24÷10000)
2、(略)
三、巩固练习
练习十七第6、7题
四、课堂作业
练习十七第8、9题
⑧有一块平行四边形的.菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?
⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?
板书设计:
平行四边形面积的计算
平行四边形教案 篇2
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的`内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 四年级数学上册《平行四边形、梯形特征》教学设计教学目标: 1、学生理解平行四边形和梯形的概念及特征。 2、使学生了解学过的所有四边形之间的关系,并会用集合图表示。 3、通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。 4、通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。 教学重点:理解平行四边形和梯形的概念及特征。了解学过的所有四边形之间的关系,并会用集合图表示。 教学难点:理解平行四边形和梯形的概念及特征。用集合图表示学过的所有四边形之间的关系。 教具准备:图形、剪子、七巧板。 教学过程: 一、创设情景 感知图形 1、出示校园图(70页)在我们美丽的校园中,你能找到那些四边形? 2、画出你喜欢的`一个四边形。说一说什么样的图形是四边形? 展示学生画出的四边形,请学生标出它们的名称。 长方形 平行四边形 梯形 正方形 3、小组交流:从四边形的特点来看,四边形可以分成几类?学生讨论交流。 二、探究新知 1、归纳平行四边形和梯形的概念。 有什么特点的图形是平行四边形?(两组对边分别平行的四边形叫做平行四边形。) 强调说明:只要四边形的每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。 提问:生活中你见过这样的图形吗?它们的外形像什么? 这些图形有几条边?几个角?是什么图形? 这几个四边形有边有什么特点? 它是平行四边形吗? 你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么? 只有一组对边平行的四边形叫做梯形。 5、现在你有什么问题吗? 长方形和正方形是平行四边形吗?为什么? 6、用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗? 7、判断: 长方形是特殊的平行四边形。( ) 两个完全一样的梯形可以拼成一个平行四边形。( ) 一个梯形中只有一组对边平行。( ) 三、巩固练习。 1、在梯形里画两条线段,把它分割成三个三角形。你有几种画法?学生展示 2、七巧板拼一拼 用两块拼一个梯形 用三块拼一个梯形 用一套七巧板拼一个平行四边形 1、 下面的图形中有( )个大小不同的梯形。 2、 用两个完全一样的梯形,能拼成一个平行四边形吗? 把1张梯形纸剪一次,再拼成一个平行四边形。 拿一张长方行纸,不对折,剪一次,再拼出一个梯形。 四、课堂小结:通过这节课的学习,你有何体会和收获? 五、作业: 1、把一个平行四边形剪成两个图形,然后拼成一个三角形,这个三角是什么三角形?有几种剪拼的方法? 2、把一张平行四边形的纸剪一下,分成两个梯形,有多少种剪法? 教学目标 1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高. 2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念. 教学重点 掌握平行四边形的意义及特征. 教学难点 理解平行四边形与长方形、正方形的关系. 教学过程 一、复习准备. 我们已经学过一些几何图形,观察一下这些图形有什么共同特点? 在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形. 教师提问:我们学过哪些四边形呢? 学生举例. 说说哪些物体表面是平行四边形? 教师出示下图,让学生初步感知平行四边形. 二、学习新课. 1.理解平行四边形的意义. 首先出示一组图形. 教师提问:这些图形是什么形?它们有什么特征? (1)看到这个名称你能想到什么?(板书:平行、四边形) 教师提问:你认为什么是四边形?你学过的什么图形是四边形的? (2)动手测量. 指名到黑板上用三角板检验一下,每个图形的对边怎样. (3)抽象概括. 根据你测量的结果,能说说什么叫平行四边形吗? 小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.) 教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”. (4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】 2.平行四边形的特征和特性. (1)教师演示. 教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变? 学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角. (2)动手操作. 学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行. (3)归纳平行四边形特性. 根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形) (4)对比. 三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性. 这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗? (如汽车间的保护网,推拉门、放缩尺等.) 3.学习平行四形的底和高. (1)认识平行四边形的底和高. 教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底. (2)找出相应的底和高.【继续演示课件“平行四边形”】 引导学生观察:图中有几条高?它位相对应的底各是哪条线段? 使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC. (3)画平行四边形的高.【继续演示课件“平行四边形”】 教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的'顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上. ①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形) 引导学生比较长方形和平行四边形的异同点,使学生明确: 相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形. ②引导学生比较正方形和平行四边形的相同点和不同点. 使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形. ③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】 三、巩固练习.【继续演示课件“平行四边形”】 1.判断下列图形哪些是平行四边形? 2.指出平行四边形的底,并画出相应的高. 3.在钉子板上围出不同的平行四边形. 4.数一数下图中有( )个平行四边形. 四、教师小结. 1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性) 2.组织学生对所学知识提出质疑,并解疑. 3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形) 五、布置作业. 1.用一套七巧板拼出不同的平行四边形. 2.在下面每个平行四边形中分别画出两条不同的高。 【当堂检测】 1.(20xx 年永州市).下列命题是假命题的是( ) A.两点之间,线段最短; B.过不在同一直线上的三点有且只有一个圆. C.一组对应边相等的两个等边三角形全等; D.对角线相等的四边形是矩形. 2.如图,一个四边形花坛 ,被两条线段 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是 ,若 , ,则有( ) A. B. C. D.都不对 3.(20xx襄樊)如图,在平行四边形 中, 于E 且 是一元二次方程 的'根,则平行四边形 的周长为( ) A. B. C. D. 4.(20xx年南宁市)如图(1),在边长为5的正方形 中,点 、 分别是 、 边上的点,且 , . (1)求 ∶ 的值; (2)延长 交正方形外角平分线 ,如图2试判断 的大小关系,并说明理由; (3)在图(2)的 边上是否存在一点 ,使得四边形 是平行四边形?若存在,请给予证明;若不存在,请说明理由. 一、教学目标: 1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。 2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。 3.培养学生发现问题、解决问题的能力及逻辑推理能力。 二、重点、难点 1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用。 2.难点:运用平行四边形的性质进行有关的论证和计算。 3.难点的突破方法: 本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。 学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。 平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的.理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。 为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。 讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。 新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。 教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。 教材分析 “平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础 学情分析 1. 学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。 2. 但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。 教学目标 1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。 2.过程与方法目标: (1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。 (2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。 3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。 教学重点和难点 重点:理解掌握平行四边形的面积计算公式,并能正确运用。 难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。 教学过程 (一)情境引入,以旧探新 这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现) 这块花坛既不是长方形也不是正方形,如何求出这块地的面积? 为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习平行四边形的面积。(板书:平行四边形的面积) (二)自主探究 方法一:用数方格的方法求平行四边形的面积 以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡) 1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。 根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律! 2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。 (1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,) (2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高) (三)动手操作,验证猜想,得出结论 方法二:“割补”法:通过数方格我们发现这个平行四边形的`面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。 1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形) 2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。) (2)学生实验操作,教师巡视指导。 3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么? (1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变) (2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。) (3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽) (4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高) 4.全班交流推导公式: (1)谁愿意把你的转化方法说给大家听呢?请上台来交流! (2)有没有不同的剪拼方法?(继续请同学演示)。 研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。 (3)板书平行四边形面积推导过程 (4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah 三、运用公式,解决实际问题 知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。 1.出示书上82页的1题,请大家做一做。 2.汇报交流:谁来说一说你是怎么做的? 3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高) 四、巩固练习 1、试一试 计算下列平行四边形的面积,与同学说说你的方法。 35cm 20dm 4.8m 26cm 28dm 5m 公式: 公式: 公式: 列式: 列式: 列式: 2、我能填得准。 (1)平行四边形的面积公式用字母表示为( )。 (2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。 五、课堂总结 反思一下刚才我们的学习过程,你有什么收获? 【平行四边形教案】相关文章: 平行四边形教案04-01 《认识平行四边形》教案03-30 平行四边形面积教案02-09 特殊的平行四边形教案07-29 认识平行四边形教案08-26 平行四边形的特征教案02-27 《平行四边形的认识》教案03-15 平行四边形的面积教案04-07 《平行四边形的面积》教案06-01 《平行四边形的判定》教案06-03平行四边形教案 篇3
平行四边形教案 篇4
平行四边形教案 篇5
平行四边形教案 篇6
平行四边形教案 篇7