当前位置:育文网>教学文档>说课稿> 高中数学说课稿

高中数学说课稿

时间:2022-02-24 08:03:59 说课稿 我要投稿

高中数学说课稿模板汇总十篇

  作为一位优秀的人民教师,时常会需要准备好说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。那么说课稿应该怎么写才合适呢?下面是小编整理的高中数学说课稿10篇,欢迎阅读与收藏。

高中数学说课稿模板汇总十篇

高中数学说课稿 篇1

  一、教材分析:

  《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。

  二、学情分析:

  学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

  三、教学目的:

  1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

  2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

  3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

  四、教学重、难点

  重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

  难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

  五、教学方法

  本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

  六、数学思想的体现:

  1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

  2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。

  3、归纳思想:主要体现在以下三个环节①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。

  七、教学过程:

  1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。

  2、引入新课:

  (1)平行四边形法则的引入。

  学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。

  设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的`“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。

  (2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入(如图)。

  所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。

  这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都可以用。

  设计意图:由平行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。

  (3)共线向量的加法

  方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。

  方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大

  的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。

  反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则 通过以上几个环节的讨论,可以作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。

  设计意图:通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,可以化解难点。

  (4)向量加法的运算律

  ①交换律:交换律是利用平行四边形法则的图形,又结合三角

  形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。

  ②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。

  接下来是对应的两个练习,运用交换律与结合律计算向量的和。

  设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。

  3、小结

  先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。

  (1)平行四边形法则:起点相同,适用于不共线向量的求和。

  (2)三角形法则首尾相接,适用于任意多个向量的求和。

  (3)运算律

高中数学说课稿 篇2

  一、教材分析

  1、教学内容

  本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

  2、教材的地位和作用

  函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

  3、教材的重点﹑难点﹑关键

  教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念。

  教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。

  教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程、

  4、学情分析

  高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强。

  二、目标分析

  (一)知识目标:

  1、知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。

  2、能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。

  3、情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。

  (二)过程与方法

  培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。

  三、教法与学法

  1、教学方法

  在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。

  2、学习方法

  自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。

  四、过程分析

  本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。

  (一)问题情景:

  为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知欲望,为学习函数的单调性做好铺垫。(祥见课件)

  新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

  (二)函数单调性的定义引入

  1、几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:

  问题1、观察下列函数图象,从左向右看图象的变化趋势?

  问题2:你能明确说出“图象呈上升趋势”的意思吗?

  通过学生的交流、探讨、总结,得到单调性的“通俗定义”:

  从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?

  通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。

  设计意图:

  ①通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。

  ②通过学生已学过的一次y=2x+4,,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。

  ③从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。

  ④从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。

  (三)增函数、减函数的定义

  在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。

  定义中的“当x1x2时,都有f(x1)

  注意:

  (1)函数的单调性也叫函数的增减性;

  (2)注意区间上所取两点x1,x2的任意性;

  (3)函数的单调性是对某个区间而言的,它是一个局部概念。

  让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。

  设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的.单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处

  理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。

  (四)例题分析

  在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。

  2、例2、证明函数在区间(—∞,+∞)上是减函数。

  在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。

  变式一:函数f(x)=—3x+b在R上是减函数吗?为什么?

  变式二:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。

  变式三:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。

  错误:实质上并没有证明,而是使用了所要证明的结论

  例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。

  (五)巩固与探究

  1、教材p36练习2,3

  2、探究:二次函数的单调性有什么规律?

  (几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。

  设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。

  通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。

  (六)回顾总结

  通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。

  设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。

  (七)课外作业

  1、教材p43习题1。3A组1(单调区间),2(证明单调性);

  2、判断并证明函数在上的单调性。

  3、数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。

  设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。

  (七)板书设计(见ppt)

  五、评价分析

  有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了:

  第一、教要按照学的法子来教;

  第二、在学生已有知识结构和新概念间寻找“最近发展区”;

  第三、强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

  本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,激情引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。

高中数学说课稿 篇3

  一、说教材:

  1、教材的地位与作用

  导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。

  2、教学的重点、难点、关键

  教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。

  教学难点:理解导数的几何意义的本质内涵

  1) 从割线到切线的过程中采用的逼近方法;

  2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.

  二、说教学目标:

  根据新课程标准的要求、学生的认知水平,确定教学目标如下:

  1、知识与技能 :

  通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。

  过程与方法:

  经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解

  通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。

  3、情感态度与价值观:

  渗透逼近、数形结合、以直代曲等数学思想,激发学生学习兴趣,引导学生领悟特殊与一般、有限与无限,量变与质变的辩证关系,感受数学的统一美,意识到数学的应用价值

  三、说教法与学法

  对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:

  教法:从圆的切线的定义引入本课,再引导学生讨论一般曲线的切线的定义,通过几何画板的动画演示,得出曲线的切线的“逼近”法的定义.同样通过几何画板的实验观察得到导数的几何意义和直观感知“逼近”的数学思想.因此,我采用实验观察法、探究性研究教学和信息技术辅助教学法相结合,以突出重点和突破难点;

  学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了

  自主 、合作、探究的学习方法。

  教具: 几何画板、幻灯片

  四、说教学程序

  1.创设情境

  学生活动——问题系列

  问题1 平面几何中我们是怎样判断直线是否是圆的'割线或切线的呢?

  问题2 如图直线l是曲线C的切线吗?

  (1)与 (2)与 还有直线与双曲线的位置关系

  问题3 那么对于一般的曲线,切线该如何定义呢?

  【设计意图】:通过类比构建认知冲突。

  学生活动——复习回顾

  导数的定义

  【设计意图】:从理论和知识基础两方面为本节课作铺垫。

  2.探索求知

  学生活动——试验探究

  问一;求导数的步骤是怎样的?

  第一步:求平均变化率;第二步:当趋近于0时,平均变化率无限趋近于的常数就是。

  【设计意图】:这是从“数”的角度描述导数,为探究导数的几何意义做准备。

  问二;你能借助图像说说平均变化率表示什么吗?请在函数图像中画出来。

  【设计意图】:通过学生动手实践得到平均变化率表示割线PQ的斜率。

  问三;在的过程中,你能描述一下割线PQ的变化情况吗?请在图像中画出来。

  【设计意图】:分别从“数”和“形”的角度描述的过程情况。从数的角度看,,Q();从形的角度看, 的过程中,Q点向P点无限趋近,割线PQ趋近于确定的位置,这个位置的直线叫做曲线在 处的切线。

  探究一:学生通过几何画板的演示观察割线的变化趋势,教师引导给出一般曲线的切线定义。

  【设计意图】: 借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点;学生在过程中,可以体会逼近的思想方法。能够同时从数与形两个角度强化学生对导数概念的理解。

  问四;你能从上述过程中概括出函数在处的导数的几何意义吗?

  【设计意图】:引导学生发现并说出:,割线PQ切线PT,所以割线

  PQ的斜率切线PT的斜率。因此,=切线PT的斜率。

  五、教学评价

  1、通过学生参加活动是否积极主动,能否与他人合作探索,对学生的学习过程评价;

  2、通过学生对方法的选择,对学生的学习能力评价;

  3、通过练习、课后作业,对学生的学习效果评价.

  4、教学中,学生以研究者的身份学习,在问题解决的过程中,通过自身的体验对知识的认识从模糊到清晰,从直观感悟到精确掌握;

  5、本节课设计目标力求使学生体会微积分的基本思想,感受近似与精确的统一,运动和静止的统一,感受量变到质变的转化。希望利用这节课渗透辨证法的思想精髓.

高中数学说课稿 篇4

  我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:

  一、教材分析

  教材的地位和作用

  “曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!

  根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。

  二、教学目标

  根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:

  知识目标:

  1、了解曲线上的点与方程的解之间的一一对应关系;

  2、初步领会“曲线的方程”与“方程的曲线”的概念;

  3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;

  4、强化“形”与“数”一致并相互转化的思想方法。

  能力目标:

  1、通过直线方程的引入,加强学生对方程的解和曲线上的点的'一一对应关系的认识;

  2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;

  3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。

  情感目标:

  1、通过概念的引入,让学生感受从特殊到一般的认知规律;

  2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。

  三、重难点突破

  “曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。

  怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。

  四、学情分析

  此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。

高中数学说课稿 篇5

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.

  4、重点与难点

  教学重点(1)函数单调性的概念;

  (2)运用函数单调性的.定义判断一些函数的单调性.

  教学难点(1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性.

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.

  三、 教学过程

教学


环节


教 学 过 程


设 计 意 图


问题


情境


(播放中央电视台天气预报的音乐)


满足在定义域上的单调性的讨论.


2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程.


3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.


4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.



高中数学说课稿 篇6

  各位老师:

  今天我说课的题目是《输入、输出语句和赋值语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  我们用自然语言或程序框图描述的算法,但是计算机是无法“看得懂,听得见”的。因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序。程序设计语言有很多种。为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句、条件语句和循环语句.。而我们今天所要学习的是前三种算法语句,它们基本上是对应于算法中的顺序结构的。

  2.教学的重点和难点

  重点:正确理解输入语句、输出语句、赋值语句的作用。

  难点:准确写出输入语句、输出语句、赋值语句。

  二、教学目标分析

  1.知识与技能目标:

  (1)正确理解输入语句、输出语句、赋值语句的结构。

  (2)会写一些简单的程序。

  (3)掌握赋值语句中的“=”的作用。

  2.过程与方法目标:

  (1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。

  (2)通过模仿,操作,探索的过程,体会算法的基本思想和基本语句的用途,提高学生应用数学软件的能力.

  3.情感,态度和价值观目标

  (1) 通过对三种语句的了解和实现,发展有条理的思考,表达的能力,提高逻辑思维能力.

  (2) 学习算法语句,帮助学生利用计算机软件实现算法,活跃思维,提高学生的数学素养.

  (3) 结合计算机软件的应用, 增强应用数学的意识,在计算机上实现算法让学生体会成功喜悦.

  三、教学方法与手段分析

  1.教学方法:引导与合作交流相结合,学生在体会三种语句结构格式的过程中,让学生积极参与,讨论交流,充分挖掘三种算法语句的格式特点及意义,在分析具体问题的过程中总结三种算法语句的思想与特征.

  2.教学手段:运用计算机、图形计算器辅助教学

  四、教学过程分析

  1. 创设情境(约5分钟)

  在课的开始,我要求学生们举出一些在日常生活中所应用到的有关计算机的例子,如:听MP3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,并告诉他们在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,然后接着问他们知不知道计算机到底是怎样工作的.?通过这个问题引出我们今天所要学习的内容。(板出课题)

  在这个过程中,我让学生们将课本学习的内容与现实生活联系在了一起,这样能够激起他们对接下来的所要学习内容的兴趣,为整节课的学习打下一个良好的基础。

  2.探究新知(约15分钟)

  这里我先给出一个题目:用描点法作出函数

  的图象,用描点法作函数的图象时,需要先求出自变量与函数的对应值。编写程序,分别计算当

  时的函数值。(程序由我在课前准备好,教学中直接调用运行)

  程序:INPUT“x=”;x 输入语句

  y=x^3+3*x^2-24*x+30 赋值语句

  PRINT x 输出语句

  PRINT y 输出语句

  END

  (学生们先看,再跟着做,先不必深究该程序如何得来,只要模仿编写程序,通过运行自己编写的程序发现问题所在,进一步提高学生的模仿能力)

  之后,我向学生们提问:在这个程序中,他们觉得哪些是输入语句、输出语句和赋值语句?(同学们互相交流、议论、猜想、概括出结论。提示:“input”和“print”的中文意思,还要请学生们注意到在赋值语句中的赋值号“=”与数学中的等号意义不同。)

  此过程由老师引导,学生们自己讨论并总结出什么是输入语句、输出语句和赋值语句,这样比老师直接地将知识传授给他们,学习的效果更佳,同时也锻炼了学生们思考问题的能力和概括能力,激发学习兴趣。

  然后给出一个思考题:在1.1.2中程序框图中的输入框,输出框的内容怎样用输入语句、输出语句来表达?(学生讨论、交流想法,然后请学生作答)这样可以及时应用刚刚学习的内容,并可以将前后所学知识联系起来。

  3.例题精析(约12分钟)

  在本环节中我为学生们准备了三道例题,这三道例题均选自课本的例2、例3和例4,学生通过这几道例题的讲解,结合计算机程序上机运用,可以掌握在程序设计语言中的前三种算法语句,体会到他们在程序中的意义和作用。

  4.课堂精练(约4分钟)

  P15 练习 1.

  提问:如果要求输入一个摄氏温度,输出其相应的华氏温度,又该如何设计程序?(学生课后思考,讨论完成)通过提问启发学生们思考,发散思维。

  5.课堂小结(约5分钟)

  ⑴输入语句、输出语句和赋值语句的结构特点及联系

  ⑵应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题

  ⑶ 赋值语句中“=”的作用及应用

  ⑷编程一般的步骤:先写出算法,再进行编程。

  6.布置作业

  P23 习题1.2 A组 1(2)、2

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

  7.板书设计

高中数学说课稿 篇7

  各位评委老师你们好,我是第?号选手。我今天说课的题目是《 》,我将从教材分析,教法,学法,教学程序,等几个方面进行我的说课。

  一,教材分析

  这部分我主要从3各方面阐述

  1, 教材的地位和作用

  《 》是北师大版必修?第?章第?节的内容,在此之前,同学们已经学习了、,这些对本节课的学习有一定的铺垫作用,同是学好本节的内容不仅加深前面所学习的知识,而且为后面我们将要学习的?知识打好基础,?所以说本节课的学习在整个高中数学学习过程中占有重要地位!

  2.根据教学大纲的规定,教学内容的要求,教学对象的实情我确定了如下3维教学目标(i)知识目标:

  II能力目标;初步培养学生归纳,抽象,概括的思维能力。

  训练学生认识问题,分析问题,解决问题的能力

  III情感目标;通过学生的探索,史学生体会数学就在我们身边,让学生发现生活的数学,培养不断超越的创新品质,提高数学素养。

  3, 结合以上分析以及高一学生的人知水平我确定啦本节课的重难点

  教学重点:

  教学难点;

  二,教法

  教学方法是完成教学任务的手段,恰当的学者教学方法至关重要,根据本节课的教学内容,考虑到高一学生已经初步具有一定的探索能力,并喜欢挑战问题的实际情况,为啦更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的知道思想。我主要采用 问题探究法 引导发现发,案例教学法,讲授法,在教学过程中精心设计带有启发性和思考性的问题,满足学生探索的欲望,培养学生的学习兴趣,激发来自学生主体最有利的动力。并运用多媒体课件的形式,更形象直观,提高教学效果的同时加大啦课堂密度!

  学法

  根据学生的年龄特征,运用讯息渐进,逐步升入,理论联系实际的规律,让学生从问题中质疑,尝试,归纳,总结,运用。培养学生发现问题,研究问题,分析问题的能力。自主参与知识的发生,发展,形成过程,完成从感性认识 到理性思维的质的飞跃,史学生在知识和能力方面都有所提高。

  三,教学程序

  1, 创设情境,提出问题

  让学生产生强烈的问题意识,学生试着利用以前的知识经验,同化索引出当前学习的新知识,激发学习的兴趣和动机。

  2, 引导探究,直奔主题。(揭示概念)

  参用小组合作的方式,各小组派代表发表成果,教师作为教学的引导者,给予肯定的评价,并给出一定的指导,最后师生共同得出??!教师引导学生进一步学习。整个过程充分突出学生的主体地位,培养学生合作探究的能力,激发兴趣,更让学生在思考学术问题以及解决数学问题的.思想方法上有更深的交流。

  3, 自我尝试,初步应用

  在讲解是,不仅在于怎样接,更在于为什么这样解,及时引导学生探究运用知识,解决问题的方法,及时对解题方法和规律进行概括,有利于培养学生的思维能力。 4 .当堂训练,巩固深化(反馈矫正)

  通过学生的主体参与,让学生巩固所学的知识,实现对知识再认识的以及在数学解题思想方法层面上进一步升华

  5,归纳小结,回顾反思

  从知识,方法,经验等方面进行总结。让学生思考本节课学到啦那些知识,还有那些疑问。本节课最大的体验。本节课你学会那些技能。

  知识性的内容小结,可以把课堂教学传授的知识尽快转化为学生的素养,数学思想发放的小结,可以使学生更深刻地理解数学思想发放在解题中的地位和作用,并且逐步培养学生良好的个性品质目标。

  ,6,变式延伸,布置作业

  必做题,对本届课学生知识水平的反馈。选作题,对本节课知识内容的延伸。使不同层次学生都可以收获成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,让每个学生在原有的基础上有所发展。做到人人学数学,人人学不同的数学。

  7板书设计

  力图简洁,形象,直观,概括以便学生易于掌握。

  四,教学评价

  学生学习结果评价当然重要,但是学习过程的评价更加重要。本节课中高度重视学生学习过程中的参与度,自信心,团队精神,合作意识,独立思考习惯的养成。数学发现的能力,以及学习的兴趣和成就感,,学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多学生主动参与,师生对话可以实现师生合作,适度的研讨可以驻京生生交流,知识的生成和问题的解决可以让学生感受到成功的喜悦。缜密的思考可以培养学生独立思考的习惯,让学生在教室评价,学生评价以及自我评价的过程中体验知识的积累,探索能力的长进和思维品质的提高,为学生的可持续发展打下基础,

  以上就是我的说课内容。不当之处,希望各位老师给予指正。谢谢各位评委老师!你们幸苦啦!

高中数学说课稿 篇8

  尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.

  一、教材分析

  1、 教材的地位和作用

  (1)本节课主要对函数单调性的学习;

  (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

  (3)它是历年高考的热点、难点问题

  (根据具体的课题改变就行了,如果不是热点难点问题就删掉)

  2、 教材重、难点

  重点:函数单调性的定义

  难点:函数单调性的证明

  重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

  二、教学目标

  知识目标:(1)函数单调性的定义

  (2)函数单调性的证明

  能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

  情感目标:培养学生勇于探索的精神和善于合作的意识

  (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

  三、教法学法分析

  1、教法分析

  “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

  (前三部分用时控制在三分钟以内,可适当删减)

  四、教学过程

  1、以旧引新,导入新知

  通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的`特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

  2、创设问题,探索新知

  紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

  让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

  让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

  3、 例题讲解,学以致用

  例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

  例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

  例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

  学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

  4、归纳小结

  本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

  5、作业布置

  为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2

  6、板书设计

  我力求简洁明了地概括本节课的学习要点,让学生一目了然。

  (这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

  五、教学评价

  本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

高中数学说课稿 篇9

  说教材:

  1、地位、作用和特点:

  《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。

  本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。

  教学目标:

  根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

  (1)知识目标:A、B、C

  (2)能力目标:A、B、C

  (3)德育目标:A、B

  教学的重点和难点:

  (1)教学重点:

  (2)教学难点:

  二、说教法:

  基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

  导入新课 新课教学

  反馈发展

  三、说学法:

  学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

  1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

  本节教师通过列举具体事例来进行分析,归纳出 ,并依

  据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。

  2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过

  演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的`事实和深刻的理论思维结合起来的特点。

  3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

  4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

  四、教学过程:

  (一)、课题引入:

  教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

  (二)、新课教学:

  1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

  2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

  (三)、实施反馈:

  1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

  2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

  五、板书设计:

  在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

  六、说课综述:

  以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

  总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿 篇10

  大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。

  一 教材分析

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

  根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

  能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的'兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  二 教法

  根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

  三 学法:

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四 教学过程

  第一:创设情景,大概用2分钟

  第二:实践探究,形成概念,大约用25分钟

  第三:应用概念,拓展反思,大约用13分钟

  (一)创设情境,布疑激趣

  “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

【高中数学说课稿】相关文章:

高中数学说课稿07-09

高中数学《集合》说课稿07-22

高中数学《向量》说课稿范文02-15

高中数学说课稿范文11-02

关于高中数学说课稿11-26

高中数学说课稿六篇01-23

高中数学说课稿9篇01-28

【精选】高中数学说课稿4篇02-03

高中数学《点到直线距离》说课稿02-15

高中数学说课稿15篇02-15