当前位置:育文网>教学文档>说课稿> 《二项式定理》说课稿

《二项式定理》说课稿

时间:2024-09-28 00:21:48 说课稿 我要投稿
  • 相关推荐

《二项式定理》说课稿

  作为一名老师,就难以避免地要准备说课稿,编写说课稿助于积累教学经验,不断提高教学质量。那么说课稿应该怎么写才合适呢?以下是小编收集整理的《二项式定理》说课稿,欢迎大家分享。

《二项式定理》说课稿

《二项式定理》说课稿1

  一、教材分析

  1、地位和作用:

  二项式定理是选修2-3的1.3节的第一课时,本节课是在学习了排列组合的基础上学习的,并为后面学习概率中的二项分布奠定了基础,所以它是承上启下的一节课。二项式定理不仅能解决某些整除性、近似计算问题的一种方法,并且还能解释集合的子集个数问题;再者,二项式定理不仅仅是初中多项式乘法的拓展,它又是数学分析中函数级数展开式的一个特例,在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用,因此这节课在高中数学中有着十分重要的作用。

  2.重点难点

  根据本节教材特点及学生的认知结构确定本节课的教学重点为:二项定理的推导及通项公式的运用

  由于二项式定理的导出对学生来讲有一定的难度所以确定本节课的难点为:二项式定理的推导

  二、目标分析

  1、结合重点中学学生的实际情况,确定本节课的`教学目标如下:

  (1)掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项。

  (2)通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力。

  (3)激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识。

  2、教法、学法:

  (1)贯穿好“过程性”原则,要重视学生的参与过程,又要重视知识的重现过程。在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程。

  (2)变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者。

  三、教学过程分析:

  (一)创设情境,激发兴趣

  提出问题:“今天是星期六,我能很快知道再过810天的那一天是星期几,你能想出来吗?”

  设计意图:根据教学内容特点和学生的认识规律,给学生提出一些能引起思考和争论性的题目,即一些内容丰富、背景值得进一步探究的诙谐有趣的题目、给学生创造一个“愤”和“悱”的情境,利用问题设下认知障碍,激发学生的求知欲望。

  (二)问题初探

  1、从具体问题入手,启发学生将这个问题转化成一个数学问题:“求810被7除的余数是多少?”因为8=7+1,82=(7+1)2=72+2*7+1,83=(7+1)3=73+3*72+3*7+1,那810=(7+1)10又如何展开呢?

  这就要用到我们今天将要学习的二项式定理。(板书题目“二项式定理”)

  2、先让学生自己动手运用多项式乘多项式的法则写出(a+b)2、(a+b)3、(a+b)4的展开式,然后提出用这种方法写出(a+b)10的展开式容易吗?(a+b)100、(a+b)n呢?

  设计意图:复习旧知识,提问设疑,逐步推进,引起学生对学习的注意,为学生学习新课内容作知识上、方法上、心理上的准备。

  (三)理性探究

  1.引导学生对写出的(a+b)2、(a+b)3、(a+b)4的展开式进行下列四个方面的探究:

  ①项数;

  ②各项次数;

  ③字母a、b指数的变化规律;

  ④各项系数

  在此过程中教师提出问题学生思考学生小组讨论,自由发表见解。

  2.学生虽然注意到各展开式的结构特征,也很快能得出:①项数;②各项次数;③字母a、b指数的变化规律,但还缺乏丰富的联想意识,并且对各项系数的探究出现困难。于是进一步启发学生从多项式乘以多项式的过程中去发现思路,即研究a4、a3b……这些项的形成过程中去寻找解决问题的方法,学生才领悟到a4是从(a+b)(a+b)(a+b)(a+b)四个括号中,每个括号都取a然后相乘而得到,即每个括号都不取b,最后学生根据刚学过的组合数的算法得到共有种情况,因此a4的系数是。利用同样的即前面学过的分步计数原理办法学生探究得到含a3b、a2b2、ab3、b4这些项的系数,所以学生不难得到(a+b)4的展开式。

  设计意图:学生通过对三个展开式的自主探讨,亲历了知识的发生、发展、形成的过程,从而发现问题,提出问题,并在老师的引导下解决问题,达到了“创造性地使用教材,培养学生的创新意识”教学目的

  3.归纳、猜想

  学生通过对(a+b)2、(a+b)3、(a+b)4三个展开式探究,由学生归纳得出(a+b)n展开式有如下特性:

  (1)共有n+1项;

  (2)各项的次数都等于二项式的次数n;

  (3)字母a的指数由n递减到0;同时字母b的指数由0递增到n;

  (4)各项的系数依次为,并利用组合知识给出解释,得出二项式定理。

  设计意图:学生在探究过程中通过观察、发现,类比从而是进行必要的归纳和合理的猜想得出结论,这是数学教学提创培养的,是一种创造性的思维活动,是掌握探求新知识的一种手段,也是进一步提高学生的归纳、推理、猜想能力的一种途径。

《二项式定理》说课稿2

  一、教材分析:

  1、知识内容:二项式定理及简单应用

  2、地位及重要性

  二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,为随后学习的概率知识及高三选修概率与统计,作知识上的铺垫。二项展开式与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和更高的层次来审视初中学习的关于多项式变形的知识。运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。

  3、教学目标

  A、知识目标:

  (1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律

  (2)能够应用二项式定理对所给出的二项式进行正确的展开

  B、能力目标:

  (1)在学生对二项式定理形成过程的参与、探讨过程中,培养学生观察、猜想、归纳的能力及分类讨论解决问题的能力

  (2)培养学生的化归意识和知识迁移的能力

  C、情感目标:

  (1)通过学生自主参与和二项式定理的形成过程培养学生解决数学问题的信心;

  (2)通过学生自主参与和二项式定理的形成过程培养学生体会到数学内在和谐对称美;

  (3)培养学生的民族自豪感,在学习知识的过程中进行爱国主义教育。

  4、重点难点:

  重点:

  (1)使学生参与并深刻体会二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律;

  (2)能够利用二项式定理对给出的二项式进行正确的展开。

  难点:二项式定理的发现。

  二、教法学法分析

  为了达到这节课的`目标:掌握并能运用二项式定理,让学生主动探索展开式的由来是关键。“学习任何东西最好的途径是自己去发现”正所谓“学问之道,问而得,不如求而得之深固也”本节课的教法贯穿启发式教学原则,以启发学生主动学习,积极探索为主。创设一个以学生为主体,师生互动、共同探索的教与学的情境。通过复习引入,引申设疑,实验猜想,归纳推广等环节进行对此定理的探索。不仅重视知识的结果,而且重视知识的发生、发现和解决的过程,贯切新课程理念。

  另外,根据“近发展区的理论”精心设置问题,调控问题的解决过程培育这节课最佳的知识生长点。

  三、教学过程

  1、情景设置

  问题1:若今天是星期二,再过30天后的那一天是星期几?怎么算?

  预期回答:星期四,将问题转化为求“30被7除后算余数”是多少?

  问题2:若今天是星期二,再过810天后的那一天是星期几?

  问题3:若今天是星期二,再过天后是星期几?怎么算?

  预期回答:将问题转化为求“被7除后算余数”是多少?

  在初中,我们已经学过了

  (a+b)2=a2+2ab+b2

  (a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3

  (提问):对于(a+b)4,(a+b)5 如何展开?(利用多项式乘法)

  (再提问):(a+b)100又怎么办? (a+b)n (n?N+)呢?

  我们知道,事物之间或多或少存在着规律。也就是研究(a+b)n(n?N+)的展开式是什么?这就是本节课要学的内容。这节课,我们就来研究(a+b)n的二项展开式的规律性。学完本课后,此题就不难求解了。

  (设计意图:使学生明确学习目的,用悬念来激发他们的学习动机。奥苏贝尔认为动机是学习的先决条件,而认知驱力,即学生渴望认知、理解和掌握知识,并能正确陈述问题、顺利解决问题的倾向是学生学习的重要动力。)

  2、新授

  第一步:让学生展开

  问题1:以的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。

  预期回答:①展开式每一项的次数按某一字母降幂、另一字母升幂排列,且两个字母幂指数的和等于乘方指数;②展开式的项数比乘方指数多1;③展开式中第二项的系数等于乘方指数。

  第二步:继续设疑

  如何展开以及呢?

  (设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷的方法的欲望。)

  继续新授

  师:为了寻找规律,我们以中为例

  问题1:以项为例,有几种情况相乘均可得到项?这里的字母各来自哪个括号?

  问题2:既然以上的字母分别来自4个不同的括号,项的系数你能用组合数来表示吗?

  问题3:你能将问题2所述的意思改编成一个排列组合的命题吗?

  (预期答案: 有4个括号,每个括号中有两个字母,一个是、一个是。每个括号只能取一个字母,任取两个、两个,然后相乘,问不同的取法有几种?)

  问题4:请用类比的方法,求出二项展开式中的其它各项系数(用组合数的形式进行填写),

  呈现二项式定理

  3、深化认识

  请学生总结:

  ①二项式定理展开式的系数、指数、项数的特点是什么?

  ②二项式定理展开式的结构特征是什么?哪一项最具有代表性?

  由此,学生得出二项式定理、二项展开式、二项式系数、项的系数、二项展开式的通项等概念,这是本课的重点。

  (设计意图:教师用边讲边问的形式,通过让学生自己总结、发现规律,挖掘学习材料潜在的意义,从而使学习成为有意义的学习。)

  4、巩固应用

  例1-3是课本原题,由于是第一节课所以题目类型较基础

  最后解决起始问题:今天是星期二,再过8n天后的那一天是星期几?

  解: 8n =(7+1)n=C n0 7n+Cn1 7n-1+C n2 7n-2+…+C nn -1 7+C nn

  因为C nn 前面各项都是7的倍数,故都能被7整除.

  因此余数为C nn =1

  所以应为星期三

  四、回顾小结:

  通过学生主动探索的学习过程,使学生清晰的掌握二项式定理的内容,更体会到了二项式定理形成的思考方式,为后继课程(n次独立重复实验恰好发生次)的学习打下了基础。

  而二项式定理内容本身对解释二项分布有很直接的功效,因为二项分布中所有概率和恰好是二项式。

  课后记:

  准备这节课,我主要思考了这么几个问题:

  (1)这节课的教学目的“使学生掌握二项式定理”重要,还是“使学生掌握二项式定理的形成过程”重要?我反复斟酌,认为后者重要。于是,我这节课花了大部分时间是来引导学生探究“为什么可以用组合数来表示二项式定理中各项的二项式系数?”

  (2)学生怎样才能掌握二项式定理?是通过大量的练习来达到目的,还是通过学生对二项式定理的形成过程来记忆?正如前面所说“学问之道,问而得,不如求而得之深固也”。我还是要求学生自主的去探索二项式定理。这样也符合以教师为主导、学生为主体、师生互动的新课程教学理念。

  (3)准备什么样的例题?例题的目的是为了巩固本节课所学,例题1是很直接的二项式定理内容的应用;为了更好的让学生体会到二项式定理形成过程中的思考问题的方式,并培养学生知识的迁移能力,我增加了例题,但是难免还有一些有不足之处,希望各位老师能不吝赐教。谢谢!

《二项式定理》说课稿3

  高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。

  一、内容分析说明

  1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:

  (1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。

  (2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。

  (3)二项式定理是解决某些整除性、近似计算等问题的一种方法。

  2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的

  试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的

  近似值。

  二、学校情况与学生分析

  (1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。

  (2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。

  三、教学目标

  复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:

  1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。

  (2)会运用展开式的通项公式求展开式的特定项。

  2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。

  (2)树立由一般到特殊的.解决问题的意识,了解解决问题时运用的数学思想方法。

  3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。

  四、教学过程

  1、知识归纳

  (1)创设情景:①同学们,还记得吗? 、 、 展开式是什么?

  ②学生一起回忆、老师板书。

  设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。

  ②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。

  (2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

  ②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。

  ③巩固练习 填空

  设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。

  ②变用公式,熟悉公式。

  (3) 展开式中各项的系数C , C , C ,… , 称为二项式系数.

  展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项.

  2、例题讲解

  例1求 的展开式的第4项的二项式系数,并求的第4项的系数。

  讲解过程

  设问:这里 ,要求的第4项的有关系数,如何解决?

  学生思考计算,回答问题;

  老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,

  ②第4项的系数与的第4项的二项式系数区别。

  板书

  解:展开式的第4项

  所以第4项的系数为 ,二项式系数为 。

  选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。

  例2 求 的展开式中不含的 项。

  讲解过程

  设问:①不含的 项是什么样的项?即这一项具有什么性质?

  ②问题转化为第几项是常数项,谁能看出哪一项是常数项?

  师生讨论 “看不出哪一项是常数项,怎么办?”

  共同探讨思路:利用通项公式,列出项数的方程,求出项数。

  老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。

  板书

  解:设展开式的第 项为不含 项,那么

  令 ,解得 ,所以展开式的第9项是不含的 项。

  因此 。

  选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。

  ②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。

  例3求 的展开式中, 的系数。

  解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。

  板书

  解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。

  而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。

  所以 的展开式中 的系数为

  例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.

  解:展开式中前三项的系数分别为1, , ,

  由题意得2× =1+ ,得n=8.

  设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.

  有理项为T1=x4,T5= x,T9= .

  3、课堂练习

  1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.

  答案:C

  2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是

  A.14 B.14 C.42 D.-42

  解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·

  (-1)r·x ,

  当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)

  解析:∵(x +x )n的展开式中各项系数和为128,

  ∴令x=1,即得所有项系数和为2n=128.

  ∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x ,

  令 =5即r=3时,x5项的系数为C =35.

  答案:35

  五、课堂教学设计说明

  1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。

  2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。

  六、个人见解

【《二项式定理》说课稿】相关文章:

《二项式定理》教学反思08-19

勾股定理的说课稿,勾股定理说课稿范文05-06

勾股定理的逆定理说课稿05-15

《正弦定理》说课稿07-30

《勾股定理》说课稿12-16

正弦定理说课稿01-04

《正弦定理》说课稿12-29

《勾股定理》说课稿06-20

勾股定理的逆定理说课稿8篇10-06