- 相关推荐
分式方程二教案
作为一位杰出的老师,通常需要准备好一份教案,借助教案可以更好地组织教学活动。那么教案应该怎么写才合适呢?以下是小编为大家整理的分式方程二教案,仅供参考,希望能够帮助到大家。
分式方程二教案1
一、教学目标
1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.
2.通过本节课的教学,向学生渗透转化的数学思想方法;
3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.
二、重点难点疑点及解决办法
1.教学重点:可化为一元二次方程的分式方程的解法.
2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.
3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.
4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.
三、教学步骤
(一)教学过程
1.复习提问
(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?
(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
(3)解方程,并由此方程说明解方程过程中产生增根的原因.
通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同.
在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对类比法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.
在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.
2.例题讲解
例1 解方程.
分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.
解:两边都乘以,得
去括号,得
整理,得
解这个方程,得
检验:把代入,所以是原方程的根.
原方程的根是.
虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学
生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另
外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解
分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.
例2 解方程
分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是
正确地确定出方程中各分母的最简公分母,由于此方程中的'分母并非均按的降幂排列,所
以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.
解:方程两边都乘以,约去分母,得
整理后,得
解这个方程,得
检验:把代入,它不等于0,所以是原方程的根,把
代入它等于0,所以是增根.
原方程的根是
师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.
例3 解方程.
分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分 和互为倒数,由此可设 ,则可通过换元法来解题,通过求出
y后,再求原方程的未知数的值.
解:设,那么,于是原方程变形为
两边都乘以y,得
解得
当时,,去分母,得
解得;
当时,,去分母整理,得
检验:把分别代入原方程的分母,各分母均不等于0.
原方程的根是
此题在解题过程中,经过两次转化,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验.
巩固练习:教材P49中1、2引导学笔答.
(二)总结、扩展
对于小结,教师应引导学生做出.
本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行.
本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了转化与换元的基本数学思想与基本数学方法.
此小结的目的,使学生能利用类比的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握.
四、布置作业
1.教材P50中A1、2、3.
2.教材P51中B1、2
五、板书设计
探究活动1
解方程:
分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次
设,则原方程变为
或无解
经检验:是原方程的解
探究活动2
有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积.
解:设桶的容积为 升,第一次用水补满后,浓度为 ,第二次倒出的农药数为4. 升,两次共倒出的农药总量(8+4 )占原来农药 ,故
整理,
(舍去)
答:桶的容积为40升.
分式方程二教案2
●课题
§3.4.2分式方程(二)
●教学目标
(一)教学知识点
1.解分式方程的一般步骤.
2.了解解分式方程验根的必要性.
(二)能力训练要求
1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.
2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.
(三)情感与价值观要求
1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.
2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.
●教学重点
1.解分式方程的一般步骤,熟练掌握分式方程的解决.
2.明确解分式方程验根的必要性.
●教学难点
明确分式方程验根的必要性.
●教学方法
探索发现法
学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性.
●教学过程
Ⅰ.提出问题,引入新课
[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的'解决,则必须设法解出所列的分式方程.
这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法.
解方程+=2- [师生共解](1)去分母,方程两边同乘以分母的最小公倍数6,得
3(3x-1)+2(5x+2)=6×2-(4x-2).
(2)去括号,得9x-3+10x+4=12-4x+2,
(3)移项,得9x+10x+4x=12+2+3-4,
(4)合并同类项,得23x=13,
(5)使x的系数化为1,两边同除以23,x=.
【分式方程二教案】相关文章:
《解分式方程》教案03-13
《解分式方程》教案7篇03-13
分式方程说课稿07-07
分式方程的应用说课稿11-14
分式方程教学反思02-18
《分式方程》教学反思03-25
分式方程说课稿7篇12-07
分式方程说课稿(7篇)12-07
分式方程教学反思(15篇)03-25
分式方程教学反思15篇02-19