当前位置:育文网>教学文档>教案> 圆的面积教案

圆的面积教案

时间:2022-01-30 12:54:38 教案 我要投稿

圆的面积教案范文六篇

  作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么什么样的教案才是好的呢?以下是小编精心整理的圆的面积教案6篇,仅供参考,欢迎大家阅读。

圆的面积教案范文六篇

圆的面积教案 篇1

  教材说明

  教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。

  这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为3.14(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力

  。 教学建议

  1.这部分内容可以用2课时进行教学,教学圆的面积公式的推导、例3、例4、例5,完成练习二十四。

  2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。

  3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的面积计算公式推导的过程和方法会有不同之处。

  4.教学圆面积计算公式的推导过程时,可以让学生预先准备好一些圆形做学具。

  在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。

  5.教学例3时,列成式子3.1442后,要向学生指出,必须先算平方,后算乘法。

  6.教学例4时,要启发学生想:计算圆的面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:18.843.142;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。

  7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:

  ①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;

  ②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;

  ③计算圆面积用面积单位,计算圆周长用长度单位。

  8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为3.14(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。

  9.关于练习二十四中一些习题的教学建议。

  第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。

  第6题,是求一个数的`平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。

  第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。

  第9题,是实习作业,先让学生讨论测量的方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。

  第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=78.5(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-78.5=21.5(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。

  第15*题,是求组合图形面积的练习。

  教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。

圆的面积教案 篇2

  教材分析:

  初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

  学情分析:

  学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  教学目标:

  1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

  2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

  3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。

  4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

  教学重点:

  通过观察操作,推导出圆面积公式及其应用。

  教学难点:

  极限思想的渗透与圆面积公式的推导过程。

  教学过程:备注:

  活动一:创设情景,提出问题

  1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的.草呢?

  2、圆的面积--含义:圆所占平面的大小叫做圆的面积。

  3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?

  活动二:猜想比较:

  出示图

  师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?

  活动三:自主探究,验证猜想

  1、引导转化:

  师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?

  以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?

  2、动手操作:

  (1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。

  操作引导:A、剪--怎样剪?剪成几份?B、拼--怎样拼?拼成什么?

  (2)展示交流并介绍,选出最合理的剪法。

  (3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?

  想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)

  (4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。

  3、自主推导

  (1)小组合作,选择喜欢的1~2个图形,尝试推导公式。

  (2)学生展示、介绍自己的推导过程

  (3)教师板演圆面积的推导过程

  4、情景延续:

  (1)如果绳长为5米,计算圆的面积和周长。

  (2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?

  5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)

  活动四:实践运用,体验生活

  1、量出自己带来的圆形物体的直径,并计算出面积。

  2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。

  活动五:全课小结

  通过本节课的学习你有哪些收获?

  板书设计

圆的面积教案 篇3

  教学目标:

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重点:

  正确计算圆的面积。

  教学难点:

  圆面积公式的推导。

  教具准备:

  多媒体课件二套,圆片。

  一。情景导入

  1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)

  师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。

  (板书:圆的面积)

  2.师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)

  师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?

  生:这堂课我们要学习圆的面积是怎样求出来的。

  生:学生圆的面积公式。

  师:你们知道圆的面积公式后,你们还想到什么问题?

  生:圆的面积公式根据什么推导出来的。

  师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。

  (通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)

  二、动手操作,探索新知

  1. 猜测(每项用课件出示)

  师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?

  生:不等。

  师:为什么?

  生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。

  师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的`面积怎么求出来?

  生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。

  师:圆的面积和正方形比较谁的面积大?

  生:圆的面积大

  师:可以观察出圆的面积范围在2r2-4r2

  (这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)

  2. 回忆旧知,

  师:圆能不能直接用面积单位支量呢?为什么?

  生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。

  师:该怎么办呢?(教室沉默)

  师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)

  师:这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢?

  生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)

  师:这个办法很好。那么把圆形转化成什么图形呢?

  [评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]

  3.动手操作

  (1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)

  师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)

  (2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?

  生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)

  师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示

  (3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)

  学生汇报讨论结果。生答师继续演示课件。

  生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长宽

  所以圆的面积=周长的一半半径

  S=r

  S=r2

  师:结合公式S=r2,说说圆的面积是怎样推导出来的?

  (4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)

  生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。

  因为 三角形的面积=底高2

  所以 圆的面积=周长的半径的4倍

  S=4r2

  S=r2

  师:我们用三角形也推出了圆的面积公式 S=r2 。同学们还有其它图形来验证吗?

  (5)生:我们把圆转化成梯形来验证。(课件演示)

  生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。

  因为梯形的面积=(上底+下底)高2

  所以圆的面积=周长的一半半径的2倍

  S=2r2

  S=r2 用梯形的面积

  3.小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)

  我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。

  唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!

  圆的面积必需要具备哪些条件?

  [评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]

  (三)课后巩固

  1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。

  (照应了开头,又学练习了面积的计算。)

  2、 根据下面条件求出圆的面积

  r =5分米 d =3米

  3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?

  (用学到的知识来解决生活中的问题,培养学生的应用能力)

  (四)师:这堂课大家学到了什么?有什么收获?

  (学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)

  [评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

圆的面积教案 篇4

  教学目标

  1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

  2.培养学生动手操作的能力,启发思维,开阔思路;

  3.渗透初步的辩证唯物主义思想。

  教学重点和难点

  圆面积公式的推导方法。

  教学过程设计

  (一)复习准备

  我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

  已知半径,圆周长的一半怎么求?

  (出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

  这节课我们一起来学习圆的面积怎么计算。

  (板书课题:圆的面积)

  (二)学习新课

  1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

  决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

  展示曲变直的变化图。

  2.动手操作学具,推导圆面积公式。

  为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的'平面图形。

  思考:

  (1)你摆的是什么图形?

  (2)所摆的图形面积与圆面积有什么关系?

  (3)图形的各部分相当于圆的什么?

  (4)你如何推导出圆的面积?

  (学生开始动手摆,小组讨论。)

  指名发言。(在幻灯前边说边摆。)

  ①拼出长方形,学生叙述,老师板书:

  ②还能不能拼出其它图形?

  学生可以拼出:

  刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

  例1 一个圆的半径是4厘米,它的面积是多少平方厘米?

  S=r2=3.1442=3.1416=50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

圆的面积教案 篇5

  【第一课时】 圆的面积

  一、 教学目标

  1.知识与技能

  理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。

  2.过程与方法

  引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。

  3.情感态度与价值观

  通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。

  二、教学重点

  正确计算圆的面积。

  三、教学难点

  圆面积公式的推导。

  四、教学具准备

  课件、学具。

  五、教学过程

  (一)情境导入

  1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?

  今天这节课我们就来学习圆面积的求法。(板书题目:圆的面积)

  2.看到今天的课题,你都想知道什么?

  3.什么是圆的面积?在哪?摸摸看。

  (学生摸手中圆形纸片,并用手指出圆的面积)

  过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的推导过程。

  (二)复习旧知识

  1.你还记得我们已经学过了哪些图形的面积求法吗?

  (生:长方形、正方形、平行四边形、三角形、梯形)

  2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)

  3.问:其它图形呢?(学生简要叙述其他面积推导过程)

  4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。

  (三)学习新课

  1.请你猜猜看,圆的面积公式应该怎么推导出来?

  (生:转化成已知的图形进行推导)

  2.怎么转化?想想办法。任意的分成几份行吗?

  (生:沿圆的直径将圆平均分成若干份)

  3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:

  (1)以组为单位,先摆图形。

  (2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。

  (3)有问题及时记录,以便讨论。

  (学生动手拼摆并贴在白纸上)

  4.你们遇到什么问题了吗?

  (生:边不是直的,是弯的)。

  5.谁能帮助他解决这个问题?

  (学生谈自己的想法)

  6.是的,边不是直的`这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)

  【可使用圆的图片27】

  7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?

  (学生谈自己的想法)

  8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。

  (学生谈自己的想法)

  9.汇报不同推导方法:

  转化成长方形的:

  长方形的面积=a × b 圆的面积=c×r 2

  =π r × r

  =π r 2

  转化成平行四边形的:

  平行四边形的面积= a × h

  圆的面积= c × r 2

  =π r × r

  =π r 2

  转化成三角形的:

  三角形的面积= 1× a × h 2

  圆的面积= 1c×4r 24

  c× r 2 =

  =π r 2

  转化成梯形的: 梯形面积=1×(a+b)× h 2

  15c3c×(+)×2r 21616

  1c××2r 22

  c× r 2圆形面积= ==

  =π r 2

  10.观察一下,这些推导过程有什么相同的地方?

  (生:都是将圆转化成已知图形去推导的)

  11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。

  现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)

  (四)巩固练习

  1.求圆的面积(单位:厘米)

  r=3 答案:s=28.26(平方厘米)

  d=20答案:s=314(平方厘米)

  c=125.6答案:s=1256(平方厘米)

  2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?

  答案:3.14×22 =12.56(平方米)

  3.判断

  (1)直径是2厘米的圆,它的面积是12.56平方厘米。()

  (2)两个圆的周长相等,面积也一定相等。()

  (3)圆的半径越大,圆所占的面积也越大。()

  (4)圆的半径扩大3倍,它的面积扩大6倍。 ()

  4.听故事解题:

  巴依老爷买来一群羊。

  巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。

  阿凡提说:“老爷,这个长方形羊圈太小了!”

  巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”

  阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”

  同样聪明的同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。

  (五)小结

  今天这节课你有什么收获?

  【第二课时】 圆环面积

  一、 教学目标

  1.知识与技能

  掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。

  2.过程与方法

  在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。

  3.情感态度与价值观

  进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。

  二、教学重点

  圆环的特征、圆环面积公式的推导及运用。

  三、教学难点

  灵活运用圆环面积的计算方法解决相关的简单实际问题。

  四、教学具准备

  课件、学具。

  五、教学过程

  (一)学习方法回顾、铺垫回忆一下

  我们在推导圆面积计算公式时用到了什么学习方法?

  (生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)

  这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会

  想 会

  新 旧

  这节课我们继续用这种方法研究新问题。

  (二)创设实际应用的问题情境

  1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?

  (1)动画光盘(2)歌曲光盘

  (3)空白封面光盘

  2.想知道这张光盘的内容吗?我们一起来看看。

  欣赏学生的校园活动照片。

  这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?

  3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。

  4.小组内摸一摸准备的光盘实物,再让学生实投指一指。

  师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】

  5.这个图形有什么特点?

  生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)

  6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。

  板书课题:圆环

  外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。

圆的面积教案 篇6

  教学内容:

  圆的面积。

  教学目标:

  1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

  3. 渗透转化的数学思想和极限思想。

  教学重点:

  正确计算圆的面积。

  教学难点:

  圆面积公式的推导。

  学情分析:

  本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

  学法指导:

  教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

  教具准备:

  多媒体课件,圆片。

  学具准备:

  把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

  教学设计:

  一、复习旧知,导入新课

  1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

  2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

  3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

  提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

  这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

  二、动手操作,探索新知

  1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

  2. 推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的`长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr × r S=πr2 师小结公式

  S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  3. 利用公式计算。

  (1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

  (2)出示例3,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成第95页做一做的第1题。

  (4)看书质疑。

  三、运用新知,解决问题

  1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

  2. 测量一个圆形实物的直径,计算它的周长及面积。

  3. 课件演示

  用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、布置作业

  1. 第97页的第3题和第4题。

  2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

  板书设计:

  圆的面积

  长方形的面积= 长× 宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

【圆的面积教案】相关文章:

《圆的面积》教案03-06

圆的面积教案09-20

圆的面积教案03-23

【热】圆的面积教案03-31

人教版圆的面积教案02-19

数学圆的面积教案02-16

圆的面积教案3篇01-26

圆的面积教案五篇01-27

圆的面积教案八篇02-02

圆的面积教案三篇01-20