当前位置:育文网>教学文档>说课稿> 数学说课稿

数学说课稿

时间:2022-02-17 23:36:06 说课稿 我要投稿

【推荐】数学说课稿模板汇总8篇

  作为一位不辞辛劳的人民教师,总归要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。那要怎么写好说课稿呢?下面是小编整理的数学说课稿8篇,希望对大家有所帮助。

【推荐】数学说课稿模板汇总8篇

数学说课稿 篇1

  一.说教材

  (一)教学内容

  本节课主要内容是命题的概念,能把命题改写若p则q的形式,渗透由特殊到一般的化归数学思想。

  (二)教材的地位作用

  命题的概念,若p则q形式的命题是本章的重要内容,是后续学习充要条件的基础,这一章我们在初中的基础上学习常用逻辑用语,体会逻辑用语去表达和论证中的作用,他将成为反证法的理论依据,并为进一步学习,特别是培养学生的思维能力,推证能力打基础

  (三)教学目标

  1、知识与技能:

  (1)理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;

  (2)能把命题改写成“若p,则q”的形式;

  2、过程与方法:

  (1)多让学生举命题的例子,培养他们的辨析能力;

  (2)能把命题改写成“若p,则q”的形式;培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.

  3、情感、态度与价值观:

  通过学生的参与,激发学生学习数学的兴趣。

  (四)教学重点:

  命题的概念、命题的构成

  (五)教学难点:

  分清命题的条件、结论和判断命题的'真假

  二说教法

  教学过程是教师和学生共同参与的过程,是师生多向合作的过程,鼓励学生自主学习,充分调动学生的积极性、主动性。以学生发展为本,有效的渗透数学思想方法,提高学生素质,根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  (1)引导发现法

  (2)练习巩固法

  三、说学法

  教给学生学习方法比教给学生知识更重要,本节课注意调动学生积极思考,主动探索,尽可能地让学生参与到教学活动中,我进行如下学法指导:

  (1)由特殊到一般的划归方法:学习中学生在教师的引导下,通过具体的案例,让学生去观察、讨论、探索、分析、发现、归纳、概括

  (2)练习巩固法

  四、教学过程

  学生探究过程:

  1.思考、分析

  下列语句的表述形式有什么特点?你能判断他们的真假吗?

  (1)三角形的三个内角之和等于1800

  (2)如果a,b是任意两个正实数,那么a+b≥2(ab)1/2;

  (3)如果实数a满足a2=9,则a=3;

  (4)中学生目前的学业负担过重;

  (5)中国将在本世纪中叶达到中等发达国家的水平

  2.讨论、判断

  学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(2)为真,(3)为假,(4)(5)的真假需要根据实际情况确定,总是可以确定真假.

  教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

  3.抽象、归纳

  定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.

  命题的定义的要点:能判断真假的陈述句.

  在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

  例1判断下列语句中哪些是命题?是真命题还是假命题?

  (1)空集是任何集合的子集;(真命题)

  (2)若整数a是素数,则a是奇数;(假命题)

  (3)指数函数是增函数吗?(不是)

  (4)若空间中两条直线不相交,则这两条直线平行;(假命题)

  (5)x>15.(不是)

  让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

  练习

  判断下列语句中哪些是命题?是真命题还是假命题?

  (4)求证∏是无理数

  (5)若X是实数,则X2+4X+5≥0

  4.命题的构成――条件和结论

  上面例1中的(2)(4)具有“若p,则q”的形式.在数学中,这种形式的命题是常见的.

  “若p,则q”也可写成“如果p,那么q”“只要p,就有q”等形式.

  其中p叫做命题的条件,q叫做命题的结论.

  例2指出下列命题中的条件p和结论q;

  (1)若整数a能被2整除,则a是偶数;

  (2)若四边形是菱形,则它的对角线互相垂直且平分

  解:(1)条件p:整数a能被2整除,结论q:整数a是偶数;

  (2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.

  有一些命题表面上不是“若p,则q”的形式,但可以改写成“若p,则q”的形式,例如:

  垂直于同一条直线的两个平面平行.

  若两个平面垂直于同一条直线,则这两个平面平行.

  例3将下列命题改写成“若p,则q”的形式,并判断真假;

  (1)垂直于同一条直线的两条直线平行;

  (2)负数的立方是负数;

  (3)对顶角相等;

  解:(1)若两条直线垂直于同一条直线,则这两条直线平行,它是假命题。

  (2)若一个数是负数,则这个数的立方是负数。它是真命题。

  (3)若两个角是对顶角,则这两个角相等。它是真命题。

  5.练习:P4:1.2.3

  6.课堂小结

  (1)、命题的概念

  (2)、能指出命题的条件和结论

  7.思考题

  一,下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么系?

  (1)若f(x)是正弦函数,则f(x)是周期函数;

  (2)若f(x)是周期函数,则f(x)是正弦函数;

  (3)若f(x)不是正弦函数,则f(x)不是周期函数;

  (4)若f(x)不是周期函数,则f(x)不是正弦函数;

  二,四种命题中任意两个命题之间有关系吗?是什么关系?它们的真假性之间有关系吗?是什么关系?

  8.作业 P8:习题1.1A组第1、题

数学说课稿 篇2

  一、教材分析:

  1、教材所处的地位及作用:

  本节课选自新人教版数学七年级上册§2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

  2、情分析:

  七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。

  二、教学目标:

  1.知识目标:

  (1)使学生理解多项式中同类项的概念,会识别同类项。

  (2)使学生掌握合并同类项法则。

  (3)利用合并同类项法则来化简整式。

  2.能力目标:

  (1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;

  并且能在多项式中准确判断出同类项。

  (2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

  3.过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。

  4.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

  三、教学重点、难点:

  根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:

  重点:同类项的概念、合并同类项的法则及应用。

  难点:正确判断同类项;准确合并同类项。

  四、教学方法与教学手段:

  (1)教法分析:

  基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。(2)学法分析:

  教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。

  五、教学过程:

  环节教学设计设计意图

  温

  故

  而

  知

  新1.—5+3=,4—2=.

  2.—2ab的系数是次数是

  3.组成多项式2xy-3xy2+1的项分别为,,.

  4.30米+50米=.复习旧知识,为新知识作铺垫,激发学生的求知欲

  创设情境

  一问题1:

  我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里。为何不把老虎与熊猫关在同一个笼子里呢?

  问题2:

  (1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.

  (2)生活中处处有分类的'问题,在数学中也有分类的问题吗?目的在于引发和提高学生学习的积极性,启发学生的探索欲望,加强学科联系,并注意联系生活,同时为本课学习做好准备和铺垫。

  形成概念

  议一议:

  10a和20a2b2和6b2-9xy和5xy5ab和-13ab 有什么共同点?

  2.思考:归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)

  让学生充分发挥主体作用,从自己的视点去观察、归纳、总结得出同类项的概念。

  强化概念

  1、“真真假假”下列每组式子分别是同类项吗?为什么?

  (1)x与y;(2)ab与ab;-3pq与3pq;

  (4)abc与aca与a;(5)ab与abc;

  2、K取何值时,-3xy与-xy是同类项?

  3、填充:(1)在()内填上相应字母,使得2()3()2与-x2y3是同类项;

  (2)若和是同类项,则=;使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。

  创设情景二

  如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题。

  练问题1:

  3ab+5ab=_______理由是________

  -4xy2+2xy2=_______理由是_______

  -3a+2b=理由是_______

  问题2:

  不在一起的同类项能否将同类项结合在一起?为什么?

  例如:6xy-10x2-5yx+7x2

  运用加法交换律和结合律将同类项结合在一起,原多项式的值不变。

  合并同类项:

  把同类项合并成一项就叫做合并同类项

  法则:

  (1)系数:各项系数相加作为新的系数

  (2)字母以及字母的指数不变。

  合并同类项一般步骤:

  6xy-10x2-5yx+7x2———找

  =(6xy-5yx)+(-10x2+7x2)———移

  =(6-5)xy+(-10+7)x2———并

  =xy-3x2

  尝试训练一:

  (1)3x-8x-9x

  (2)5a2+2ab-4a2-4ab

  (3)2x-7y-5x+11y-1

  尝试练习二:

  当x=2,y=3时

  求多项式 的值。

  对比计算:同桌采用两种不同的方法来计算,以得出较优化的方法——先化简,再求值。

  例题:已知a=,b=4,

  求多项式2a2b-3a-3a2b+2a的值.分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。

  以一道例题的训练为桥梁来得出合并同类项的一般步骤。体现新课程中以学生为主,注重学生参与的理念。

  小组共练互批,及时纠错,共同提高。

  求多项式的值,常常先合并同类项,化简后再求值,这样比较简便。

  数学与生活:

  某住宅的平面结构如图所示(墙体厚度不计,单位:米)

  (1)该住宅的使用面积是多少平方米?

  (2)房的主人计划把住宅的地面都铺上地砖,若选用的地砖的价格是30元/平方米,其中x=4,y=3那么买地砖至少需要多少元?

  谈一谈:通过本课的学习你有何收获?

  课堂感悟:

  1、什么叫合并同类项?

  把多项式中的同类项合并成一项,叫合并同类项

  2、合并同类项的法则是什么?

  把同类项的系数相加,所得结果作为系数,字母和字母的指数不变

  必做题:

  1、在下列代数式中,指出哪些是同类项。2x2,0,-3x,-x2y,(x+y)2,xy2,x2y,6x,-x2y,0.5,-x2,2(x+y)2;

  2、合并同类项

  ①3y+2y ②3b-3a3+1+a3-2b

  ③2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2

  3、填充:(1)在()内填上相应字母,使得2()3()2与5x2y3是同类项;(2)若x3ym和xny2是同类项,则=;(3)若(n-3)x2yz和x2yz是同类项,则;

  选做题:你会玩下面的两个数字游戏吗?游戏步骤:任写一个两位数交换十位和个位数,得到一个新两位数求这两个两位数的和。做完后观察结果,你发现了什么?这个规律对任何一个两位数都成立吗?如果成立,如何说明呢?你能自编一个数学游戏吗?这个游戏有什么特点?与同伴一起玩这个游戏。通过对熟悉的事物,让学生感受到数学就在身边,激发学生想象力,启迪创新,应用意识。

  小组讨论

  进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。

  必做题进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。在第二项作业中利用游戏为下面的学习埋下了伏笔,这样就可以激发学生想象力,启迪创新,应用意识。

数学说课稿 篇3

  一。教材分析

  1.教材的地位和作用

  这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2.教学目标和要求

  (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。

  3.教学重点:对二次函数概念的理解。

  4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  二。教法学法设计

  1.从创设情境入手,通过知识再现,孕伏教学过程。

  2.从学生活动出发,通过以旧引新,顺势教学过程。

  3.利用探索、研究手段,通过思维深入,领悟教学过程。

  三。教学过程

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

  解:s=πr?(r>0)

  例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)?

  =100(x?+2x+1)

  = 100x?+200x+100(0

  教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3.为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5.b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)?+1

  (2)s=3-2t?

  (3)y=(x+3)?- x?

  (4) s=10πr?

  (5) y=2?+2x

  (6)y=x4+2x2+1(可指出y是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10cm.

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的`二次函数?

  【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

  【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够"跳一跳,够得到".

 (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2.确定下列函数中k的值

  (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

  (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

  (六) 小结思考

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

 (七) 作业布置

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

  四。教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以学生为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

数学说课稿 篇4

  一、说教材

  1、教学内容:六年制小学数学第八册P100例1、2。

  小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。

  2、教材的重点和难点:

  掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。

  3、教学目标:

  (1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

  (2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。

  (3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。

  二、说教法

  1、通过直观、图示,让学生充分感知,经过比较归纳,最后概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。

  2、采用引探教学法,依据学生认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动学生学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。

  三、说学法

  通过本节教学,要使学生掌握一些基本的学习方法:

  1、学会通过比较、归纳,最后概括出一类事物的本质属性。

  2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

  3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

  四、说教学程序

  (一)情景导入激趣揭题

  (课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.1米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。

  同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)

  这样的设汁,旨在把枯燥的'数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

  (二)调整例题探索新知

  1、教学例1

  (1)出示米尺投影图

  (2)引导学生观察米尺图,提问:

  A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(1分米)

  B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)

  C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)

  结合学生回答,例1图上的标注应改为:

  0.1米是1/10米,就是1分米

  0.10米是10个1/100米,就是10厘米

  0.100米就是10个1/1000米,就是100毫米

  因为1分米=10厘米=100毫米

  所以0.1米=0.10米=0.100米

  这样,学生根据小数的意义,主动从“0.1米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准)强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。

  接着教师指着“0.1米=0.10米=0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,提问三个小数0.1、0.10、0.100有什么不同?(小数的位数不同,但在0.1米的末尾添上一个“0”或两个“0”,表示的实际长度不变,板书在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。

  这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。

  2、教学例2

  在例1的学习过程中,学生已经初步掌握了探求新知的方法。所以例2的教学,教师出示自学提纲,提倡学生先独立看书,然后小组讨论,汇报交流:

  (1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?

  (2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?

  (3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)

  (4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,因为10个1/100是1个1/10,30个1/100也就是31/10,所以两个小数的大小相等)。

  这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的,同时,通过看书交流,培养了学生的自学能力和合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。

  3、呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。

  4、联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

  (三)巩固深化拓展思维

  这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。

  1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?

  8.0808.0880.0080.80800

  2、判断下面各组两个数是否相等?为什么?

  0.25和0.2500、0.25和0.205、0.7和0.07、3和300、3和3.00

  3、闭眼听判:

  “小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?

  这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。

  (四)全课小结

  略

数学说课稿 篇5

  “平行四边形的面积”是五年级上册第五单元“多边形的面积的计算”第一小节的内容。它是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。

  虽说学生已经掌握了平行四边形的特征和长方形面积的计算方法,也已经有了“利用数方格推导长方形面积计算方法”的这一活动经验。但是长方形面积的计算是三年级的时候学的,四年级没有涉及到图形面积的计算,只是认识了平行四边形,如果在不看书的情况下,引入新课教学,学生很难想到用数方格的方法去求面积。所以学生已经淡忘了“数方格求面积”的这种方法。再加上小学生的空间想象力不够丰富,这都对平行四边形面积计算公式的推导造成一定的困难。

  为了有效地突出重点,突破难点,从学生已有的知识水平和认识规律出发,让学生在“复习旧知---大胆猜想---推理判断---动手实践---直观验证”的学习过程中,启发学生用“转化”的思想,动手操作,推导归纳出平行四边形面积计算的公式。充分发挥直观教具教学在知识形成过程中的积极作用, 从而使学生从感性认识上升到理性认识,最终体会到知识的由来,引发学生主动探索问题的积极态度,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高。

  一、复习旧知 铺垫引入

  布卢姆认为,在影响信息的所有变量中,认知前提占百分之五十。长方形面积计算是平行四边形面积计算的生长点,是认知的前提。为架起新旧知识之间的桥梁,我设计了几个问题让学生回忆长方形面积是怎么求的。想一想我们三年级的时候是怎么推导出公式来的。然后直接出示平行四边形的图形,让学生思考平行四边形的面积可以怎么求,并由此导入新课。

  二、主动探索 获取新知

  自主探究是新课程改革的最大亮点,也是课堂教学的难点。 它难在学生在探究之前对结果一无所知,必须先进行猜想,然后才能实验验证。

  1、大胆猜想,展示自己观点。直接向学生呈现问题:展开你的想象猜一猜,平行四边形的面积该怎样计算呢?并以此作为展开教学的依据引起学生探究的欲望,开展下面的探索活动。

  2、推理判断,展示真实思维。我采用了先证伪,再证真的过程。(30+20)×2是不是平行四边形的面积呢?大部分学生能够判断出这样算出的是平行四边形的周长,而不是面积。那么30×20也就是底边乘邻边是不是平行四边形的面积呢?学生根据已有知识经验,平行四边形一拉变成长方形,认为30×20就是平行四边形的面积,通过演示把平行四边形拉成长方形,观察发现拉成的长方形面积变大了,30×20是拉成的长方形面积,而不是平行四边形的面积。我接着追问:你从哪里看到面积变了,请你上来画一画,指一指。第二种猜想也被排除了。那30×12也就是底乘高可以吗?为什么?这时学生看出了把右边的三角形剪下来补在左边,把平行四边形转化成长方形,底乘高对了。为了突破难点,这时我设计了一个疑问:刚才把平行四边形拉成长方形,底乘邻边算出的不是平行四边形的面积。现在也是变成长方形,底乘高算出平行四边形面积,为什么就对了呢?至此错误得以澄清,正确算法得以掌握,割补转化意识已形成。下面把平行四边形割补转化成长方形已顺理成章了。

  3、动手实践,推导面积公式。 由于前面推理过程,这一环节我完全放手于学生。学生四人一组分工合作,动手剪一剪、拼一拼、把平行四边形转化成长方形,来推导平行四边形的`面积计算,为了突破第二个难点我设计了这样的三个思考引导:(1)、拼出的长方形和原来的平行四边形比,面积变大了吗?(2)、拼成的长方形的长和宽与平行四边形的底和高有什么关系?(3)、根据长方形的面积计算公式推导出平行四边形面积计算公式。 接着学生汇报,形成板书,最后介绍字母公式。在这一环节中,学生通过动手操作,体验了图形的平移,转化的数学思想方法,促使空间观念进一步发展。同时也培养了学生语言组织能力和概括能力。

  4、凑数方格,直观验证结论。我尊重教材编写意图:让学生经历数方格的方法体验凑数的过程。在得到平行四边形面积计算公式之后,我让学生用数方格的方法验证平行四边形的面积。通过方格直观验证,平行四边形面积是底×高。

  三、巩固练习 学以致用

  实践是认识的源泉,也是认识的目的和归宿。为了能让学生熟练掌握、灵活运用新知,练习设计由基本练习、判断选择、变式练习、拓展练习、动手实践组成。

  1、基本练习,计算不同形状平行四边形的面积。 (通过练习,巩固新知识,加深对新知识的理解.)

  2、判断选择提升练习,巩固平行四边形面积公式。

  3、变式练习 ,出示一块近似平行四边形的菜地,让学生求出它的面积,学生首先必须把它想象成平行四边形,然后提出要量出它的底和高,这时我就提供给他们两组数据(底和高不对应)以引起学生的争议,让他们发表自己不同的见解,最后形成共识:要求平行四边形的面积必须要有相对应的底和高相乘。

  4、拓展练习, 设计同底等高的多个平行四边形让学生判断它们的面积是否相等。通过猜测、讨论、交流、验证得出同底等高的平行四边形不管它的形状是什么样的,它们的面积总是相等的。

  5、动手实践,让学生测量自带的平行四边形并求出其面积。一方面培养学生解决实际问题的能力和创新思维,另一方面加深学生对平行四边形计算公式的理解, 同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣、有用的数学,从而激发学生的学习兴趣。

  整个习题设计,虽然题量不大,但涵盖了本节课所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了学生思考、发展了学生思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  四、反思交流 拓展延伸

  学生只有学会不断的反思,才能够不断的进步,在课末我组织学生畅谈在这节课中学到了什么?对本节课的学习有什么体会?本节课的问题解决主要采用了什么方法?还有别的方法吗?本节课的学习对你的生活有什么影响?……最后我还引导学生运用转化的方法回去后尝试着去探究三角形或梯形面积计算公式的推导。

  总之,本节课立足 “基本”,注重“过程”,努力为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境,和探索解决问题的过程,努力为学生提供充分的活动条件和活动空间,使学生的数学学习成为一个不断感受、体验、探索、交流和应用数学的过程。始终把学生看作学习的主人,达到培养和提高学生数学素养的目的。

数学说课稿 篇6

  一、教材分析

  人是一个能动的个体,学习是学习者主动建构的过程。社会的发展也强烈需要发展幼儿的主动性和创造性。而数学是一门抽象性、逻辑性很强的学科,有着自身的特点和规律,密切联系幼儿的生活,要结合幼儿的生活实际和知识经验来设计数学活动。在“二次分类”这个数学活动中,我希望提供给幼儿充分的操作材料,再加以引导,一步一步深入,使幼儿真正在操作过程中去发现、归纳“图形的二次分类”的特征。因为幼儿数学概念的形成不是通过听老师讲、看老师演示所能解决得了的,必须通过幼儿自己主动活动的过程。

  二、幼儿情况分析

  大班幼儿的认知、操作、逻辑思维能力在不断提高;同时,他们不仅仅满足于老师所告诉的、所传授的,常常会提出“这是什么”、“为什么”、“怎么做”等问题,他们更希望通过自己的能力加以证实。因此,他们对操作比较感兴趣。目前,大班幼儿已经基本能单独进行图形、事物的一级分类,但是不能对事物图形进行二次分类。而且由于幼儿各方面的发展还不成熟,他们对某一事物也许明白,却无法从具体转化为自己内在抽象的概念,所以通过活动我希望他们能把自己对事物的外部特征的认识转为内在的、有规律的思考。

  三、说目标

  新《纲要》指出:科学教育的价值趋向不再是注重静态知识的传递,而是注重儿童的情感态度和儿童探究解决问题的能力。幼儿是教育活动的积极参与者而非被动接受者,活动内容必须与幼儿兴趣、需要、及接受能力相吻合,引导幼儿向最近目标发展区发展。大班的孩子喜欢探索,喜欢尝试,对于动动,做做,非常感兴趣,于是我启发他们在操作后进行交流和讨论,积累经验,引导他们发现“图形二次分类”的规律特征。因此,根据《纲要》中数学领域的目标以及幼儿的实际情况,我将本次活动的目标定位于:

  1、通过活动使幼儿能从生活、游戏中感受事物的关系,并体验到发现的乐趣

  2、通过幼儿的操作、探索,培养幼儿发现、观察比较、归纳事物特征的逻辑思维能力;

  3、导幼儿说出图形两个层次的特征,体验包含关系,学习二次分类。

  这三个目标中蕴涵了数学能力的培养、主动探索的经验获得和对事物归纳总结的能力的提高,体验了目标的综合性和层次性。我将本次活动的重点放在“培养幼儿发现、观察比较、归纳事物的能力”,于是,在一开始,我就将问题抛出来,“如何将这么多混在一起的图形分出来,你们认为可以用什么方法?”从第一、第二环节的逐步加深,到最后按物体的两个外部特征分类,将重点慢慢消化吸收;接着,就是如何将经验内化为自己的知识体验;那么,难点是“如何让幼儿理解包含关系”。我决定从以下几点来突破:

  1、幼儿自己先想办法分类;具体操作;

  2、教师示范引导,帮助幼儿了解二次分类的基本特征:按某一特征分类后,接着按另一特征对已经分好的两类图形,再做一次分类。这里,我准备用积木演示,首先,我将红、黄两种不同的三角形、圆柱形、长方形的积木混在一起,接着请小朋友帮我分成两类(那么,颜色只有两种,而图形却有三种,小朋友就会按颜色先分为两组)然后,我再请小朋友对其中的一组再分一次(很自然,小朋友就会按图形来分类了)

  3、幼儿再次操作

  4、经验迁移:举例请幼儿做二次分类

  “请大家将小朋友进行二次分类”(小朋友一般会先分男女,接着就会按高矮、衣服、头发等来进行第二层的分类)

  四、活动准备

  1、红色、黄色、蓝色的正方形、圆形、三角形若干;2、各种积木

  五、教学方法

  为实现本次活动目标,我采用了以下几种方法:尝试操作法、语言讨论法和游戏法

  1、尝试操作法:在数学教学中必须强调让幼儿亲手操作材料,在实际的操作中探索和学习,获得有关数学概念的'感性经验。幼儿只有在“做”的过程中,在与材料相互作用的过程中,才可能对某一数学概念属性或规律有所体验,才可能获得直接的经验。在这个活动中,我给孩子们投放充足丰富的操作材料:各种红色、黄色、蓝色的正方形、圆形、三角形若干,让幼儿通过自己动手摆弄后,尝试找到分类的方法,并进行经验归纳。

  2、语言讨论法:在数学教育中,讨论是一种常用的方法,但是,讨论的时机选择在操作的不同时间,就会对幼儿的具体操作及思维活动起不同的作用。因此,在活动开始时,我就引导幼儿先讨论用什么方法分类,操作后再一次请幼儿讨论“你是用什么方法”,这样,通过不断的交流讨论,加上教师的帮助归纳,使幼儿在自己的头脑中形成二次分类的概念。

  3、游戏法:通过“看谁举得快”的游戏,进一步使幼儿通过竞争性的游戏,达到在玩中学的目的,在游戏中发展幼儿的思维,变被动为主动,既使知识得到了巩固和深化,又使幼儿的分析、比较、概括能力得到提高。

  同时,在幼儿学习过程中,教师做到面向全体,注意个别差异,让每个幼儿在各自不同水平上有所提高。我根据幼儿的能力差异,引导能力强的幼儿先观察,再尝试找出最好的分类方法,引导能力弱的幼儿在逐个尝试后,得出二次分类的特征。

  六、教学流程:

  根据大班幼儿的年龄特点及本活动的目标要求,我设计了以下几方面的环节:

  1、通过游戏,激发幼儿活动积极性;

  2、启发诱导,在自由操作中掌握知识,发展能力:先引导幼儿观察图形的不同点(颜色、形状、大小),然后鼓励幼儿自由的操作,逐步深入,在自由探索中发现分类的方法;

  3、经验阐述,交流各自不同的方法:注重幼儿之间经验的交流与分享,鼓励幼儿根据自己的操作结果分享自己的发现,体验发现的快乐。然后在每一个操作环节都有教师和幼儿的共同小结,注重经验的巩固和归纳。

  4、幼儿再次操作;

  5、游戏活动,扩展思路加深印象

  活动过程:

  1、学习按物体的两个外部特征分类。(这个环节主要是激发幼儿活动的积极性。)

  (1)游戏:“看谁举得快”教师说出指令,如:请把X色的XX形举起来;或是请将大的X形举起来。幼儿听到信号后应迅速地根据这两个特征将图形举起来,看谁举得快。

  2、学习对图形作二次分类。

  (1)出示红、蓝两色的圆形、正方形、三角形若干,请幼儿上来将几何图形按颜色分为两类,然后再请两名幼儿上来将红、蓝图形按形状不同各分为三类(即红色圆形、正方形、三角形及蓝色圆形、正方形、三角形)初步学习对图形做二次分类。

  (2)发放操作材料,幼儿操作。每人一套大、小两种规格的正方形、圆形、三角形。首先将大、小图形分开,然后将大的图形按圆形、正方形、三角形分为三类;再将小的图形按正方形、圆形、三角形分为三类,要求有顺序地操作。

  (3)教师小结,幼儿再次操作,进行二次分类。

  3、经验迁移:

  举例请幼儿做二次分类“请大家将小朋友进行二次分类”

  4、活动小结,教师对幼儿分类活动中出现的问题,分析、解决,帮助幼儿获得分类经验。

数学说课稿 篇7

  本节课讲述的是北师大版数学必修5第一章数列§2.1等差数列(第一课时)的内容。

  一、教材分析

  1、教材的地位和作用:

  数列是高中数学的重要模块,有着广泛的实际应用。数列作为一种特殊的函数与函数思想密不可分。等差数列是在学生学习了数列的有关概念和数列的通项公式的基础上,对数列知识进一步深入,为今后学习等比数列提供了对比的依据,起着承前启后的作用。

  2、教学目标

  根据新课标与学生的实际水平,确立了本节课的教学目标:

  知识目标:(1)理解等差数列的定义(2)掌握等差数列的通项公式(3)了解等差数列的通项公式的推导过程及思想(4)掌握等差数列的简单性质并能运用

  能力目标:(1)培养学生观察、分析、归纳、推理的能力;(2)领会函数与数列关系,将研究函数的思想方法正向迁移来研究数列,培养学生的知识迁移能力;(3)通过自主学习,提高学生分析问题和解决问题的能力。

  情感,态度,价值观:(1)通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;(2)养成细心观察、认真分析、善于总结的良好思维习惯。

  3、教学重点

  根据新课标的要求确立本节课的教学重点为: ①等差数列的概念。②等差数列的通项公式及其应用。

  4、教学难点

  根据新课标的要求确立本节课的教学难点为:等差数列通项公式的推导方法 (1)不完全归纳法(2)累加法。由于学生首次接触不完全归纳法,对此并不熟悉,因此用不完全归纳法推导等差数列的通项公式是这节课的一个难点。同时,学生对"累加法"的思想方法也很陌生,因此理解累加法的思想方法是本节课的另一个难点。

  二、学情分析

  由于学生的数学基础比较薄弱,归纳与概括的能力不强,必要时教师要进行点拨、诱导;学生刚学习了数列的定义,数列的性质,数列的通项公式的求法,还处在对知识的感性阶段的认识,因此对"等差"的特点的理解会有一定的困难。

  三、教法分析

  根据高一学生这一时期的思维特点和心理特征,本节课我采用自主学习式、启发诱导式、以及讲练结合的教学方法。通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  四、学法分析

  自主学习时,给学生足够的思维空间,让学生去分析、探究、归纳、概括,同时鼓励学生大胆质疑,围绕等差数列的概念,把等差数列通项公式的推导思路与方法弄清。

  五、教学过程

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1.从函数角度看,数列是定义域为__________的函数,数列的通项公式也就是相应函数的______ .( ,解析式)

  设计意图:依据"温故而知新"的教学理念,培养学生的自学能力。

  2.让学生观察下列六个数列,看看它们有何特点?(多媒体显示)

  设计意图:通过对六个数列的观察研究引出等差数列的概念,初步认识等差数列的特征,为后续的概念学习奠定基础。为学习新知识创设问题情境,激发学生的求知欲。对问题的归纳小结又培养了学生由具体到抽象、由特殊到一般的认知能力。

  (二) 新课探究

  1.由学生自主学习、讨论、交流、归纳出等差数列的概念:

  一个数列, 如果从第二项起,它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。

  概念剖析:①注意"从第二项起"五个字眼;②注意公差d是由后项减去其相邻前项所得;③每一项与它的前一项的差必须是同一个常数。

  设计意图:为让学生充分理解并掌握等差数列的定义以及等差数列的公差的.概念,对等差数列的定义进行三个方面的深入剖析,刺激并强化学生的大脑记忆。

  2.在理解概念的基础上,要求学生将等差数列的文字语言转化为符号语言,归纳出数学表达式:

  设计意图:为了培养学生的阅读理解能力、数学建模能力、抽象概括能力。了解数学的简洁美。

  3.设问"这六个数列的公差d=?(口答)"(多媒体显示)

  注:其中第一个数列公差d=0, 第二个数列公差d=1>0,第三个数列公差d=<0等等。

  设计意图:为了让学生更好地巩固等差数列的公差的概念以及公差的求法,同时也让学生了解到公差d可以是正数、负数,也可以是0.

  4.追问:这六个数列的通项公式又如何求呢?(悬念)

  设计意图:创设问题情景,给学生于悬念,激发他们的求知欲望。

  5.引导学生用"不完全归纳法"和"累加法"推导出等差数列的通项公式(本节课难点,也是难点)。

  在推导等差数列通项公式中,我放手让学生自己去探究,讨论,归纳,必要时给予适当的诱导,启发与点拨。给出等差数列的首项 ,公差d,由学生分组研究、讨论,得出 、 、 …的表达式,通过观察各个表达式的结构特征,猜想 表达式,进而猜想并归纳出 的通项公式。

  具体过程为:若等差数列{ }的首项是 ,公差是d,根据其定义可得: 即: 即: , 即: ……猜想: .进而归纳出等差数列的通项公式:

  设计意图:为了培养学生的观察能力,提高学生的自学能力,强化学生的逻辑思维能力,整个过程由学生完成,这样既培养学生的协作意识又突破了教学难点。

  温馨提示:这种求通项公式的方法叫"不完全归纳法",这种导出公式的方法不够严密,为了培养学生严谨的科学态度,在这里向学生介绍另外一种求数列通项公式的方法—"累加法".

  具体过程为: , , ,……, ,将这(n-1)个等式左右两边分别相加,就可以得到 即 … (1)当n=1时,(1)式也成立,所以对一切n∈ ,上面的公式都成立。因此它就是等差数列{ }的通项公式。

  设计意图:因为用"不完全归纳法"导出等差数列通项公式的方法不够严密,本着严谨的科学态度,在这里我通过求等差数列的通项公式引入"累加法"这一数学思想,逐步达到"注重方法,凸现思想" 的教学要求。再一次突破了教学难点。

  温馨提示:在累加法的证明过程中,我采用"启发式"教学方法。利用等差数列的概念启发学生写出了n-1个等式。启发学生如果将n-1个等式相加会得出什么结论?

  6.紧接着叫学生回答前面设计的悬念(多媒体显示)。

  设计意图: 让学生反复熟悉等差数列的通项公式,强化等差数列的通项公式的记忆。

  7.设问:将有穷等差数列的所有项倒序排列,所成数列仍是等差数列吗?如果是,公差是什么?如果不是,请说明理由?

  设计意图:为了考查学生敏锐的观察能力而设计本问。细心的学生很快就注意到屏幕上面的第(3)个数列与第(6)个数列就是颠倒了顺序的两个数列,它们都是等差数列,并且公差是互为相反数。

  8.讨论数列 ,是否是等差数列?(多媒体显示)

  设计意图:本题是为帮助学生深入理解等差数列的通项公式而设计的一道逆向思维题,并且含有字母参数,须分类讨论,是一道中档题,学生很难答全。但是,通过此题的练习,可以让学生理解"若数列的通项公式是关于 的一次函数,则该数列一定是等差数列".这样一来,学生就把等差数列的通项公式与 的一次函数之间的关系完全理清了。(该数列一定是等差数列,公差是 ,首项是 .)

  9.研究 的推广形式 .

  设计意图:深化学生对等差数列通项公式的理解,强化学生对等差数列通项公式的简单应用,突出推广公式在解题中的巧用妙用。

  (三)应用举例

  这一环节通过教师讲解例题和学生做练习,增强对通项公式概念的理解以及对通项公式的运用,提高解决简单实际问题的能力。例题分三个层次,呈递进式结构。

  设计意图:本题是为巩固等差数列的定义而设计的一道容易题,可以让学生进一步理解并掌握等差数列的定义,找到自学的成就感和学习的自信心。

  设计意图:本题是为应用等差数列的通项公式求等差数列的通项而设计的一道容易题,可以让学生进一步熟悉等差数列的通项公式,以此为契机,让学生再次熟记等差数列的通项公式,并深入理解等差数列的通项公式的结构特点(等差数列的通项公式是关于n的一次函数)。

  变式训练::多媒体显示(比一比)

  设计意图:当场巩固学生对等差数列通项的运用,强化学生对等差数列通项的记忆。

  设计意图:第(1)题是为进一步巩固等差数列的公差与通项公式的概念以及通项公式的简单应用而设计。 第(2)题主要是为了突出体现通项公式的推广形式 在解题中的优越性而设计,并且用两种解法解之,让学生自己去比较两种方法的优劣,强化学生对通项公式的推广形式的应用意识。

  变式训练:多媒体显示(动一动)

  设计意图:本题是对"等差数列通项公式的推广形式"的强化提高训练,利用"推广公式"快速巧妙地求出公差 ,再利用另一个"推广公式"求任意一项。同时还强化了等差数列的概念。

  (四)反馈练习

  1.必修5课本 页练习1的第1题和第2题(要求学生在短时间内完成)。

  设计意图:使学生熟悉通项公式,对学生进行基本技能训练。

  2.必修5课本 页练习1的第3题。3.回答本小节课本开头提出的问题:在(1)中,最后一排有多少个座位?在(3)中,第4个图案中有白色地面砖多少块?第 个图案中有白色地面砖多少块?

  设计意图:加强学生的数学建模思想的训练。

  (五)课堂小结:(由学生自己总结这堂课的收获,最后多媒体显示)1.等差数列的概念及数学表达式。强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数 2.等差数列的通项公式 ,以及通项公式的推广形式 , 并会知三求一 3.用"数学建模"思想方法解决简单的实际问题

  (六)布置作业

  1.课本必修5 页练习2第2题。

  2.课本必修5 页习题1-2 A组第1,2,3题

  设计意图:作业设计从易到难,分层次递进,符合学生的心理特点,也有利于提高同学

  们的求知欲和满足不同层次的学生需求。

  五、板书设计

  由于多媒体辅助教学,黑板被遮了一半,可用黑板一分为二,一半用来写定义,通项公式以及它的推广公式等,在板书中突出本节重点,将定义中"从第二项起"及"同一常数""等差"等几个字用红色粉笔标注,另一半留给学生演板,整个板书做布局合理,体现精简。

  六、教学反思

  由于学生的数学基础较薄弱,给学生足够的自主学习时间,让他们思考,交流,归纳,概括,对成绩好的学生所收到的成效肯定较大,但对成绩太差的学生恐怕收效甚微,为了兼顾全局,教师对本堂课还是要用约10-15分钟时间进行精讲,故作为教师要根据具体情况随机应变调控课堂。

  ……

数学说课稿 篇8

  大家好!今天,我说课的题目是《长方体和正方体的认识》。

  一 说教材

  《长方体和正方体的认识》是在学生初步认识了长方形和正方形的基础上,进一步研究长方体和正方体,这是学生比较深入地研究立体几何图形的开始。

  几何知识具有很高的抽象性,而这节课又是学生初次较深入研究立体几何图形,因此,根据本节课的地位和以小学生形象思维为主,空间薄弱的特点我确定本节课的

  二 教学目标

  知识目标:使学生掌握长方体和正方体的特征,认识长方体和正方体的长、宽、高。

  能力目标:培养学生初步看立体图形的能力。并逐步形成空间观念。

  情感目标;在学习过程中,培养学生团结合作的精神。

  三 教学重、难点

  掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高是本节课的重点,难点在于形成长方体和正方体的概念,发展学生的空间观念。

  四 教学方法

  针对几何知识教学的特点,本节课的教学内容以及小学生形象思维为主空间观念薄弱的特点,我打算采用讲授法、观察发现法,以及分组讨论合作探究的形式,并运用多媒体教学,辅导教学,让学生在观察感知各种实物的基础上动手操作,比一比、量一量、做一做,利用这些方法来激发学生的兴趣,调动学生的学习积极性,通过一系列有序活动培养学生动口、动手、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

  本节课的内容属于几何知识中的概念教学,立体图形的教学必须在利用实物模型的直观活动中,通过分析、比较、综合、初步概括形体的特征,在此基础上抽象出图形,所以,我确定本次课的教学过程为:

  五 教学过程

  (一)从分类中引入

  1、请看大屏幕,以4人组为单位,把大屏幕上的图片进行分类。

  小组汇报。要求:你们是怎样分类的?标准是什么?

  [学习生活中的数学是新课程的基本理念。这要让学生从生活中接触过的物体图片,体验到数学于生活。学生在分类时,有的按制作材料不同分类;有的按形状不同分类;有的按大小分类;有的按颜色分类……课中让学生知道数学课研究的是形状,大小,颜色和材料不是数学课研究的对象。培养学生用数学的眼光去观察生活。体验我们的数学学习和生活紧密相连。]

  2、仿照以长方体与非长方体为标准的组分类法,请大家把所有的长方体和正方体都挑出来。这节课我们就来研究长方体和正方体(出示课题)。把另一堆放在一边。

  (二)在观察讨论中了解长方体、正方体面的特点

  1、拿一个长方体,让学生观察后,问:它是什么图形?长方体的面有什么特点?

  学生观察后讨论特点,并说明你怎么证明?

  汇报:长方体有6个面,6个面都是长方形,相对的面大小相等。

  例如证明相对的面大小相等:(学生可能会有以下几种方法)

  (1)可以通过度量长和宽算出面积。

  (2)可以把一个面用剪刀剪下来与相对的面去比。

  (3)也可以把一个面描在纸上,再用相对的面去比。

  ……

  [ 学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。这里,让学生观察长方体面的'特点后,验证自己的观察。验证的方法是开放的,学生可以发挥想象力,采用自己喜欢的方式进行验证,使学生的个性得到发展,创造欲望得到满足。]

  2、在你们分出的长方体中,有没有特殊的类型。学生汇报:

  (1)有一个长方体有2个面是正方形,4个面是长方形,而且2个正方形大小相等,4个长方形大小也相等。

  (2)有一个长方体的6个面都是正方形,这一类(我们把它们叫做正方体或立方体)是长方体的一种特殊情况。(并让学生画集合图表示长方体和正方体的关系。)

  (3)再让学生猜想一下,有没有一个长方体有4个面都是正方形,2个面是长方形的呢?[ 从一般的长方体到特殊的长方体,理解正方体是特殊的长方体。通过猜想,进一步发展学生的空间观念。]

  (三)在制作中了解长方体、正方体顶点和棱的特点

  1、自学课本1-2页了解两个面相交的边叫做棱。三条棱相交的点叫顶点。相交于一个顶点的三条棱的长度,分别叫长、宽、高。

  2、用小圆球(顶点)和4种不同长度(分别以A,B,C,D表示)的小棒(棱),制作长方体、正方体模型(如下图)。

  3、出示小组合作制作要求:

  (1)每组制作一个长方体和一个正方体;

  (2)制作前先小组讨论填好材料单;

  材 料 单

  模 型 顶 点 棱

  (小圆球) (小棒)

  A B C D

  长方体 个 条 条 条 条

  正方体 个 条 条 条 条

  (3)按材料单准备好材料;

  (4)制作完成后,讨论棱和顶点有什么特点。如果材料不够或有多余,请说明为什么?

  4、小组活动。

  5、汇报:长方体是怎么准备材料的?顶点有什么特点?棱有什么特点?正方体怎么准备材料?顶点和棱各有什么特点?

  [ 通过观察—讨论—准备材料—制作—汇报等一系列活动,让学生体验研究数学问题的方法和过程。学生在动手操作、合作交流中理解并掌握了长方体和正方体的棱的特点。同时,通过学生之间的合作交流,让不同知识水平的学生在小组学习中进行互补、互学。为学生创造性思维的培养提供了空间和时间。提高了学生的实践能力。]

  (四)在设计填写学生报告单中巩固

  请大家按小组设计一张学习的报告单来小结今天学习的内容。

  [ 课堂小结用实验报告的形式让学生自己设计学习的报告单,并根据自己的学习过程进行填写,在填写报告中理解知识和反省自已学习的策略和方法。]

  (五)课外延伸中深化

  1、找一个火柴盒和魔方,分别量出它们的长、宽、高。

  2、用硬纸板做一个长方体和正方体的模型,比较它们的相同点和不同点。

  [课外实践操作,把数学学习从课堂延伸到课外,进一步体验到数学与生活紧密相关。]

  本课为学生提供具体的实践活动,创设引导学生探索、操作和思考的情景。整节课大部分时间学生都在动手实践,有独立探究,有合作交流;有猜想,有验证;有观察,有分析,有想象,有解决问题的策略。力求让学生在尽可能大的活动空间中切实体验到数学就在自己的身边,数学对解决实际问题是有用的。

【数学说课稿】相关文章:

“用数学”数学说课稿03-09

数学说课稿11-05

数学广角说课稿11-07

数学乐园说课稿11-12

数学说课稿03-25

初中数学的说课稿02-16

小学数学的说课稿01-09

数学统计说课稿07-02

《数学广角》说课稿06-27

数学活动说课稿07-09