当前位置:育文网>高中>高中数学> 高中数学平面向量的公式的知识点总结

高中数学平面向量的公式的知识点总结

时间:2022-02-26 20:20:29 高中数学 我要投稿
  • 相关推荐

高中数学有关平面向量的公式的知识点总结

  总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,他能够提升我们的书面表达能力,因此好好准备一份总结吧。总结怎么写才不会流于形式呢?以下是小编精心整理的高中数学有关平面向量的公式的知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学有关平面向量的公式的知识点总结

  ★定比分点

  定比分点公式(向量P1P=λ?向量PP2)

  设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数λ,使向量P1P=λ?向量PP2,λ叫做点P分有向线段P1P2所成的比。

  若P1(x1,y1),P2(x2,y2),P(x,y),则有

  OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

  x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

  我们把上面的式子叫做有向线段P1P2的定比分点公式

  ★三点共线定理

  若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

  ★三角形重心判断式

  在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

  [编辑本段]向量共线的重要条件

  若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

  a//b的重要条件是xy'-x'y=0。

  ★零向量0平行于任何向量。

  [编辑本段]向量垂直的充要条件

  a⊥b的充要条件是a?b=0。

  a⊥b的充要条件是'+yy'=0。

  ★零向量0垂直于任何向量.

  设a=(x,y),b=(x',y')。

  ★向量的加法

  向量的加法满足平行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  ★向量的减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

  AB-AC=CB.即“共同起点,指向被减”

  a=(x,y) b=(x',y')则a-b=(x-x',y-y').

  ★数乘向量

  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

  当λ>0时,λa与a同方向;

  当λ<0时,λa与a反方向;

  当λ=0时,λa=0,方向任意。

  当a=0时,对于任意实数λ,都有λa=0。

  注:按定义知,如果λa=0,那么λ=0或a=0。

  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

  当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

  当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

  ★数与向量的乘法满足下面的运算律

  结合律:(λa)b=λ(ab)=(aλb)。

  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

  ★向量的的数量积

  定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

  定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

  向量的数量积的坐标表示:ab=xx'+yy'。

  向量的数量积的运算律

  ab=ba(交换律);

  (λa)b=λ(ab)(关于数乘法的结合律);

  (a+b)c=ac+bc(分配律);

  ★向量的数量积的性质

  a?a=|a|的平方。

  a⊥b 〈=〉ab=0。

  |ab|≤|a||b|。

  ★向量的数量积与实数运算的主要不同点

  1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(ab)^2≠a^2b^2。

  2、向量的数量积不满足消去律,即:由ab=ac (a≠0),推不出b=c。

  3、|ab|≠|a||b|

  4、由|a|=|b|,推不出a=b或a=-b。

  4、向量的向量积

  定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

  ★向量的向量积性质:

  ∣a×b∣是以a和b为边的平行四边形面积。

  a×a=0。

  a‖b〈=〉a×b=0。

  ★向量的向量积运算律

  a×b=-b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c.

  注:向量没有除法,“向量AB/向量CD”是没有意义的。

  ★向量的三角形不等式

  1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

  ①当且仅当a、b反向时,左边取等号;

  ②当且仅当a、b同向时,右边取等号。

  2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

  ①当且仅当a、b同向时,左边取等号;

  ②当且仅当a、b反向时,右边取等号。

【高中数学平面向量的公式的知识点总结】相关文章:

《平面向量》说课稿07-19

平面向量教学反思02-09

平面向量基本定理教案08-29

平面向量数量积说课稿03-14

《平面向量》说课稿12篇07-19

高中数学《向量》说课稿范文02-15

高中数学向量解题技巧必看12-06

初中数学扇形的公式知识点03-18

高中数学知识点总结11-12